基于SiGe工艺的宽带低噪声放大器设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiGe工艺具有优异的射频性能,更由于其较高的性价比,被广泛应用于移动通信、卫星定位和RFID等市场;SiGe工艺还可以与常规的数字模拟电路相集成,制造出功能完整的SoC芯片。目前采用SiGe材料制作射频集成电路已成为国际上的研究热点。
     随着无线电应用越来越广泛,使用的带宽和频率也越来越高,因此宽带、超宽带的无线电应用研究具有重要意义,本论文正是基于先进的SiGe工艺,对宽带、超宽带无线应用中的关键模块——宽带低噪声放大器进行研究、设计,制造出高性能的RFIC芯片。
     本论文在参考大量相关文献的基础上,对宽带低噪声放大器的各种设计方法进行了深入分析和研究,详细比较了各种传统和新型的宽带低噪声放大器电路结构,在此基础上采用新颖的电路结构设计了两款带宽超过3倍频程的宽带低噪声放大器芯片,达到了优异的性能指标。
     采用新型带通滤波器匹配技术设计的800M—2.4GHz宽带低噪声放大器芯片,在宽频带内实现了2.1dB~3dB的噪声系数和17dB的平坦增益,输入输出匹配优于-10dB,而功耗仅为11mW。通过对芯片在探针台上进行的初步测试表明测试结果与仿真结果相吻合。
     首次采用电流复用技术实现了3.1G—10.6GHz超宽带(UWB)低噪声放大器,仅以10mW功耗和0.2mm~2的芯片面积实现了最小2.7dB的噪声系数和大于18dB的增益。推导出了电流复用结构低噪声放大器输入阻抗的具体数学表达式,对于采用该结构设计宽带低噪声放大器具有重要的指导作用。
SiGe process is widely used in mobile communication, satellite location and RFID markets because of its high performance and cost-performance ratio. It is easy for SiGe process to integrate RF, digital and analog circuits on a chip, resulting in SoC which has the entire function. More and more RFICs (Radio Frequency Integrated Circuit) are fabricated with SiGe process now.
     The frequency and bandwidth is increasingly higher and wider along with the widely use of wireless communications, so it is very important to research the wide-band and ultra wide-band circuits. This thesis exactly researched the keycomponent of wide-band wireless applications--wide-band low noise amplifier(LNA) based on advanced SiGe process. The aim of this thesis is to design and manufacture high performance wide-band LNA RFICs.
     Based on numerous references, this thesis researched various design methods of the wide-band LNA thoroughly, compared all kinds of traditional and novel circuit structures; and then designed two novel ultra wide-band LNAs which both obtained more than triple frequency bandwidth.
     Designed an 800M-2.4GHz wide-band LNA using the input band-pass filter matching structure. The LNA achieved 2.1dB~3dB noise figure (NF) and 17dB gain in the pass band with less than -10dB input and output match. The power dissipation of the LNA was merely 11mW. It was indicated that the measured results matched well with the simulated results through on chip test.
     First time realized a 3.1G-10.6GHz ultra wide-band (UWB) LNA with the current-reuse technology. It achieved minimal noise figure of 2.7dB and more than 18dB gain with only 10mW power and 0.2mm~2 chip size. This thesis conducted out the mathematic expression of the current-reuse LNA's input impedance which has significant guiding meaning.
引文
[1] 池保勇,余志平,石乘学.CMOS射频集成电路分析与设计.北京:清华大学出版社,2006,1-2
    [2] Eunseok Song, Yido Koo, Yeon-Jae Jung, et al. A 0.25-μm CMOS Quad-Band GSM RF Transceiver Using an Efficient LO Frequency Plan. IEEE JOURNAL OF SOLID-STATE CIRCUITS, MAY 2005, VOL.40, NO.5:1094-1106
    [3] Bertan Bakkaloglu, Paul Fontaine, Ahmed Nader Mohieldin, et al. A 1.5-V Multi-Mode Quad-Band RF Receiver for GSM/EDGE/CDMA2K in 90-nm Digital CMOS Process. IEEE JOURNAL OF SOLID-STATE CIRCUITS, MAY 2006, VOL.41, NO.5:1149-1159
    [4] Rahul Magoon, Alyosha Molnar, Jeff Zachan, et al. A Single-Chip Quad-Band (850/900/1800/1900 MHz) Direct Conversion GSM/GPRS RF Transceiver with Integrated VCOs and Fractional-N Synthesizer. IEEE JOURNAL OF SOLID-STATE CIRCUITS, DEC 2002, VOL.37, NO.12:1710-1720
    [5] Chun-Lin KO, Ming-Ching Kuo, Chun-Ming Hsu, et al. A CMOS Dual-Mode RF Front-End Receiver for GSM and WCDMA. 2004 IEEE Asia-Pacific Conference on Advanced System Integrated Circuits (AP-ASIC2004) Aug.4-5, 2004
    [6] B. Razavi. CMOS technology characterization for analog and RF design. IEEE Journal of Solidsfafe Circuifs, March 1999, Vol.34:268-276
    [7] T. H. Lee. 5-GHz CMOS Wireless LANs. Transaction on Microwave Theory and Technique, Jan.2002, Vol.50:268-280
    [8] F. Iturbide-Sanchez, H. Jardon-Aguilar, J.A. Tirado-Mender. Comparison of different high-linear LNA structures for PCS applications using SiGe HBT and low bias voltage. ELECTRONICS LETTERS, 6th June 2002, Vol.38, No. 12:536-538
    [9] Chen-Yang Huang, Yue-ming Hsin. An Integrated Dual-Band SiGe HBT Low Noise Amplifier. RFIT2005 - IEEE International Workshop on Radio-Frequency Integration Technology, Nov 30-Dec 02, 2005, Singapore: 187-190
    [10] Yu-Che Yang, Po-Wei Lee, Hung-Wei Chiu, et al. Reconfigurable SiGe Low-Noise Amplifiers with Variable Miller Capacitance. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, DEC.2006, VOL.53, NO. 12:2567-2577
    [11] Yunseo Park, Chang-Ho Lee, John D. Cressler, et al. Theoretical Analysis of a Low Dispersion SiGe LNA for Ultra-Wideband Applications. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, SEP.2006, VOL. 16, NO.9:517-519
    [12] Federico Agnelli, Guido Albasini, Ivan Bietti, et al. Wireless Multi-Standard Terminals: System Analysis and Design of a Reconfigurable RF Front-end. IEEE CIRCUITS AND SYSTEMS MAGAZINE, FIRST QUARTER 2006:38-59
    [13] Fred S. Lee, Anantha P. Chandrakasan. A BiCMOS Ultra-Wideband 3.1-10.6-GHz Front-End. IEEE JOURNAL OF SOLID-STATE CIRCUITS, Aug.2006, VOL.41, NO.8:1784-1791
    [14] 缪民.RFIC技术的若干发展动向.电子产品世界,2005.8:42-48
    [15] ALVIN J. JOSEPH, DAVID L. HARAME, BASANTH JAGANNATHAN, et al. Status and Direction of Communication Technologies—SiGe BiCMOS and RFCMOS. PROCEEDINGS OF THE IEEE, SEP.2005, VOL.93, NO.9:1539-1558
    [16] Ramkumar Krithivasan, Yuan Lu, John D. Cressler. Half-Terahertz Operation of SiGe HBTs. IEEE ELECTRON DEVICE LETTERS, JULY 2006, VOL.27, NO.7: 567-569
    
    [17] JOHN R.LONG. SiGe Radio Frequency ICs for Low-Power Portable Communication. PROCEEDINGS OF THE IEEE, SEP.2005, VOL.93, NO.9:1598-1623
    
    [18] Jorge Aguirre, Calvin Plett. 50-GHz SiGe HBT Distributed Amplifiers Employing Constant-k and m-Derived Filter Sections. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MAY 2004, VOL.52, NO.5:1573-1579
    
    [19] Jeffrey B. Johnson, Alvin J. Joseph, David C. Sheridan, et al. Silicon-Germanium BiCMOS HBT Technology for Wireless Power Amplifier Applications. IEEE JOURNAL OF SOLID-STATE CIRCUITS, OCT.2004, VOL.39, NO.10:1605-1614
    
    [20] Junxiong Deng, Prasad S. Gudem, Lawrence E. Larson, et al. A High Average-Efficiency SiGe HBT Power Amplifier for WCDMA Handset Applications. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, FEB.2005, VOL.53, NO.2:529-537
    
    [21] Yi-Jan Emery Chen, Wei-Min Lance Kuo, Zhenrong Jin, et al. A Low-Power Ka-Band Voltage-Controlled Oscillator Implemented in 200-GHz SiGe HBT Technology. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MAY 2005, VOL.53, NO.5:1672-1681
    
    [22] Tom K. Johansen, Jens Vidkjaer, Viktor Krozer. Analysis and Design of Wide-Band SiGe HBT Active Mixers. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JULY 2005, VOL.53, NO.7:2389-2397
    
    [23] Corrado Carta, Rolf Vogt, Wemer Bachtold. Multiband Monolithic BiCMOS Low-Power Low-IF WLAN Receivers. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, SEP.2005, VOL.15, NO.9:543-545
    
    [24] Fred S. Lee, Anantha P. Chandrakasan. A BiCMOS Ultra-Wideband 3.1-10.6-GHz Front-End. IEEE JOURNAL OF SOLID-STATE CIRCUITS, AUG.2006, VOL.41, NO.8:1784-1791
    
    [25] Brian A. Floyd, Scott K. Reynolds, Ullrich R. Pfeiffer, et al. SiGe Bipolar Transceiver Circuits Operating at 60 GHz. IEEE JOURNAL OF SOLID-STATE CIRCUITS, JAN.2005, VOL.40, NO.1:156-167
    
    [26] Beom Kyu KO, Kwyro Lee. A Comparative Study on the Various Monolithic Low Noise Amplifier Circuit Topologies for RF and Microwave Applications. IEEE JOURNAL OF SOLID-STATE CIRCUITS, AUG.1996, VOL.31, NO.8:1220-1225
    
    [27] Frank Ellinger, Heinz Jackel. Low-Cost BiCMOS Variable Gain LNA at Ku-Band With Ultra-Low Power Consumption. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, FEB.2004, VOL.52, NO.2:702-708
    
    [28] Joonho Gil, Kwangscok Han, Hyungcheol Shin. 13 GHz 4.67 dB NF CMOS low-noise amplifier. ELECTRONICS LETTERS 10th July 2003 Vol.39 No.14:1056-1058
    
    [29] Y.S. Wang, L.-H. Lu. 5.7 GHz low-power variable-gain LNA in 0.18 um CMOS. ELECTRONICS LETTERS 20th JAN.2005 Vol.41 No.2
    
    [30] Pingxi Ma, Marco Racanelli, Jie-Zheng. A 1.4mA & 3mW, SiGe90, BiFET Low Noise Amplifier for Wireless Portable Applications. 2003 IEEE Radio Frequency Integrated Circuits Symposium: 237-240
    
    [31] Jongsoo Lee, John D. Cressler. Analysis and Design of an Ultra-Wideband Low-Noise Amplifier Using Resistive Feedback in SiGe HBT Technology. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MARCH 2006, VOL.54, NO.3:1262-1268
    
    [32] Yunseo Park, Chang-Ho Lee. The Analysis of UWB SiGe HBT LNA for Its Noise, Linearity, and Minimum Group Delay Variation. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, APRIL 2006, VOL.54, NO.4:1687-1697
    [33] A. Ismail, A. Abidi. A 3 to 10GHz LNA Using a Wideband LC-ladder Matching Network. 2004 IEEE International Solid-State Circuits Conference
    [34] Andrea Bevilacqua, Ali M Niknejad. An Ultra-Wideband CMOS LNA for 3.1 to 10.6GHz Wireless Receivers. 2004 IEEE International Solid-State Circuits Conference
    [35] Fred S. Lee, Anantha P. Chandrakasan. A BiCMOS Ultra-Wideband 3.1-10.6-GHz Front-End. IEEE JOURNAL OF SOLID-STATE CIRCUITS, AUGUST 2006, VOL.41, NO.8:1784-1791
    [36] F. Bruccoleri, E. A. M. Klumperink, B. Nauta. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE JOURNAL OF SOLID-STATE CIRCUITS, Feb. 2004, VOL.39, NO.2:275-282
    [37] C.-P. Chang, H.-R. Chuang. 0.18 um 3-6 GHz CMOS broadband LNA for UWB radio. ELECTRONICS LETTERS 9th June 2005 Vol.41 No.12
    [38] Shih-Chieh Shin, Ming-Da Tsai, Ren-Chieh Liu, et al. A 24-GHz 3.9-dB NF Low-Noise Amplifier Using 0.18 um CMOS Technology. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, JULY 2005, VOL. 15, NO.7:448-450
    [39] Xiaoling Guo, Kenneth K.O. A Power Efficient Differential 20-GHz Low Noise Amplifier With 5.3-GHz 3-dB Bandwidth. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, SEPTEMBER 2005, VOL.15, NO.9:603-605
    [40] Nobuhiro Shiramizu, Toru Masuda. A 3-10 GHz Bandwidth Low-Noise and Low-Power Amplifier for Full-Band UWB Cormnunications in 0.25-urn SiGe BiCMOS Technology. 2005 IEEE Radio Frequency Integrated Circuits Symposium:39-42
    [41] John Rogers, Calvin Plett. Radio frequency integrated circuit design. Boston. London: Artech House,2003
    [42] Yang Lu, Kiat Seng Yeo, Jianguo Ma. A Novel CMOS Low-Noise Amplifier Design for 3.1-to 10.6-GHz Ultra-Wide-Band Wireless Receivers. IEEE Transactions on circuits and systems, Aug.2006, Vol.53, NO.8:1683-1692
    [43] B. Shi, Y.W. Chia. Ultra-wideband SiGe low-noise amplifier. Electronics Letters, Apr.2006, Vol.42, NO.8:462-463

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700