复杂机电系统统一建模与仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对日益激烈的市场竞争以及各国对知识产权的高度重视,产品设计是企业生存与发展的根本。在复杂机电一体化系统开发中,跨学科的系统建模方法、多领域模型的协同仿真和多学科协同开发的过程管理技术是目前亟待解决的关键技术,可以对机电一体化系统的设计和开发提供强有力的支持,目前已经成为该领域的研究重点。
     本文以山东省科技攻关重大项目“复杂产品虚拟样机技术研究”、国家“十一五”科技支撑计划课题“复杂条件煤矿综放工作面关键设备研究”和山东省自然科学杰出青年基金项目“面向复杂产品协同设计的资源共享与虚拟样机技术研究”为研究背景,对复杂机电一体化系统的统一建模和仿真技术研究进行了深入研究,取得了以下的研究与应用成果:
     (1)从系统的角度提出了复杂机电系统的统一建模与仿真技术的总体框架,给出了其工作原理和关键技术;
     (2)通过对复杂机电一体化系统多学科系统建模技术的研究,创新性的提出了基于交互传递模型(Contact and Channel Model, C&CM)的统一产品模型(Unified Product Model,UPM)和基于UPM的统一建模方法,给出了UPM模型的信息元素,提出了UPM的具体描述方法和过程。将ontology应用于复杂机电系统设计过程,首次提出并实现了基于ontology的UPM描述技术。该描述方法既易于人理解,又易于计算机实现,保证了知识共享和信息的可检索性,为系统设计阶段的知识交流奠定了基础,同时也为后续过程求解的知识共享、重用提供了保障;
     (3)以复杂机电一体化系统多学科协同仿真技术为核心,构建了一个基于UPM和(High Level Architecture, HLA)的协同仿真框架,为面向产品设计领域的多学科协同仿真的实施提供了一个完整通用的参考结构,提出了基于UPM和HLA的协同仿真建模过程模型,解决了现有的协同仿真研究中不能建立设计模型和仿真模型之间的内在关联关系的问题。在此基础上,对协同仿真运行管理技术进行了深入研究,实现了协同仿真运行管理器的设计和开发;
     (4)从过程管理,模型管理和数据共享的角度出发,提出了复杂机电一体化系统多学科协同开发的过程管理方法,实现了对统一建模、领域建模、协同仿真等相关过程中所涉及的人员、数据、信息等的有效管理,为复杂机电一体化系统的跨领域并行协同开发提供了有力的支持;
     (5)建立了复杂机电一体化系统多学科协同开发平台,提出了平台的总体技术框架和系统组成,并实现了平台的原型系统;以某型机器人手臂的设计过程为例,介绍了复杂机电一体化系统多学科协同开发平台的应用。
With the serious competition in the international market and the attention to knowledge privilege protection, the original product design is the key problem for the companies. Cross-domain system modelling approach、multiple-disciplinary simulation and collaborative development process management technology for complex mechatronic system are the key technologies during the development process of complex mechtronic system, which provide strong support. The research was based on the following research projects:(1) Key Research Project of Science and Technology Development Program of Shandong Province:Research on virtual prototype technology of complex product. (2) Key Research Project of the Supporting Program of Science and Technology of State 11th Five Years Plan:Research on key equipments of coal mine full mechanized mining face in complex mining conditions. (3) Shandong Natural Science Foundation for Distinguished Young scholars of China:Resource sharing and virtual prototype technology for cooperative development of complex product.
     Unified Product Modelling approach and cooperative simulation technology for complex mechatronic system have been studied in detail in the dissertation and corresponding research and application achievements have been made.
     (1) Multiple-disciplinary cooperative system modelling approach for complex mechantronic system was studied and Unified Product Model (UPM) based on C&CM for complex mechatronic system and Unified Product Modelling methodology based on UPM was given originally. The basic elements, the description method and process were given. UPM shows the internal structure of system model and the coupling relationship among domain models. According to UPM, it can ensure that all the team-members can always get the coherent view of the 'single source of truth' of mechatronic product, which could not be done in previous time. UPM can ensure the consistence from the genesis and eliminate unnecessary iterations so that it can help to shorten time to market and reduce cost by means of a more efficient development process.
     (2) Ontology was used in the development process of complex mechatronic system and the description process of UPM based on ontology was given. According to this description, both the man and computer can understand it easily, which can assure the knowledge sharing and inquiry of information. It can provide the basis for knowledge communication at the system design stage and knowledge sharing and reuse at the late stage.
     (3) With collaborative simulation technology for Complex mechatronic system in the core, a cooperative simulation framework based on HLA (High Level Architecture) was.provided, which gives a reference structure for the multiple-disciplinary cooperative simulation in produce development domain Collaborative simulation modelling approach based on UPM and HLA was given, this approach can help to set up the internal connecting relationship between design model and simulation model that has not been given in existing research. On this basis, modelling of cooperative simulation and cooperative simulation running management technology were studied, Simulation running management system was designed and developed.
     (4) Collaborative development process management technology for complex mechatronic system was stuied from.the point view of process management, model management and data sharing.The management of staff, data and information involved in the process of unified product modelling, domain modelling and cooperative simulation etc was realized, which can support the concurrent cooperative development of complex mechtronic system.
     (5) A multidisciplinary cooperative development platform was studied and the whole framework and elements of this platform were given. The platform was realized by programming. Application of the multidisciplinary cooperative development platform was given using one Robot Arm design.process as an example.
引文
1.胡洁,彭颖红,熊光楞.基于系统论的并行协同设计方法研究[J].计算机集成制造系统,2005Vol.11,No.2.
    2. Brussel, H. M. J. Van:Mechatronics-A Powerful Concurrent Engineering Framework[J]. IEEE/ASME Transactions on Mechatronics,1996, Vol.1, No.2:127-136.
    3. Isermann, R.:Mechatronische Systeme-Grundlagen[M]. Berlin:Springer Verlag,1999.
    4. VDI-Guideline 2206, Design methodology for mechatronic system[M]. Diisseldorf, Verein Deutscher Ingenieure, Juni 2004.
    5. Rolf Isermann, Modelling and Design methodology for Mechatronic system[J]. IEEE/ASME, Transactions on mechatronics, vol.1, No.1, March,1996:16-28.
    6. Isermann, Rolf. Information processing for mechatronic systems[J]. Robotics and Autonomous Systems. 1996, Vol.19, Issue:2:117-134.
    7. Gausemeier, J., Flath, M.Mohringer, S. Conceptual design of mechatronic systems supported by semi-formal specification, Advanced Intelligent Mechatronics[C]. Proceedings.2001 IEEE/ASME International Conference,2001, Vol(2):888-892.
    8. Jiirgen Gausemeier, Martin Flath and Stefan Mohringer, Modelling and Evaluation of Principle Solutions of Mechatronic Systems, Exemplified by Tyre Pressure Control in Automative Systems. International Conference on Engineering Design ICED 01 Glasgow,2001:21-23,
    9. Gausemeier, J, Flath, M and Mohringer, S. Modelling of Functions of Mechatronic Systems, Exemplified by Tyre Pressure Control in Automotive System[J]. Int. J. Vehicle Design,2001, Special Issue.
    10. Gausemeier, J. Designing Tomorrow's Mechanical Engineering Products; Information,5-6 Dec.2005, page(s):1-18.
    11. Prof. Dr.-Ing. Jiirgen Gausemeier, Dr.-Ing. Ursula Frank etc. From Domain-Spanning Conceptual Design to Domain-Specific Controller Design of Self-Optimizing Systems[C]. Proceedings of Systems Engineering for Future Capability,2007.
    12. Gausemeier, J.Frank, U.Cheng Yee Low Henke, C.Synergistic Impacts of Domain-Spanning Conceptual Design on Control of Self-Optimizing Systems[C]. Systems Conference,2007 1st Annual IEEE:1-7
    13. Porter I.D. Schemebuilder Mechatronics, Proceedings of Engineering Design Conference,1998.
    14. Dr John Counsell, Ian Porter, David Dawson, Marcus Duffy, Schemebuilder Computer Aided Conceptual Design, Schemebuilder:computer aided knowledge based design of mechatronicssystems. (http://www.comp.lancs.ac.uk).
    15. Bracewell, R H, and Sharpe, J E E. Functional descriptions used in computer support for qualitative scheme generation-"Schemebuilder" [J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,1996,10(4):333-346.
    16. Braceweil, R.H., Chaplin, R.V., Langdon, P.M., Li, M., Oh, V.K., Sharpe, J.E.E. and Yan, X.T., Integrated Platform for Al Support of Complex Design (Part I):Rapid Development of Schemes from First Principles[C]. CACD 95,1995, Lancaster:Springer.
    17. Ahmad Shakeri, Principle design in mechatronic systems development process-with an introduction to UML[C].2nd Tampere international conference on machine automation, Finland-Tampere,1998.
    18.邹慧君,廖武,郭为忠,王石刚.机电一体化系统概念设计的基本原理[J].机械设计与研究1999,(3):14-17.
    19.田志斌,邹慧君,王石刚.基于功能进化过程模型的机电产品设计目标表达[J].机械研究与应用,2000,(02).
    20.田志斌,邹慧君,郭为忠.机电一体化产品概念设计的三层模糊优序评价模型[J].机械设计与研究,2000,(04).
    21.田志斌,邹慧君.机电产品设计方法及系统建模与仿真[J].机械与电子,2000,(02).
    22.郭为忠.略论机电运动产品及其方案设计方法[J].机械设计,2001,7(增刊):50~52.
    23.李瑞琴,邹慧君.机电一体化产品概念设计理论研究现状与发展展望[J].机械设计与研究,2003,(03).
    24.李瑞琴.机电一体化系统方案创新设计理论与方法的研究[D].上海:上海交通大学,2004.
    25.田永利.机电产品中广义执行机构方案自动生成原理及应用研究[D].上海:上海交通大学,2005.
    26.秦自凯.机电产品概念设计方法及其应用的研究.硕士学位论文,武汉:华中科技大学,2004.
    27.苗中华.机电系统概念设计技术与应用研究.硕士学位论文,济南:山东大学,2005.
    28. Van Brussel, H.Sas, P. Nemeth, I. De Fonseca, P.den Braembussche, P.Towards a mechatronic compiler[J]. IEEE/ASME Transactions on Mechatronics,2001, Issue 1, Volume 6:90-105.
    29. da Silva, Maira M. Desmet, Wim Van Brussel, Hendrik, Design of mechatronic systems with configuration-dependent dynamics:Simulation and optimization, Advanced intelligent mechatronics[C]. 2007 ieee/asme international conference,2007:1-6.
    30. Job van Amerongen. Modelling, Simulation and Controller Design for Mechatronic Systems with 20-sim 3.0[C].1st IFAC conference on Mechatronic Systems. Darmstadt, Germany.2000:831-836.
    31. Job van Amerongen, Peter Breedveld. Modelling of Phys-ical Systems for the Design and Control of MechatronicsSystems[C]. IFAC Professional Briefs, published in relation to the 15th triennial IFAC World Congress. Laxen-burg, Austria.2002:1-56.
    32. Job van Amerongenand Peter Breedveld, Modelling of physical systems for the design and control of mechatronic systems,Annual Reviews in Control,2003, Volume 27, Issue 1:87-117
    33. Peter C. Breedveld, Port-based modelling of mechatronic systems, Mathematics and Computers in Simulation,2004, Volume 66, Issues 2-3:99-128.
    34. Amerongen, Job van, "Mechatronic Design:A Port-Based Approach", Keynote speech in the Fourth International Symposium on Mechatronics and its Applications (ISMA07),2007, March 26-29, Sharjah, United Arab Emirates:8.
    35.钟掘,胡志刚.基于耦合问题的多智能主体协作模型[J].中南工业大学学报(自然科学版),1998,(02).
    36.钟掘,陈先霖.复杂机电系统耦合与解耦设计——现代机电系统设计理论的探讨[J].中国机械工 程,1999,(09)
    37.李旭宇.复杂机电耦合系统的并行设计方法研究[D].长沙:中南大学,2004.
    38.贺建军.复杂机电系统机电耦合分析与解耦控制技术[D].长沙:中南大学,2004.
    39.柴旭东,李伯虎,熊光楞等.复杂产品协同仿真平台的研究与实现[J].计算机集成制造系统一CIMS.2002,8(7):580~584.
    40.李伯虎,柴旭东,熊光楞等.复杂产品虚拟样机工程的研究与初步实践[J].系统仿真学报.2002,14(3):336~341.
    41. Wang Ke-ming, Xiong Guang-leng. Research and Realization on Co-Simulation Platform Supporting Networked Manufacturing[C]. International Conference on Electronic Commerce Engineering.2003: 187~190.
    42.陈晓波.面向复杂产品设计的协同仿真关键技术研究[D].北京:清华大学自动化系,2003.
    43. XIONG Guang-leng, FAN Wen-hui, CHEN Xiao-bo, Simulation Technology of Complex Product Development[J]. Journal of System Simulation,2004, Vol.16, No.2:194-201.
    44.张少彤,熊光楞,李涛.基于参数协调模型的多学科协同设计方法[J].计算机学报,2004 Vo1.27No.1.
    45.熊光楞,范文慧,陈晓波.复杂产品开发的仿真技术[J].系统仿真学报.2004,16(2):194~201
    46.熊光楞,王克明.二十一世纪仿真技术的发展及其对制造业的影响[C].全球化制造高级论坛暨21世纪仿真技术研讨会.2004:13-18.
    47. XIAO Tian-yuan; FAN Wen-hui, HLA based Integrated Platform for Collaborative Design, Simulation and Optimization[J]. Journal of System Simulation,2008, Vol.20, No.13:3542-3547.
    48.熊光楞,吴祚宝,徐光明.计算机集成制造系统的组织与实施[M].北京:清华大学出版社,1996.
    49. Winner R I, Pennell J P. The role of concurrent engineering in weapons system acquisition. IDA Report R-338,AD-A203/615,Dec.1988.
    50. Microsoft Corporation. Project 2000用户手册,2000.
    51.罗仲,张雪琴,王宇英等.基于项目管理的PDM系统的设计与实现[J].信息技术与应用,2002,12:8-9.
    52.赵晓玲,杨春晖.项目管理的应用与发展[J].化工技术经济,2002,20(6).
    53.甄伟,杨学良,宛霞.并行工程协同工作环境中工作流管理的研究与实现[J].计算机工程与应用,2001:21:73-75.
    54.熊光楞,陈晓波,郭斌.复杂产品设计的仿真现状与发展趋势[J].计算机集成制造系统,2002,8(9).
    55.许勇.机电一体化系统方案生成及优选研究[D].上海:上海交通大学,2007.
    56. C. F. Kirsehman, G.M. Fadel. Classifying functions for mechanical design[J]. Journal.of Mechanical Design, Trans.of ASME,1998,120:475-482.
    57. Albers, A.; Matthiesen, S.:Konstruktionsmethodisches Grundmodell zum Zusammenhang von Gestalt und Funktion technischer Systeme-Das Elementmodell, Wirkflachenpaare & Leitstutzstrukturen'zur Analyse und Synthese technischer Systeme; Konstruktion[J]. Zeitschrift fur Produktentwicklung Band 54; Heft 7/8-2002; Springer-VDI-Verlag GmbH & Co. KG; Dusseldorf; 2002:55-60.
    58. Matthiesen, S:2002, Ein Beitrag zur Basisdefinition des Elementmodell,Wirkflachenpaare & Leitstutzstrukturen'-zum Zusammenhang von Funktion und Gestalt technische Systeme[D]. A. Albers (ed), Forschungsberichte mkl, Vol 6, Karlsruhe.
    59. Albers, A., Matthiesen, S. and Ohmer, M.,2003, Evaluation of the Element Model'Working Surface Pairs & Channel and Support Structures'[C]. Proceeding of International CIRP Design Seminar 2003: 353-362.
    60. Albers, A, Matthiesen, S. and Ohmer, M.,2003, An innovative new basic model in design methodology for analysis and synthesis of technical systems[C]. Proceeding of 14th International Conference on Engineering Design ICED 03.
    61. Albers, A; Ohmer, M.; Eckert, C.M.; Engineering Design in a different way:Cognitive Perspective on the Contact &Channel Model Approach[C]. Proceedings of the third International Conference Visual and Spatial Reasoning in Design; MIT; Cambridge; USA; 2004.
    62. Albers, A.; Burkardt, N.; Ohmer, N.; Approaches for the synthesis of technical systems within the Contact and Channel Model[C]. ICED Melbourne; 2005.
    63. Albers, T. Alink, Support of design engineering activity for a systematic improvement of products[C]. 17th CIRP International Design Seminar,2007 Berlin, Germany.
    64. National Material Advisory Board, NMAB-455. Enabling technologies for unified life-cycle engeering of structural component, Washington:National Academy Press,1991.
    65. AIAA Multidisciplinary Design Optimization Technical Committee. Current State of the Art on Multidisciplinary Design Optimization (MDO). An AIAA White Paper. ISBN 1-56347-021-7,September,1991
    66. Gruber T, Towards principles for the design of ontologies used for knowledge sharing [J]. International Journal of Human-Computer Studies,1995,43 (5-6):907-928.
    67. Uschold M, King M, Moralee S, Zorgios Y. The Enterprise Ontology [J]. The Knowledge Engineering Review.1998.13(1):31-89.
    68. Agirre E, Rigau G. Word Sense Disambiguation Using Conceptual Density [A]. Proceedings of COLING96,1996,16-22.
    69. Stephen Murrell, Robert T. Plant. A Survey of Tools for the Validation and Verification of Knowledge-Based Systems:1985-1995[J]. Decision Support Systems,1997,21:307-323.
    70. Xue D, Yadav S, Norrie D H. Knowledge Based and Database Representation for Intelligent Concurrent Design [J]. Computer-Aided Design,1999,31:131-145.
    71. Taylor W A, Weimann D H and Martin P J. Knowledge Acquisition and Synthesis in a Multiple Source Multiple Domain Process Context [J]. Expert Systems with Applications,1995,8(2):295-302.
    72. Matratrinis N F, Doumpos M and Zopounidis C. Knowledge Acquisition and Representation for Expert Systems in the Field of Financial Analysis [J]. Expert Systems with Applications,1997,12(2):247-262.
    73. Noy NF, Fergerson RW, Musen MA. The knowledge model of Protege-2000:Combining interoperability and flexibility[C]. In:Dieng R, Corby O (eds) 12th International Conference in Knowledge Engineering and Knowledge Management (EKAW'00). Juan-Les-Pins, France. (Lecture Notes in Artificial Intelligence LNAI 1937) Springer-Verlag, Berlin, Germany,2000:17-32.
    74. Protege 4.0 Alpha (build 62). http://protege.stanford.edu/download/prerelease-alpha/.
    75. Albert Albers, Sven Brudniok, Jens Ottnad, Christian Sauter, Korkiat Sedchaicharn, Upper Body of a new Humanoid Robot the Design of ARMAR Ⅲ, Humanoid Robots[C].2006.6th IEEE-RAS International Conference,2006:308-313.
    76.李群,王维平,朱一凡等.协同仿真方法研究[J].系统仿真学报,1999,11(5):351-352.
    77.李群,王维平,朱一凡.协同仿真环境的设计与实现[J].国防科技大学学报,1999,21(1).
    78.李伯虎,柴旭东.复杂产品虚拟样机工程[J].计算机集成制造系统—CIMS.2002,8(9):678~683.
    79. Victor T Miller, Paul A Fishwick. Hybrid Heterogeneous Hierarchical Model for System Simulation[J]. International Journal in Computer Simulation,1995,5(3):209~227.
    80. IEEE-SA Standards Board. IEEE Std 1278.1-1995. IEEE Standard for Distributed Interactive Simulation—Application Protocols. New York:The IEEE Inc.,1998.
    81. The MITRE Corporation. Aggregate Level Simulation Protocol (ALSP) Program Status and History, MITRE INFORMAL REPORT. USA:The MITRE Corporation,1993.
    82.童军,李伯虎,惠天舒等.高级体系结构(HLA)和新一代的分布交互仿真[J].系统仿真学报,1998,10(2).
    83.史扬,金士尧,凌云翔等.基于HLA框架的新一代分布交互仿真[J].计算机工程与科学,1999,21(3).
    84. Department of Defense. Modelling and Simulation (M&S) Master Plan. USA:Secretary for Acquisition and Technology,1995.
    85. IEEE-SA Standards Board. IEEE Std 1516-2000. IEEE Standard for Modelling and Simulation (M&S) High Level Architecture (HLA)-Framework and Rules. New York:The IEEE Inc.,2000.
    86. IEEE-SA Standards Board. IEEE Std 1516-2000. IEEE Standard for Modelling and Simulation (M&S) High Level Architecture (HLA)-Object Model Template (OMT) Specification. New York:The IEEE Inc.,2000.
    87. IEEE-SA Standards Board. IEEE Std 1516-2000. IEEE Standard for Modelling and Simulation (M&S) High Level Architecture (HLA)-Federate Interface Specification. New York:The IEEE Inc.,2000.
    88. Object Management Group. Formal/2002-11-11. Distributed Simulation Systems Specification, version 2.0. USA:Object Management Group, Inc.,2002.
    89.周彦,戴剑伟.HLA仿真程序设计[M].北京:电子工业出版社,2002:12-13.
    90.刘秀罗,薄涛.新一代分布式交互仿真支撑软件-RTI[J].计算机应用,2001,21(4).
    91. Modelica Association. Modelica-A Unified Object-Oriented Language for Physical Systems Modelling. http://www.Modelica.org/.
    92. Christoph C, Beater P. Multidomain Systems:Electronic, Hydraulic, and Mechanical Subsystems of a Universal Testing Machine modeled with Modelica[C]. Proceedings of the 2nd International Modelica Conference.2002:19~25.
    93.汤炳新.基于Modelica语言的柔性结构振动控制仿真[J].计算机仿真.2003,20(4):9-11.
    94. John Batteh, Michael Tiller and Charles Newman, Simulation of Engine Systems in Modelica[C]. Proceedings of the 3rd International Modelica Conference, Linkoping, November 3-4,2003:139-148.
    95.奚旺,刘永文,杜朝辉等.基于Modelica语言的燃气涡轮建模及应用[J].动力工程.2004,24(1):41-44.
    96.于涛,曾庆良.基于仿真建模语言Modelica的多领域仿真实现[J].山东科技大学学报(自然科学版),2005,24(4).
    97.赵翼翔,邓永杰,陈新.基于Dymola的电机-连杆机构建模与仿真研究[J].机电工程技术,2006,(08).
    98.赵建军,丁建完,周凡利等.Modelica语言及其多领域统一建模与仿真机理[J].系统仿真学报,2006,(S2):570-573.
    99.吴义忠,刘敏,陈立平.多领域物理系统混合建模平台开发[J].计算机辅助设计与图形学学报,2006,(01).
    100.王克明.多学科协同仿真平台研究及其应用[D].北京:清华大学自动化系,2005.4.
    101. BMS. Co-Simulation Boosts Vehicle Design Efficiency at Ford [J]. Computer-Aided ENGINEERING, 1999,18(7):8-8.
    102. Mauro Montiglio. Development of a Semi-Active Lateral Suspension for a New Tilting Train, Fiat Research Center.http://www.adams.com/solutions/rail/.
    103.蹇佳.面向复杂产品的多领域建模与仿真技术研究[硕士学位论文].北京:清华大学自动化系,2004.
    104.柴旭东.基于协同仿真与并行工程的复杂产品虚拟样机技术研究.北京:清华大学博士后研究报告,2001.
    105.熊光楞,郭斌,陈晓波等.协同仿真与虚拟样机技术[M].北京:清华大学出版社,2004:22-27,153-156.
    106.侯宝存,李伯虎,柴旭东等,虚拟样机设计仿真环境中多领域工具集成的研究[J].系统仿真学报,2004,(2):234-238.
    107.王江云,王行仁,柴旭东.协同仿真运行管理平台设计与实现[J].系统仿真学报,2002,14(5):585-586.
    108.戴永长.协作产品开发过程管理技术研究[D].北京:清华大学,2004.04.
    109.邓晓红.基于Web的工作流技术在工程建设项目管理中的应用[J].微型机与应用,2002,11:41~42.
    110.田熙清,党延忠.基于工作流技术的项目管理系统的分析和设计[J].计算机工程与应用,2003,8:131-134.
    111.孔建寿,张友良,汪惠芬等.协同开发环境中项目管理与工作流管理的集成[J].中国机械工程,2003,24(13):1122~1125.
    112.王震,孙效里.协同设计系统中访问控制模型的研究[J].计算机工程与设计,2009,30(8):1836-1839.
    113.汤庸,冀高峰,朱君等.协同软件技术及应用[M].北京:机械工业出版社,2007.
    114.苟凌怡.协同产品开发平台关键技术研究[D].北京:清华大学博士后研究报告,2001.
    115.万丽荣.基于虚拟样机的复杂产品协同仿真与设计技术研究[D].青岛:山东科技大学,2008.05

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700