多频涡流无损检测的干扰抑制和缺陷检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多频涡流检测作为一种涡流无损检测新技术,具有实现检测过程干扰抑制和被检对象多参数检测的优点。本文对多频涡流检测中的信号参数估计及混合运算、同步合成激励峰值因数优化及检测信号谱分析、线性调频激励及检测信号细化谱分析、脉冲激励的多频分析等进行深入研究,并应用于干扰抑制、缺陷检测等方面。主要研究内容及创新如下:
     以时谐电磁场理论为基础,探讨了多频涡流检测问题的物理模型和计算方法,并对线圈涡流传感器的感生涡流分布和阻抗特性进行有限元仿真研究。从麦克斯韦方程组出发,对正弦信号激励下的时谐电磁场问题采用电磁位函数进行数学表述。对典型圆柱形线圈涡流传感器,简化为轴对称模型,在轴坐标系下,分析涡流效应对线圈等效阻抗的影响。对任意涡流检测问题,采用有限元法表述其数值计算方法。介绍了常用的多频涡流检测数据处理方法,如线性代数法、相位旋转相减法、频谱分析法等。采用Ansoft Maxwell有限元分析软件,建立涡流检测问题模型,仿真研究了激励频率、提离高度、被检对象厚度、缺陷等对涡流场分布和线圈等效阻抗的影响。
     研究了基于参数混合运算的多频涡流检测技术,采用正交锁定放大器实现检测信号参数估计,提出基于线性最小二乘法的检测信号参数估计方法,对管道检测中支撑干扰和双频涡流检测中提离效应的抑制方法进行研究。在多频涡流检测中,当激励信号的频率分量数目较少时,提取各频率分量的两个参数进行混合运算,确定被检对象特性。讨论了采用带通滤波器和正交锁定放大器的多频涡流检测信号参数估计方法,主要采用硬件实现,成本较高。对正弦信号进行线性化处理,提出基于线性最小二乘法的多频涡流检测信号参数估计方法,降低硬件实现成本。对管道检测中的支撑干扰抑制方法进行研究,采用相位旋转相减法,消除了检测过程的支撑干扰,增强了缺陷信号。对双频涡流检测中的提离效应抑制方法进行研究,分析提离和缺陷对各频率分量的影响差异,在检测信号分量图中提出“缺陷区域”,区分提离信号和缺陷信号,从而抑制提离效应。
     研究了基于同步合成激励和谱分析的多频涡流检测技术,提出基于遗传算法的多频激励信号峰值因数优化方法,采用矩形激励线圈的涡流传感器,基于谱能量变化实现缺陷长度检测,基于主成分分析法实现缺陷分类。设计矩形激励线圈的涡流传感器,将被检对象表面的涡流场转变为匀强场,通过检测缺陷引起的扰动场,识别缺陷特征参数。在同步合成多频激励信号发生中,频率分量数目的增加必然导致激励信号峰值因数的增大,对涡流传感器驱动电路的工作电压范围要求加宽。文中提出基于遗传算法进行多频激励信号峰值因数优化,定义适应度函数,计算得到各频率分量的优化初始相位。与直接搜索算法相比,其明显提高了搜索速度。采用多频激励后,通过分析多频涡流检测信号的谱能量变化,可以对缺陷长度进行定量检测。当涡流传感器进入缺陷时,检测信号谱能量达到最大值;当涡流传感器离开缺陷时,检测信号谱能量达到最小值。提取最大值和最小值之间的扫描时间,结合涡流传感器的移动速度,即可得到缺陷长度。不同类型的缺陷对多频涡流检测信号中各频率分量影响程度是不同的,即谱图曲线变化趋势不同。采用主成分分析法,降低信号维数,提取特征量,实现缺陷分类。
     研究了基于调频激励和细化谱分析的多频涡流检测技术,提出“调制多频涡流检测技术”,并定义谱图能量、谱图重心、谱图峰度、谱图偏度、频谱差峰值频率点等五个特征量,应用于缺陷识别及分类和内部缺陷深度位置识别。文中提出的调制多频涡流检测技术,是将调频信号作为涡流传感器的激励信号,通过对检测信号多级放大,采集并进行细化谱分析,进而实现干扰抑制或者多参数检测。与常规多频涡流检测技术相比,该技术的优点为:采用调频信号,降低了峰值因数;调频信号是多个频率信号的连续激励,避免了多路复用模块的使用,减少了检测时间;将检测信号的离散谱转变为连续谱,易于谱图的特征提取和分析。该技术的不足之处为:如果需要采用各频率分量参数的混合运算进行被检对象特征识别,则该技术不能满足。研究中,激励信号选为常用的线性调频信号,驱动涡流传感器,放大并采集检测信号,采用Chirp-Z变换进行细化谱分析。对检测信号施加Tukey Window函数,有效抑制了其谱图中的纹波。结合检测信号谱图特点,定义谱图能量、谱图重心、谱图峰度、谱图偏度、频谱差峰值频率点等五个特征量用于缺陷的多参数检测。通过涡流检测实验和数据分析,谱图能量可用于缺陷识别;谱图重心、谱图峰度和谱图偏度可用于缺陷分类;频谱差峰值频率点可用于内部缺陷深度位置识别。
     将脉冲激励看作一种多频信号,研究了脉冲涡流检测的多频分析方法,在幅频谱中提出“谱相对变化”用于缺陷分类,在相频谱中提出“相位过零点”用于缺陷分类和提离抑制。广义上讲,脉冲涡流检测技术是多频涡流检测技术的一种,其时域分析方法已经得到了比较广泛的研究。文中对脉冲激励信号的占空比和时移位置进行比较选择,并将其看作一组不等幅正弦谐波的合成信号,分析脉冲涡流检测信号的频谱特性。由于脉冲激励信号中各频率分量能量随着频率的增加迅速减小,在检测信号幅频谱中,采用相对变化量能更有效地发现不同类型缺陷对各谐波分量的影响特点。提出“谱相对变化”特征量可有效地应用于脉冲涡流检测中的缺陷分类,其变化明显,物理意义清楚。对于表面缺陷,高频谐波分量的相对变化量恒定或略有上升趋势;而对于内部缺陷,高频谐波分量的相对变化量具有明显的下降趋势。这种变化是由于高频谐波分量的趋肤深度减小导致的。在相频谱中,低频谐波分量的相位值为正,相位值随着频率的增加逐渐减小并变为负,存在一个“相位过零点”。对于不同的提离高度,相位过零点保持不变;对于表面缺陷,相位过零点比无缺陷时变大;对于内部缺陷,相位过零点比无缺陷时变小。但当缺陷较小时,相位过零点的变化比较微弱,缺陷分类作用并不明显。
     设计和实现了用于参数混合运算和谱分析的多频涡流检测系统。多频涡流检测系统的设计实现比其它类型涡流检测系统复杂。用于参数混合运算的多频涡流检测系统利用DDS技术发生多路正弦信号并通过加法器合成多频激励信号,采用带通滤波器和正交锁定放大器实现微弱涡流检测信号的参数估计。用于谱分析的多频涡流检测系统采用虚拟仪器技术实现,采用D/A单元发生任意多频激励信号,对微弱涡流检测信号经过充分放大后,采集并进行谱分析。
As one new eddy current nondestructive testing (NDT) technology, multi-frequency eddy current testing (MFECT) has the merits of interference elimination in testing procedure and multi-parameter detection of unit under test (UUT). This paper lucubrated signal parameter estimation and mixing, crest factor optimization of synchronously synthetical excitation and spectrum analysis of testing signals, linear frequency modulation excitation and zoom spectrum analysis of testing signals, multi-frequency analysis of pulsed excitation, et al in MFECT technology, and these are applied in interference elimination, defect detection and so on. The brief of these researches and the novel approaches are as follows:
     Based on time harmonic electromagnetic field theory, physical model and calculation method of MFECT are discussed. Induced eddy current distribution and impedance characteristic of the probe coil are simulated and researched with finite element method. According to Maxwell law, time harmonic electromagnetic field problem based on sine signal excitation is expressed mathematically with electromagnetic potential. The typical eddy current testing problem with an aircore coil is simplified and analyzed in cylindrical coordinate, and then the coil’s equivalent impedance affected by eddy current effect is analyzed. The arbitrary eddy current testing problem is expressed and calculated with finite element method. The common data processing methods of MFECT including linear algebra method, phase rotation and subtraction, spectrum analysis method are introduced. The eddy current testing problem is modeled with Ansoft Maxwell finite element software, and then eddy current distribution and coil’s equivalent impedance characteristic influenced by excitation frequency, lift-off height, UUT’s thickness, defects and so on are simulated and researched.
     MFECT technology based on parameter mixing is researched. Testing signal’s parameter estimation method based on orthogonal lock-in amplifiers is introduced and a new method based on linear least square method is proposed. Support interference elimination in tube testing and lift-off effect elimination in dual-frequency eddy current testing are researched. When the amount of frequency components is relative small in MFECT, two parameters of each frequency component are extracted and mixed to characterize UUT. Parameter estimation method based on band pass filters and orthogonal lock-in amplifiers is discussed but it takes a high hardware cost. Sine signal linearzed, a new method for MFECT signal’s parameter estimation based on linear least square method is proposed, and it reduces the hardware cost. Support interference elimination method is researched. The support interference is removed based on phase rotation and subtraction, so the defect signal is enhanced. Lift-off effect elimination in dual-frequency eddy current testing is researched. The component variation difference between lift-off and defects is analyzed and the defect zone is proposed to distinguish lift-off signals and defect signals and to realize lift-off effect elimination.
     MFECT technology based on synchronously synthetical excitation and spectrum analysis method is researched. Crest factor optimization of the multi-frequency excitation signal based on genetic algorithm is proposed. The eddy current sensor with a rectangular excitation coil is adopted. The length of defects is quantitatively detected based on spectrum energy variation, and the classification of defects is realized based on principal component analysis (PCA). The eddy current sensor with a rectangular excitation coil is designed which can convert eddy current field in the surface of UUT to a uniform field. Defect characteristic can be identified by detecting the disturbance field which arises from defects. When the multi-frequency excitation signal is generated in synchronously synthetical mode, the crest factor of excitation signals will increase with the amount of frequency components rapidly. Therefore, that broadens the work voltage range of eddy current sensor’s driving circuit. An optimization method of excitation signal’s crest factor based on genetic algorithm is proposed. A fitness function is defined and the optimized initial phase of each frequency component is got. Compared with direct search algorithm, this method improves the search speed obviously. When the eddy current sensor is drived with a multi-frequency signal, the length of defects can be quantitatively detected based on spectrum energy variation. The spectrum energy reaches maximum when the eddy current sensor comes into defects. The spectrum energy reaches minimum when the eddy current sensor departs from defects. The length can be calculated with the time span between maximum and minimum and the moving speed of the eddy current sensor. Each frequency component is affected differently and the trend of spectrum curve varies differently when different types of defects are detected. The signal dimension is reduced based on PCA and defect classification is realized.
     MFECT technology based on frequency modulation excitation and zoom spectrum analysis method is researched. Modulated MFECT is proposed, and five features including spectrum energy, spectrum barycenter, spectrum kurtosis, spectrum skewness and spectrum difference’s peak frequency point are defined to realize identification and classification of defects and depth detection of inner defects. Modulated MFECT technology proposed in this paper adopts frequency modulation signals as the excitation signal of eddy current sensors. After a multi-level amplification, testing signals are sampled and analyzed in frequency domain to realize interference elimination or multi-parameter detection. Compared with conventional MFECT technology, the crest factor of excitation signals is reduced because of frequency modulation excitation, and the testing time is reduced because that the frequency modulation signal is a continuous excitation of many frequency components and the multiplex module is not needed. As a result, the discrete spectrum of testing signals becomes continuous and it will be easily characterized and analyzed. But this technology can’t satisfy the need of component parameter mixing. The linear frequency modulation is adopted to generate excitation signals and testing signals are amplified, sampled and analyzed with zoom spectrum method (Chirp-Z Transform). Tukey window function is added to testing signals to eliminate ripples in spectrum curves. According to spectrum characteristic, five features such as spectrum energy, spectrum barycenter, spectrum kurtosis, spectrum skewness and spectrum difference’s peak frequency point are defined to realize multi-parameter detection of defects. The eddy current testing experiment shows that spectrum energy can be used to identify defects, spectrum barycenter, spectrum kurtosis, spectrum skewness can be used to classify defects, and spectrum difference’s peak frequency point can be used to detect inner defect’s depth position.
     Pulsed excitation is considered as a multi-frequency signal, and multi-frequency analysis method of pulsed eddy current testing (PECT) is researched. Spectrum relative variation (SRV) in amplitude frequency spectrum is proposed to classify defects, and phase cross zero point (PCZP) in phase frequency spectrum is proposed to eliminate lift-off effect and classify defects. Generally speaking, PECT can be considered as a kind of MFECT technology, and its time domain analysis method has been investigated widely. The duty ratio and time shift position of pulsed excitation signals is compared and selected, then the excitation signal is expressed as a series of unequal amplitude harmonics and testing signal’s spectrum characteristic is analyzed. Because the energy of each harmonic component decreases with frequency rapidly, relative variation in testing signal’s amplitude frequency spectrum can be used to reflect the variation characteristic of each harmonic component influenced by different types of defects effectively. SRV in amplitude frequency spectrum is proposed to classify different types of defects. This feature with clearly physical meanings varies obviously. High frequency harmonic component’s SRV of surface defects keeps constant or has a little upward trend, but that of inner defects has an obvious downward trend. The reason is that the skin depth of high frequency harmonic components becomes smaller. In phase frequency spectrum, the phase value of low frequency harmonic components are positive and it decreases with frequency gradually to negative. PCZP is proposed from that. When the lift-off of the eddy current sensor varies, PCZP keeps constant. PCZP of surface defect’s testing signals become bigger than that of no defect. PCZP of inner defect’s testing signals become smaller than that of no defect. When the defects are too tiny, this feature varies a little and the classification function is not evident.
     MFECT systems for parameter mixing and spectrum analysis method are designed and implemented. MFECT systems are more complicated than other eddy current testing systems. DDS technology is adopted to generate sine signals in MFECT system for parameter mixing, and these sine signals are added to synthesize the multi-frequency excitation signal. Then the parameters of weak eddy current testing signals are estimated based on band pass filters and orthogonal lock-in amplifiers. MFECT system for spectrum analysis method is realized based on virtual instrument (VI) technology. Arbitrary multi-frequency excitation signals are generated by a D/A module. The weak eddy current testing signal is amplified enough and sampled, and then it is converted to frequency domain and analyzed.
引文
[1]美国无损检测学会.美国无损检测手册(电磁卷)[M].上海:世界图书出版公司, 1999: 21-22, 901-921.
    [2] Hellier C J. Handbook of Nondestructive Evaluation[M]. New York: McGraw-Hill, 2003: 1-2.
    [3]任吉林,林俊明.电磁无损检测[M].北京:科学出版社, 2008: 1-20, 193-220.
    [4]李家伟,陈积懋.无损检测手册[M].北京:机械工业出版社, 2002: 2-4.
    [5]石井勇五郎.无损检测学[M].北京:机械工业出版社, 1986: 1-5.
    [6]张俊哲.无损检测技术及其应用[M].北京:科学出版社, 1993: 1-2.
    [7]陈海英,李华桃.常用无损检测方法的特点及应用选择[J].无损探伤, 2009, 33(5): 23-24.
    [8]孙金立.无损检测及在航空维修中的应用[M].北京:国防工业出版社, 2004: 1-11.
    [9]耿荣生.新千年的无损检测技术[J].无损检测, 2001, 23(1): 2-5, 12.
    [10] Shen G T. Progress of Nondestructive Testing and Evaluation in China[C]. 17th World Conference on Nondestructive Testing 2008, Shanghai, China. Oct. 25-28, 2008: 1-14.
    [11] Klyuev V V, Fedosenko Y K. 50th Anniversary of Non-Destructive Testing in Russia[C]. 17th World Conference on Nondestructive Testing 2008, Shanghai, China. Oct. 25-28, 2008: 1-9.
    [12] Regor S, Nathanael G, Ken C, et al. Nondestructive Methods and Special Test Instrumentation Supporting NASA Composite Overwrapped Pressure Vessel Assessments[C]. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii. Apr. 23-26, 2007: 1-18.
    [13] Geng R S. An Overview of the Rapidly Developing Non-Destructive Testing Technology in China[C]. 17th World Conference on Nondestructive Testing 2008, Shanghai, China. Oct. 25-28, 2008: 1-6.
    [14] Joubert P Y, Bihan Y Le, Placko D. Localization of Defects in Steam Generator Tubes Using a Multi-Coil Eddy Current Probe Dedicated to High Speed Inspection[J]. NDT&E International, 2002, (35): 53-59.
    [15]耿荣生,郑勇.航空无损检测技术发展动态及面临的挑战[J].无损检测, 2002, 24(1): 1-5.
    [16] Ditchburn R J, Burke S K, Scala C M. NDT of Weld: State of the Art[J], NDT&E International, 1996, 29(2): 111-117.
    [17]曾祥照.无损检测文化概论[J].无损探伤, 2002, (2): 34-37.
    [18]邓娟,许万忠.五种常规的无损检测方法[J].航空维修与工程, 2004, (3): 62.
    [19]徐可北,周俊华.涡流检测[M].北京:机械工业出版社, 2004: 1-2.
    [20] Ramos H G, Ribeirol A L, Je?dík P, et al. Eddy Current Testing of Conductive Materials[C]. IEEE International Instrumentation and Measurement Technology Conference 2008, Vancouver Island, Canada. May 12-15, 2008: 1-5.
    [21] Libby H L. Introduction to Electromagnetic Nondestructive Test Methods[M]. New York: Robert Kriegger Publisher Company, 1979: 1-10.
    [22]康宜华,宋凯,杨建桂等.几种电磁无损检测方法的工作特征[J].无损检测, 2008, 30(12): 928-930, 933.
    [23]林俊明.电磁(涡流)检测技术现状及发展趋势[J].航空制造技术, 2004, (40): 40-41.
    [24]刘松平.无损检测在航空工业中的机遇与挑战[J].航空制造技术, 2009, (25): 62-66.
    [25]谢小荣,杨小林.飞机损伤检测[M].北京:航空工业出版社, 2006: 6-8.
    [26] Forsyth D S, Lepine B A. Development and Verification of NDI for Corrosion Detection and Quantification in Airframe Structures[J]. Review of Quantitative Nondestructive Evaluation, 2002, (21): 1787-1791.
    [27] Meyendorf N, Hoffmann J, Shell E. Early Detection of Corrosion in Aircraft Structure[J]. Review of Quantitative Nondestructive Evaluation, 2002, (21): 1792-1797.
    [28]候维娜,屈双慧.涡流检测的现状及新进展[J].重庆工学院学报(自然科学版), 2007, 21(8): 67-70.
    [29]游凤荷.涡流检测技术的某些新进展[J].无损检测, 2001, 23(2): 70-73,77.
    [30]任吉林.电磁无损检测的新进展[J].无损探伤, 2001, (5): 1-2, 28.
    [31]刘宝,徐彦霖,王增勇等.涡流检测技术及进展[J].测控技术, 2006, 25(3): 80-82.
    [32] Shaffer R D. Eddy Current Testing, Today and Tomorrow[J]. Materials Evaluation, 1994, (9): 28-32.
    [33]陈建忠,史耀武.无损检测交变磁场测量法[J].无损检测, 2001, 23(3): 96-99.
    [34] Raine A, Lugg M. A Review of the Alternating Current Field Measurement Inspection Technique[J]. Sensor Review, 1999, 19(3): 207-213.
    [35]康中尉.基于场量测量和频率扫描技术的电磁无损检测技术研究[D].长沙:国防科学技术大学, 2005: 1-9.
    [36] Raine A. Cost Benefit Applications Using the Alternative Current Field Measurement Inspection Technique[J]. Insight: Non-Destructive Testing and Condition Monitoring, 2002, 44(1): 25-30.
    [37] Dariush M S, Reza F M. 1-D Probe Array for ACFM Inspection of Large MetalPlates[J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(2): 374-382.
    [38] Laenen C. Additional Applications With the Alternating Current Field Mesurement (ACFM) Technique[J]. Insight: Non-Destructive Testing and Condition Monitoring, 1998, 40(12): 860-863.
    [39] Raine G A, Smith N. NDT of On and Offshore Oil and Gas Installations Using the ACFM Technique[J]. Materials Evaluation, 1996, 54(4): 461-465.
    [40] Papaelias M P, Lugg M C, Roberts C, et al. High-Speed Inspection of Rails Using ACFM Techniques[J]. NDT&E International, 2009, (42): 328-335.
    [41]张斌强,田贵云,王海涛等.脉冲涡流检测技术的研究[J].无损检测, 2008, 30(10): 750-753.
    [42]杨宾峰.脉冲涡流无损检测若干关键技术研究[D].长沙:国防科学技术大学2006: 1-12.
    [43]幸玲玲,王恩荣.脉冲涡流检测中系统冲激响应的快速计算[J].中国电机工程学报, 2005, 25(20): 147-150.
    [44] Tsuboi H, Seshima N, Sebestyén I, et al. Transient Eddy Current Analysis of Pulsed Eddy Current Testing by Finite Element Method[J]. IEEE Transactions on Magnetics, 2004, 40(2): 1330-1333.
    [45]余付平,朱荣新,王韫江等.脉冲涡流检测技术的研究进展和展望[J].无损检测, 2008, 30(11): 842-846, 857.
    [46]王春艳,陈铁群,张欣宇.脉冲涡流检测技术的某些进展[J].无损探伤, 2005, 29(4): 1-4.
    [47] Clauzon T, Thollon F, Nicolas A. Flaws Characterization With Pulsed Eddy Currents NDT[J]. IEEE Transactions on Magnetics, 1999, 35(3): 1873-1876.
    [48] Kiwa T, Kawata T, Yamada H, et al. Fourier-Transformed Eddy Current Technique to Visualize Cross-Sections of Conductive Materials[J]. NDT&E International, 2007, (40): 363-367.
    [49] József P. Numerical Calculation Method for Pulsed Eddy-Current Testing[J]. IEEE Transactions on Magnetics, 2002, 38(2): 1169-1172.
    [50] Mandache C, Lefebvre J H V. Transient and Harmonic Eddy Currents Lift-Off Point of Intersection[J]. NDT&E International, 2006, (39): 57-60.
    [51]范孟豹,黄平捷,叶波等.脉冲涡流解析模型研究[J].浙江大学学报(工学版), 2009, 43(9): 1621-1624.
    [52] Tai C C, Yang H C. Pulsed Eddy Current for Deep Metal Surface Cracks Inspection[J]. Review of Progress in Quantitative Nondestructive Evaluation, 2001, (20): 354-360.
    [53] Murner C, Hansen J P. Buried Corrosion Detection in Multi-Layer Airframe Structures[C]. 17th World Conference on Nondestructive Testing 2008, Shanghai,China. Oct. 25-28, 2008: 1-7.
    [54]杨宾峰,罗飞路,张玉华等.飞机多层结构中裂纹的定量检测及分类识别[J].机械工程学报, 2006, 42(2): 63-67.
    [55]徐小杰.铁磁性管道中轴向裂纹的远场涡流检测技术研究[D].长沙:国防科学技术大学, 2008: 1-11.
    [56] Ida N, Xu B Q. An Analytic Approach to Characterization of the Remote Field Effect[J]. Review of Progress in Quantitative Nondestructive Evaluation, 1991, (10A): 309-316.
    [57]严舒.远场涡流无损检测技术的发展与应用[J].石油科技论坛, 2008, (3): 55-56.
    [58] Schmidt T R. The Remote Field Eddy Current Inspection Technique[J]. Materials Evaluation, 1984, 42(2): 225-230.
    [59] Atherton D L. Remote Field Eddy Current Inspection[J]. IEEE Transactions on Magnetics, 1995, 31(6): 4142-4147.
    [60] Shin Y K. Design of Encircling Remote Field Eddy-Current Probe[J]. IEEE Transactions on Magnetics, 2002, 38(2): 1273-1276.
    [61] E2097-00, Standard Practice for In Situ Examination of Ferromagnetic Heat Exchanger Tubes Using Remote Field Testing[S].
    [62] Mackintosh D, Cagle L, Russell D. A New ASTM Standard for Remote Field Testing[J]. Materials Evaluation, 2000, (10): 1213-1215.
    [63] Kim D, Upda L, Upda S. Remote Field Eddy Current Testing for Detection of Stress Corrosion Cracks in Gas Transmission Pipelines[J]. Materials Letters, 2004, (58): 2102-2104.
    [64] Yasunishi M, Ohtsuka Y, Nishkawa M. Testing of Circumferential Discontinuities Using Remote Magnetic Field Analysis[J]. Materials Evaluation, 2005, 63(3): 335-338.
    [65] Teitsma A, Takach S, Maupin J, et al. Remote-Field Eddy-Current Inspection of Unpiggable Pipelines[J]. Pipeline World, 2005, (9): 5-12.
    [66]赵磊.阵列涡流无损检测技术的研究及进展[J].无损探伤, 2009, 33(2): 19-22.
    [67] Grimberg R, Udpa L, Savin A, et al. 2D Eddy Current Sensor Array[J]. NDT&E International, 2006, (39): 264-271.
    [68]楼敏珠,郭韵.基于涡流阵列传感器的高强度螺栓扫描检测成像系统设计[J].无损检测, 2009, 31(6): 485-487, 496.
    [69]丁天怀,陈祥林.电涡流传感器阵列测试技术[J].测试技术学报, 2006, 20(1): 1-5.
    [70]林俊明,李同滨,林发炳等.阵列涡流探头在钢管探伤中的实验研究[J].钢管, 2001, 30(3): 39-40.
    [71] Leclerc R, Samson R. Eddy Current Array Probe for Corrosion Mapping on Ageing Aircraft[J]. Review of Progress in Quantitative Nondestructive Evaluation, 2000: 489-496.
    [72] Huang H Y, Sakurai N, Takagi T. Design of an Eddy-Current Array Probe for Crack Sizing in Steam Generator Tubes[J]. NDT&E International, 2003, (36): 515-522.
    [73] Goldfine N, Schlicker D, Sheiretov Y. Conformable Eddy-Current Sensors and Arrays for Fleetwide Gas Turbine Component Quality Assessment[J]. Transactions of the ASME, 2002, (124): 904-909.
    [74] Chen X L, Ding T H. Flexible Eddy Current Sensor Array for Proximity Sensing[J]. Sensors and Actuators A, 2007, (135): 126-130.
    [75] Chen G M, Li W, Wang Z X. Structural Optimization of 2-D Array Probe for Alternating Current Field Measurement[J]. NDT&E International, 2007, (40): 455-461.
    [76]邬冠华,任吉林,吴彦.磁光/涡流成象技术中的法拉第磁光效应的研究[J].无损检测, 2001, 23(10): 415-420.
    [77]程玉华,周肇飞,蔡鹏.法拉第磁光效应在可视化涡流检测中的应用[J].激光技术, 2007, 31(1): 22-24, 28.
    [78] Novotny P, Sajdl P, Machá? P. A Magneto-Optic Imager for NDT Applications[J]. NDT&E International, 2004, (37): 645-649.
    [79] Radtke U, Zielke R, Rademacher H-G. Application of Magneto-Optical Method for Real-Time Visualization of Eddy Currents With High Spatial Resolution for Nondestructive Testing[J]. Optics and Lasers in Engineering, 2001, (36): 251-268.
    [80]程玉华,周肇飞,尹伯彪.磁光/涡流实时成像检测系统的研究[J].光学精密工程, 2006, 14(5): 798-801.
    [81]王雅萍,朱目成.磁光/涡流成像无损检测技术的研究[J].激光与红外, 2005, 35(7): 515-517.
    [82]任吉林,吴彦,邬冠华.磁光成像技术在航空构件涡流检测中的应用[J].仪表技术与传感器, 2001, (12): 36-38.
    [83] Sbib W C L, Fitzpatrick G L. Magneto-Optic Imaging Technology: A New Tool for Aircraft Inspection[J]. The AMPTIAC Quarterly, 2001, 6(3): 17-23.
    [84] Dodd C V, Deeds W E. Analytical Solutions to Eddy-current Probe-coil Problems[J]. Journal of Applied Physics, 1968, 39(6): 2829-2838.
    [85] Cheng C C, Dodd. C V, Deeds W E. General Analysis of Probe Coils Near Stratified Conductors[J]. International Journal of Nondestructive Testing, 1971, (3): 109-130.
    [86] Bowler J R. Eddy-Current Interaction With an Ideal Crack. I. the ForwardProblem. Journal of Applied Physics[J], 1994, 75(12): 8138-8144.
    [87] Theodoulidis T P, Kriezis E E. Series Expansion in Eddy Current Nondestructive Evaluation Models[J]. Journal of Materials Processing Technology, 2005, 161(1-2): 343-347.
    [88]雷银照.时谐电磁场解析方法[M].北京:科学出版社, 2000: 73-107, 178-218.
    [89]幸玲玲,盛剑霓.涡流检测中平板导体的理想裂缝模型[J].中国电机工程学报, 2002, 22(2): 41-46.
    [90]黄平捷,吴昭同,严仍春.多层厚度电涡流检测阻抗模型仿真及验证[J].仪器仪表学报, 2004, 25(4): 24-28.
    [91] Machado V M. Eddy Current and Impedance Evaluation Using a Two-Dimensional Finite Element Method[J]. IEEE Transactions on Energy Conversion, 1993, 8(3): 362-368.
    [92] Badics Z, Matsumoto Y, Aoki K. An Effective 3-D Finite Element Scheme for Computing Electromagnetic Field Distortions Due to Defects in Eddy-Current Nondestructive Evaluation[J]. IEEE Transactions on Magnetics, 1997, 33(2): 1012-1020.
    [93] Tanaka M, Ikeda K, Tsuboi H. Fast Simulation Method for Eddy Current Testing[J]. IEEE Transactions on Magnetics, 2000, 36(4): 1728-1731.
    [94] Maouche B, Alkama R, Feliachi M. Semi-Analytical Calculation of the Impedance of a Differential Sensor for Eddy Current Non-Destructive Testing[J]. NDT&E International, 2009, (42): 573-580.
    [95]蒋齐密,张新访,刘土光.电涡流检测系统中的电磁场仿真[J].计算机仿真, 2000, 17(5): 36-39.
    [96]谢德馨.三维涡流场的有限元分析[M].北京:机械工业出版社, 2008: 41-99.
    [97]雷银照.三维探伤涡流场及其逆问题的研究[D].北京:清华大学, 1995: 51-58.
    [98] Norton S J, Bowler J R. Theory of Eddy Current Inversion[J]. Journal of Applied Physics, 1993, 73(2): 501-512.
    [99] Yan M, Upda S, Mandayan S, et al. Solution of Inverse Problems in Electromagnetic NDE Using Finite Element Method[J]. IEEE Transactions on Magnetics, 1998, 34(5): 2924-2926.
    [100] Wang B, Basart J P, Moulder J C. Fast Eddy Current Forward Models Using Artificail Neural Networks[J]. Review of Progress in Quantitative Nondestructive Evaluation, 1997, (16): 789-795.
    [101]幸玲玲,王东进.涡流检测中的组合神经网络模型[J].电子学报, 2002, 30(5): 734-737.
    [102] Wilde J, Lai Y. Design Optimization of an Eddy Current Sensor Using theFinite-Elements Method[J]. Microelectronics Reliabililty, 2003, (43): 345-349.
    [103]游凤荷,黄樟灿,孙砚飞等.粗糙集的约简算法在涡流传感器设计中的应用[J].无损检测, 2003, 25(3): 117-120.
    [104]陈亮,阙沛文,李亮.巨磁阻传感器在涡流检测中的应用[J].无损检测, 2005, 27(8): 399-401.
    [105]高扬华,张光新,黄平捷.基于GMR传感器的电涡流检测系统关键技术研究[J].传感器与微系统, 2009, 28(11): 31-33, 36.
    [106] Vacher F, Alves F, Gilles-Pascaud C. Eddy Current Nondestructive Testing With Giant Magneto-Impedance Sensor[J]. NDT&E International, 2007, (40): 439-442.
    [107] Kim J, Yang G, Udpa L. Classification of Pulsed Eddy Current GMR Data on Aircraft Structures[J]. NDT&E International, 2010, (43): 141-144.
    [108] Krause H J, Kreutzbruck M V. Recent Developments in SQUID NDE[J]. Physica C-Superconductivity and Its Applications, 2002, (368): 70-79.
    [109] Pattabiraman M, Nagendran R, Janawadkar M P. Rapid Flaw Depth Estimation From SQUID-Based Eddy Current Nondestructive Evaluation[J]. NDT&E International, 2007, (40): 289-293.
    [110]白世武,丁红胜.直流超导量子干涉器无损检测的原理与应用[J].无损检测, 2006, 28(5): 242-244, 255.
    [111]江忠胜,丁红胜.超导量子干涉器无损检测的应用与研究进展[J].无损检测, 2009, 31(1): 61-67, 71.
    [112] Shin B H. Independent Component Analysis for Enhanced Feature Extraction From Non-Destructive Evaluation[D]. Michigan: Michigan State University, 2004: 28-83.
    [113] Tian G Y, Sophian A, Taylor D, et al. Wavelet-Based PCA Defect Classification and Quantification for Pulsed Eddy Current NDT[J]. IEE Proceedings-Science Measurement Technology, 2005, 152(4): 141-148.
    [114]孙晓云,陈德智,刘东辉等.小波变换在涡流无损检测中的应用[J].电工电能新技术, 2000, (3): 60-64.
    [115]何岭松,周义刚,康宜华.数字化电磁无损检测信号的频域数字滤波[J].无损检测, 2003, 25(4): 195-197.
    [116]林俊明,余兴增,林春景等.基于小波分析的涡流信号去噪处理[J].无损检测, 2003, 25(5): 257-259.
    [117]林俊明.多频涡流检测原理及应用[J].无损检测, 1996, 18(1): 23-26.
    [118]张连玉.预多频技术在汽车零件检测中的应用与研究[J].汽车工艺与材料, 2002, (3): 34-38.
    [119]单韶峰.涡流及预多频检测技术[J].汽车制造业, 2008, (7): 48-50, 54.
    [120]楼敏珠,张云柯,程英丽.一种基于预多频涡流检测技术的钢球硬度分选系统[J].理化检验, 2009, 45(12): 780-783.
    [121]曾照鸿.预多频涡流硬度分选技术的应用[J].装备维修技术, 2001, (1): 29-31.
    [122]任吉林.涡流检测技术近20年的进展[J].无损检测, 1998, 20(5): 121-128.
    [123] Bartels K A, Fisher J L. Multifrequency Eddy Current Image Processing Techniques for Nondestructive Evaluation[C]. IEEE International Conference Image Process 1995, Washington, USA. Oct. 23-26, 1995: 486-489.
    [124] Liu Z, Tsukada K, Hanasaki K. One-Dimensional Eddy Current Multi-Frequency Data Fusion: a Multi-Resolution Analysis Approach[J]. Insight: Non-Destructive Testing and Condition Monitoring, 1998, 40(4): 286-289.
    [125] Liu Z, Tsukada K, Hanasaki K, et al. Two-Dimensional Eddy Current Signal Enhancement via Multifrequency Data Fusion[J]. Research in Nondestructive Evaluation, 1999, (11): 165-177.
    [126] He D F, Yoshizawa M. Dual-Frequency Eddy-Current NDE Based on High-Tc RF SQUID[J]. Physica C-Superconductivity and Its Applications, 2002, (383): 223-226.
    [127] Crowther P. Nondestructive Evaluation of Coatings for Land Based Gas Turbings Using a Multi-Frequency Eddy Current Technique[C]. 16th World Conference on Nondestructive Testing 2004. Montreal, Canada. Aug. 30-Sep. 3, 2004: 1-7.
    [128] Xiang P, Ramakrishnan S, Cai X, et al. Automated Analysis of Rotating Probe Multi-Frequency Eddy Current[J]. International Journal of Applied Electromagnetics and Mechanics, 2000, (12): 151-164.
    [129] Grman J, Ravas R, SyrováL. Application of Neural Networks in Multifrequency Eddy-Current Testing[J]. Measurement Science Review, 2001, 1(1): 25-28.
    [130] Au-Yang M K, Griffith J C. Analysis of Eddy Current Data Using a Probabilistic Neural Network(PNN)[J]. Journal of Pressure Vessel Technology, 2002, (124): 261-264.
    [131] Udpa L, Ramuhalli P, Benson J, et al. Automated Analysis of Eddy Current Signals in Steam Generator Tube Inspection[C]. 16th World Conference on Nondestructive Testing 2004. Montreal, Canada. Aug. 30-Sep. 3, 2004: 1-8.
    [132]施长东. MIZ-18A多频涡流仪的开发与应用[J].大氮肥, 1992, (6): 431-434.
    [133]李志刚,汪德良,孙本达.薄壁钛管的涡流检测[J].无损检测, 1995, 17(5): 132-134.
    [134]唐继红,吴晓君.双频涡流法检测传感器的与制作[J].无损检测, 1998, 20(11): 304-307.
    [135]张姚.多频涡流检测合成塔换热列管[J].无损探伤, 2000, (6): 36-42.
    [136]林介东,倪进飞.四频涡流检测仪原理及应用[J].无损检测, 2002, 24(6): 241-243.
    [137]林介东,倪进飞,童亮灯.数字式电脑多频涡流检测仪在电厂中的应用[J].测试技术学报, 2002, 16(2): 135-139.
    [138]陈金贵.多频/远场涡流检测技术在电力系统中的应用[J].无损检测, 2009, 31(11): 847-850.
    [139] Thompson J G. Subsurface Corrosion Detection in Aircraft Lap Splices Using a Dual Frequency Eddy Current Inspection Technique[J]. Materials Evaluation, 1993, 51(12): 1398-1401.
    [140] Edward P, Manson J. The Application of Dual-Frequency Eddy Current Inspection to Aircraft Structures[J]. Insight: Non-Destructive Testing and Condition Monitoring, 2002, 44(3): 141-145.
    [141] Bos B V D, Sahlen S, Andersson J. Automatic Scanning With Multi-Frequency Eddy Current on Multi-Layered Structures[J]. Aircraft Engineering and Aerospace Technology, 2003, 75(5): 491-496.
    [142] Liu Z, Safizadeh M S, Forsyth D S, et al. Data Fusion Method for the Optimal Mixing of Multi-Frequency Eddy Current Signals[J]. Review of Quantitative Nondestructive Evaluation, 2003, (22): 577-584.
    [143] Liu Z, Forsyth D S, Safizadeh M S, et al. Quantitative Interpretation of Multi-Frequency Eddy Current Data by Using Data Fusion Approaches[C]. SPIE NDE and Health Monitoring of Aerospace Materials and Composites II 2003. San Diego, CA, USA. Mar. 3-5, 2003: 39-47.
    [144] Sasi B, Rao B P C, Jayakumar T. Dual-Frequency Eddy Current Non-Destructive Detection of Fatigue Cracks in Compressor Discs of Aero Engines[J]. Defence Science Journal, 2004, 54(4): 563-570.
    [145] Scheer G, Frische L, Meier T. Borehole Inspection on Aircraft Structures[C]. 9th European Conference on NDT 2006. Berlin, Germany. Sep. 25-29, 2006: 1-7.
    [146] Glorieux C, Moulder J, Basart J, et al. The Determination of Electrical Conductivity Profiles Using Neural Network Inversion of Multi-Frequency Eddy-Current Data[J]. Journal of Physics D-Applied Physics, 1999, (32): 616-622.
    [147] Tai C C. Characterization of Coatings on Magnetic Metal Using the Swept-Frequency Eddy Current Method[J]. Review of Scientific Instruments, 2000, 71(8): 3161-3167.
    [148] Tai C C, Yang H C, Liu Y H. Modeling the Surface Condition of Ferromagnetic Metal by the Swept-Frequency Eddy Current Method[J]. IEEE Transactions on Magnetics, 2002, 38(1): 205-210.
    [149] Hao X J, Yin W, Strangwood M, et al. Off-Line Measurement of Decarburization of Steels Using a Multifrequency Electromagnetic Sensor[J]. Scripta Materialia, 2008, (58): 1033-1036.
    [150] Sundararaghavan V, Balasubramaniam K, Babu N R, et al. A Multi-Frequency Eddy Current Inversion Method for Characterizing Conductivity Gradients on Water Jet Peened Components[J]. NDT&E International, 2005, (38): 541-547.
    [151] Yin W, Peyton A J. Thickness Measurement of Non-Magnetic Plates Using Multi-Frequency Eddy Current Sensors[J]. NDT&E International, 2007, (40): 43-48.
    [152] Yin W, Hao X J, Peyton A J, et al. Measurement of Permeability and Ferrite/Austenite Phase Fraction Using a Multi-frequency Electromagnetic Sensor[C]. IEEE Instrumentation and Measurement Technology Conference 2007. Warsaw, Poland, May, 1-3, 2007: 1-4.
    [153] Yin W, Withers P J, Sharma U, et al. Non-Contact Characterisation of Carbon Fibre Reinforced Plastics (CFRP) Using Multi-Frequency Eddy Current Sensors[C]. IEEE Instrumentation and Measurement Technology Conference 2007. Warsaw, Poland, May 1-3, 2007: 1-4.
    [154] Yin W, Withers P J, Umesh S, et al. Noncontact Characterization of Carbon Fiber Reinforced Plastics Using Multifrequency Eddy Current Sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(3): 738-743.
    [155] Yin W, Hao X J, Peyton A J, et al. Measurement of Permeability and Ferrite / Austenite Phase Fraction Using a Multi-Frequency Electromagnetic Sensor[J]. NDT&E International, 2009, (42): 64-68.
    [156]梁鸿生.多层金属膜厚度的无损测量研究[J].西安理工大学学报, 1999, 15(4): 15-20.
    [157]罗明旭,樊景云,万国庆.铝合金质量双频涡流检测仪的研制[J].哈尔滨理工大学学报, 1999, 4(6): 92-95.
    [158] Pei X M, Liang H S, Qiao Y M. A Frequency Spectrum Analysis Method for Eddy Current Nondestructive Testing[C]. Proceedings of the First International Conference on Machine Learning and Cybernetics 2002, Beijing, China. Nov. 4-5, 2002: 1194-1197.
    [159] Sabbagh H A, Sabbagh L D. An Eddy Current Model for Three-Dimensional Inversion[J]. IEEE Transactions on Magnetics, 1986, 22(4): 282-291.
    [160] Chady T, Enokizono M. Multi-Frequency Exciting and Spectrogram-Based ECT Method[J]. Journal of Magnetism and Magnetic Materials, 2000, (215-216): 700-703.
    [161] Chady T, Enokizono M, Sikora R. Neural Network Models of Eddy Current Multi-Frequency System for Nondestructive Testing[J]. IEEE Transactions on Magnetics, 2000, 36(4): 1724-1727.
    [162] Chady T, Enokizono M, Sikora R. Signal Restoration Using Dynamic Neural Network Model for Eddy Current Nondestructive Testing[J]. IEEE Transactionson Magnetics, 2001, 37(5): 3737-3740.
    [163] Chady T, Enokizono M, Sikora R, et al. Natural Crack Recognition Using Inverse Neural Model and Multi-Frequency Eddy Current Method[J]. IEEE Transactions on Magnetics, 2001, 37(4): 2797-2799.
    [164] Tsuchida Y, Takahata R, Chady T, et al. Numerical Analysis of Multi-Frequency Excitation Spectrogram Method for Eddy Current Testing[J]. Review of Progress in Quantitative Nondestructive Evaluation, 2001, (20): 627-634.
    [165] Kojima F, Kawai R, Kasai N, et al. Defect Profiles Identification of Conducting Materials Using HTS-SQUID Gradiometer With Multiple Frequencies[J]. Review of Progress in Quantitative Nondestructive Evaluation, 2001, (20): 377-384.
    [166] Kreutzbruck M V, Allweins K, Rühl T, et al. Defect Detection and Classification Using a SQUID Based Multiple Frequency Eddy Current NDE System[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 1032-1037.
    [167] Chady T, Sikora R. Optimization of Eddy-Current Sensor for Multifrequency Systems[J]. IEEE Transactions on Magnetics, 2003, 39(3): 1313-1316.
    [168] Chady T, Caryk M. Reconstruction of Flaw Profiles Using Neural Networks and Multi-Frequency Eddy Current System[J]. Review of Quantitative Nondestructive Evaluation, 2005, (24): 820-829.
    [169] Horn D, Roiha R. Multifrequency Analysis of Eddy Current Data[C]. 16th World Conference on Nondestructive Testing 2004. Montreal, Canada. Aug. 30-Sep. 3, 2004: 1-8.
    [170] Cardelli E, Faba A, Specogna R, et al. Image Reconstruction of Defects in Metallic Plates Using a Multifrequency Detector System and a Discrete Geometric Approach[J]. IEEE Transactions on Magnetics, 2007, 43(4): 1857-1860.
    [171] Yamada H, Hasegawa T, Ishihara Y, et al. Difference in the Detection Limits of Flaws in the Depths of Multi-Layered and Continuous Aluminum Plates Using Low-Frequency Eddy Current Testing[J]. NDT&E International, 2008, (41): 108-111.
    [172] Pirani A, Ricci M, Specogna R, et al. Multi-Frequency Identification of Defects in Conducting Media[J]. Inverse Problems, 2008, (24): 1-18.
    [173] Diraison Y L, Joubert P-Y, Placko D. Characterization of Subsurface Defects in Aeronautical Riveted Lap-Joints Using Multi-Frequency Eddy Current Imaging[J]. NDT&E International, 2009, (42): 133-140.
    [174]李希胜,王绍纯.连铸热坯双频涡流探伤技术[J].北京科技大学学报, 1995, 17(4): 361-364.
    [175] Young J D, Hedengren K H, Hurley D C. Method and Apparatus for a Multi-Channel Multi-Frequency Data Acquisition System for NondestructiveEddy Current Inspection Testing[P]. U. S. Patent: 5182513, 1993-1-26.
    [176]盛新庆.计算电磁学要论[M].北京:科学出版社, 2004: 2-5.
    [177]哈林登R F.正弦电磁场[M].上海:上海科学出版社, 1964: 1-39.
    [178]于亚婷,杜平安,李代生.电涡流传感器线圈阻抗计算方法[J].机械工程学报, 2007, 43(2): 210-214.
    [179]倪光正,钱秀英.电磁场数值计算[M].北京:高等教育出版社, 1995: 2-5.
    [180]金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社, 1998: 1-20.
    [181] Shannon C E. A Mathematical Theory of Communication[J]. The Bell System Technical Journal, 1948, (27): 379-423, 623-656.
    [182]朱学龙.应用信息论基础[M].北京:清华大学出版社, 2001: 1-10.
    [183] Saglio R. Pigeon M. Concepts of Multifrequency Eddy Current Testing[J]. Electromagnetic Testing, 1986, 4(2): 592-605.
    [184] Owsley C L. A Multifrequency Eddy Current NDE System[D]. Iowa: Iowa State University, 1996.
    [185]赵博,张洪亮. Ansoft 12在工程电磁场中的应用[M].北京:中国水利电力出版社, 2010: 1-10.
    [186]刘国强赵凌志,蒋继娅. Ansoft工程电磁场有限元分析[M].北京:电子工业出版社, 2006: 11-14.
    [187]高晋占.微弱信号检测[M].北京:清华大学出版社, 2004: 154-198.
    [188]杨筱蘅.油气管道安全工程[M].北京:中国石化出版社, 2005: 1-10.
    [189]郭应和,谢建峰,戴越等.锅炉水冷壁管的失效分析[J].机械设计与制造工程, 2000, (9): 40-41.
    [190]孙朝明,徐彦霖,刘宝.有限元方法在涡流传感器设计中的应用[J].传感器技术, 2005, 24(10): 80-85.
    [191]任吉林,刁海波,唐继红等.涡流传感器提离效应的ANSYS模拟[J].传感技术学报, 2008, 21(6): 967-971.
    [192]张玉华.基于场-路耦合模型的涡流探头设计及提离干扰抑制方法研究[D].长沙:国防科学技术大学, 2010: 30-35, 83-84.
    [193]张玉华,孙慧贤,罗飞路.涡流探头提离效应的理论分析与实验研究[J].电机与控制学报, 2009, 13(2): 197-202.
    [194] Yin W, Dickinson S J, Peyton A J. A Multi-frequency Impedance Analysing Instrument for Eddy Current Testing[J]. Measurement Science and Technology, 2006, (17): 393-402.
    [195]陈国良,王煦法,庄镇泉.遗传算法及其应用[M].北京:人民邮电出版社, 1996: 28-97.
    [196]张文修,梁怡.遗传算法的数学基础[M].西安:西安交通大学出版社, 2000:1-12.
    [197]程佩青.数字信号处理教程[M].北京:清华大学出版社, 2001: 87-132.
    [198]张润楚.多元统计分析[M].北京:科学出版社, 2006: 165-183.
    [199]梅长林,范金城.数据分析方法[M].北京:高等教育出版社, 2006: 113-125.
    [200]李果,张鹏,李学仁等.基于动态主元分析法的传感器故障检测[J].数据采集与处理, 2008, 23(3): 338-341.
    [201] Russel E L, Chiang L H, Braatz R D. Fault Detection in Industrial Processing Canonical Variate Analysis and Dynamic Principal Component Analysis[J]. Chemometrics and Intelligent Laboratory System, 2000, (51): 80-94.
    [202] Sikora R, Chady T, Baniukiewicz P. Comparison of Selected Multifrequency Eddy Current Systems[J]. Review of Quantitative Nondestructive Evaluation, 2007, (26): 362-369.
    [203]李峥,姜永华,凌祥.一种线性调频信号源设计[J].电子测量技术, 2006, 29(2): 126-128.
    [204]石晶,侯国屏,赵伟.线性调频脉冲信号扫频[J].测控技术, 2003, 22(8): 11-13.
    [205]丁康,潘成灏,李巍华. ZFFT与Chirp-Z变换细化选带的频谱分析对比[J].振动与冲击, 2006, 25(6): 9-12.
    [206]钱克矛,李川奇.频谱校正的线性调频Z变换方法[J].振动工程学报, 2000, 13(4): 628-632.
    [207]冯志华,刘永斌,张健.用在频谱细化中Chirp-Z变换的特性分析[J].信号处理, 2006, 22(5): 741-745.
    [208]丁玉美,高西全.数字信号处理(第二版)[M].西安:西安电子科技大学出版社, 2003.
    [209]赵霞,熊小伏,郭珂.用细化频谱技术分析断路器操动机构振动信号[J].电力系统自动化, 2003, 27(12): 37-40, 80.
    [210]张学玲,唐毅.数字信号的加窗处理[J].计算机应用, 2000, 20(8): 67-68.
    [211]张廷曹,赵建林,范琦等. Tukey窗切趾全息图用于粒子场在焦位置测量的实验研究[J].中国激光, 2008, 35(10): 1542-1547.
    [212]张廷曹,赵建林,张伟等. Tukey窗函数用于数字全息图的切趾研究[J].光子学报, 2007, 36(12): 2256-2260.
    [213] Lebrun B, Jayet Y, Baboux J C. Pulsed Eddy Current Signal Analysis: Application to the Experimental Detection and Characterization of Deep Flaws in Highly Conductive Materials[J]. NDT&E International, 1997, 30(3): 163-170.
    [214] Wilson J W, Tian G Y. Pulsed Electromagnetic Methods for Defect Detection and Characterisation[J]. NDT&E International, 2007, (40): 275-283.
    [215]郑岗,刘丁,张震等.基于提离点的脉冲涡流测厚研究[J].仪器仪表学报, 2008, 29(8): 1745-1749.
    [216] Tai C C, Yang H C, Liang D S. Pulsed Eddy Current for Metal Surface Cracks Inspection: Theory and Experiment[J]. Review of Progress in Quantitative Nondestructive Evaluation, 2002, (21): 388-395.
    [217] Sophian A, Tian G Y, Taylor D, et al. A Feature Extraction Technique Based on Principal Component Analysis for Pulsed Eddy Current NDT[J]. NDT&E International, 2003, (36): 37-41.
    [218]郑君里,应启珩,杨为理.信号与系统[M].北京:高等教育出版社, 2000: 89-108.
    [219]奥本海姆A V,谢弗R W,巴克J R.离散时间信号处理[M].西安:西安交通大学出版社, 2001: 47-48.
    [220] Yin W, Binns R, Dickinson S J, et al. Analysis of the Lift-off Effect of Phase Spectra for Eddy Current Sensors[C]. Insturmentation and Measurement Technology Conference. Ottawa, Canada. May 17-19, 2005: 1779-1784.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700