金属基多层板厚电涡流动态检测技术与系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板材厚度是衡量板材质量的主要指标之一,板材厚度的精确控制是保证产品质量、节约原材料、提高生产效率的主要因素。因此,研究一种有效可靠的板材厚度检测方法具有非常重要的现实意义。
     金属板材多层结构厚度的检测是许多重要领域急需解决的问题,例如复合镀层厚度检测、制板流水线多层板材厚度检测、飞机装配件多层厚度检测等。目前,电涡流检测方法灵敏度高,适用于所有导电材料,造价低,不需要耦合剂,以及可以用于高温、薄板、真空表面等难以检测的特殊场合。
     本文是在国家自然科学基金项目“多层导电结构深层缺陷电涡流定量化检测与评估的新方法研究”(编号:50505045),以及浙江双飞无油轴承有限公司的科研项目“制板流水线多层板厚电涡流在线检测系统研究”的基础上展开研究的。本论文研究的主要内容及章节安排如下:
     第一章阐述了多层板厚度检测的现实意义和研究价值,概述了电涡流无损检测技术的发展及应用现状,并综述了虚拟仪器技术的发展及应用。最后结合科研项目提出了本论文的研究内容,给出了论文的总体框架。
     第二章采用基于阻抗分析的方法,介绍了电涡流厚度检测基本理论,研究了相关的深层厚度电涡流检测技术及多频涡流检测技术。最后给出了一种电涡流检测中放置式探头的有效磁导率及特征频率的计算及选取方法。
     第三章介绍了巨磁电阻效应的原理及应用,并在分析巨磁电阻(Giant Magnetoresis-tance,GMR)传感器原理的基础上,结合深层涡流检测技术提出了一种新的电涡流检测方法,并给出了基于GMR传感器的多层板厚电涡流检测装置的设计方案。
     第四章以电涡流检测方法为理论基础,通过引入矢量磁位,建立了四层板厚检测的涡流场模型,并推导了该模型中探头散射场阻抗表达式。最后通过实验验证了该模型的合理性。
     第五章结合制板流水线多层板厚在线检测系统的需求分析,提出了该系统的设计方案。最后选择虚拟仪器开发平台,并在此平台上构建了系统的总体框架。
     第六章在虚拟仪器平台上,应用图形化编程语言LabVIEW及COM组件混合编程技术,采用模块化的编程思想,开发了制板流水线在线检测原型系统。
     第七章对全文的研究及开发工作进行了总结,并结合课题对多层板厚电涡流检测技术进行了展望。
Thickness is one of the key factors of the plate quality. The thickness measurement of plate becomes more and more important, especially the thickness measurement of multi-layered plate, so researching an effective method to control the thickness of plate is very important.
    Supported by a National Natural Science Foundation and a multi-layered plate's thickness testing system project of a company, this paper researched the multi-layered plate's thickness testing method and on-line testing system based on the Eddy Current Testing (ECT) method and Multi-frequency ECT technology. The detailed content and chapter arrangement of this paper are as follows:
    Chapter one: The practice and research meaning of multi-layered thickness testing is expatiated, and current research situation of ECT technology is summarized. At last, combining with the researching projects, the main content and frame of this paper is presented.
    Chapter two: The basic theories of ECT are introduced; deep thickness ECT technology and Multi-frequency ECT technology are researched. The effective magnetism conductibility and characteristic frequency of the placed eddy-current probe coil is also researched, and a method of their calculation and selection is presented
    Chapter three: The theory and application of Giant Magnetoresistance (GMR) effect is introduced. Combining with deep ECT technology, a new ECT method is presented and the multi-layered plates ECT set based GMR sensors are designed.
    Chapter four: A four-layered thickness ECT model based on ECT method is constructed by introducing the magnetism vector, the probe coil impedance mathematical model is investigated, and this model is validated by experiment.
    Chapter five: System's scheme based on the requirement of the multi-layered plate's thickness testing system is presented. Virtual Instrument (VI) and PC flat are selected, and the main frame of this system is designed.
    Chapter six: Graphic programming language LabVIEW and COM components mixed programming technology are used, the multi-layered thickness testing prototype system is developed based on VI flat.
    In the end, all of the work in this dissertation is summed up, and the future researches on multi-layered ECT technology are prospected.
引文
[1] 任吉林,吴礼平,李林.涡流检测.北京:国防工业出版社,1985年.
    [2] 张俊哲等.无损检测技术及其应用.北京:科学出版社,1993年.
    [3] 任吉林等.电磁检测.北京:机械工业出版社,2000年.
    [4] 美国无损检测手册(电磁卷),上海:世界图书出版社,1991.
    [5] 王蔷,李国定,巩克.电磁场理论基础.北京:清华大学出版社,2001年.
    [6] D.J.Hagemaier. Eddy current impedance plane. Materials Evaluation, 41, Feb. 1983:211-218.
    [7] D.J.Hagemaier. Eddy current standard depthe of penetration. Materials Evaluation, 43, Feb. 1985: 1436-1454.
    [8] P Edward and J Manson. The application of dual-frequency eddy current inspection to aircraft structures. Insight, 2002, 144(3): 141-145.
    [9] Yue Li, Lalita Udpa, and Satish S. Udpa. Three-dimensional defect reconstruction from eddy-current NDE signals using a genetic local search algorithm. IEEE TRANSACTIONS ON MAGNETICS, 2004:1-8.
    [10] F.Kojima and N.Okajima. Crack profiles identification of steam generator tubes in PWR plants using database. Electromagnetic Nondestructive Evaluation (V), J.Pavo, et al., Editors, IOS Press, 2001: 97-104.
    [11] Rebert D.Shaffer.Eddy current testing,today and tomorrow.Materials Evaluation,Jan.1994:28-32.
    [12] 林俊明.多频涡流检测原理及应用.无损检测,1996,18(1):23-26.
    [13] 任吉林.电磁无损检测.北京:航空工业出版社,1989年.
    [14] 林俊明.声脉冲/多频涡流检测仪的研制.华北电力技术,2000,(5):23-24.
    [15] X.-W. Dai, R.Ludwig, R.Palanisamy. Numerical simulation of pulsed eddy-current nondestructive testing phenomena. Magnetics, IEEE Transactions on, 1990, 26(6): 3089-3096.
    [16] 雷银照,马信山.涡流法缺陷识别的研究现状.无损检测,1996,18(3):81-90.
    [17] 张莉莉.涡流测厚传感器及数字测量系统的设计.无损检测,2000,22(6):252-254.
    [18] 孙砚飞.基于人工智能的硬化层深预测系统.[硕士学位论文],武汉理工大学,2003.
    [19] 黄平捷.多层导电结构厚度与缺陷电涡流检测若干关键技术研究.[博士学位论文],浙江大学,2004.
    [20] 孙晓云.智能型涡流无损检测系统的开发与信号处理的研究.[博士学位论文],西安交通大学,2000.
    [21] 刘荣.涡流无损检测中裂纹缺陷的识别及图形显示软件的研制.[硕士学位论文],西安交通大学,2004.
    [22] 曹令俊.表面硬化材料的涡流检测信号识别及处理.[硕士学位论文],武汉理工大学,2001.
    [23] I. T. Rekanos, T. P. Theodoulidis, S. M. Panas and T. D. Tsiboukis. Impedance inversion in eddy current testing of layered planar structures via neural network. NDT&E International, 1997, 30(2): 69-74.
    [24] G. Katragadda. J. Wallace, J. Lee and S. Nair. "Neural network inversion for thickness measurements and conductivity profiling". Review of Progress in Quantitative Nondestructive Evaluation, 1997, 16:781-788.
    [25] F. C. Morabito:" Wavelet tools for improving the accuracy of neural network solution of electromagnetic inverse problems". IEEE Trans. Magn, 1998, 34(5): 2968-2971.
    [26] 詹文山.磁电子学—一门新型交叉学科.物理,1998,7(27):436.
    [27] BAIBICH M N, BROTO J N, FERR A, et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys Rev lett, 1988, 61: 2472.
    [28] 都有为,纳米材料中的巨磁电阻效应.物理学进展,1997,17:1873.
    [29] 姜宏伟.磁性金属多层膜中的巨磁电阻效应.物理,1997,9(26):562.
    [30] BERKOWITZ A E, MITEKELL J R, COREY M J, et al. Giant Magnetoresistance in Heterogeneous Cu-Co Alloys[J]. Phys Rev Lett, 1992, 68: 3745.
    [31] PARKIN S S P, MORE N, ROCHE K P. Oseecillatory Magnetic Exchange Coupling through Thin Copper Layers[J]. Phys Rev lett, 1991, 66: 2152.
    [32] 都有为.纳米微粒系统中的巨磁电阻效应.物理,1997,26:627.
    [33] 聂向富等.巨磁电阻效应.河北科技大学学报,2003,24(65):5-35.
    [34] 钱政.巨磁电阻效应的研究与应用.传感技术学报,2003,(4):516-520.
    [35] Sandeep Bajjuri, et al. Development of GMR eddy current sensors for high-temperature applications and imaging of corrosion in thick multilayer structures. Proc. SPIE Int. Soc. Opt. Eng. 5392, 2004: 247-255.
    [36] T. Dogaru, C. H. Smith, R. W. Schneider, and S. T. Smith. Deep crack detection around fastener holes in airplane multi-layered structures using GMR-based eddy current probes. AIP Conf. Proc. 700, 2004: 398-405.
    [37] 颜冲等.巨磁电阻传感器.电子元件与材料,2000,19(5):32-34.
    [38] 肖又专等.巨磁电阻传感器的应用.磁性材料及仪器,2001,32(2):40-49.
    [39] 吉顺平,王其生.巨磁电阻传感器及其应用.机电信息,2003,(11):29-32.
    [40] 钱政.巨磁电阻传感器在电力系统中的应用前景.高压电技术,2003,29(10):9-15.
    [41] QIAN Zheng. Research and Application of Giant Magneto-Resistance Effect. 传感技术学报,2003,(4):516-520.
    [42] 胡松青等.巨磁电阻应用的现状与展望.青岛大学学报,2003,16(1):69-72.
    [43] 陈亮等.一种新型磁阻式传感器在露磁检测中的应用.传感器技术,2004,23(10):75-77.
    [44] 陈亮等.管道缺陷露磁检测中巨磁阻式传感器应用研究.应用基础与工程科学学报,2004,12(3):279-284.
    [45] Teodor Dogaru and Stuart T. Smith. Giant Magnetoresistance-Based Eddy-Current Sensor. IEEE Transactions on magnetics, 2001, 37(5): 3831-3838.
    [46] Yamada, S.,et al. Eddy-current testing probe with spin-valve type GMR sensor for printed circuit board inspection. Magnetics, IEEE Transactions on, 2004, 40(4): 2676-2678.
    [47] 古关华.腐蚀防护中两种镀层厚度测量方法的优劣探讨.电子产品可靠性与环境试验.2001,(5):27-30.
    [48] 曾祥照.射线测厚技术在冷轧带钢生产中的应用.南方钢铁,2000,(112):28-30.
    [49] 沈为民等.超声波自动测厚打标系统的研究.无损检测,2001,23(3):103-105.
    [50] 王伟等.超声在线板厚监测系统的研究.林业机械与木工设备,2000,(7):9-11.
    [51] 陈明君等.激光-CCD厚度检测系统的研究.机械工程师,1996(15):3-4.
    [52] 钟丽云等.光学三角法实时测量金属板厚.激光技术,1998,22(3):136-139.
    [53] 戴蓉.激光技术在无损检测领域的应用与发展.激光与光电子学进展,2000,(6):1-4.
    [54] 吴蓉.反射式涡流传感器金属测厚研究.兰州铁道医学院学报,2002,21(6):28-30.
    [55] 张丽萍.涡流测厚传感器及数字测量系统的设计.无损检测,22(6):252-254.
    [56] 梁鸿生.多层金属膜厚度的无损测量研究.西安理工大学学报,1999,15(4):15-20.
    [57] 黄平捷等.多层厚度电涡流检测阻抗模型仿真及验证.仪器仪表学报,2004,25(4):473-480.
    [58] C. Delebarre, C. Bruneel and P. Miquet. Digital signal processing method for multilayered media thickness measurement. IEEE Ultrasonics Symposium, 1988:1027-1029.
    [59] Shinji Tanabe et al. Eddy currents and displacement current in multi-layer soft magnetic films for recording heads. IEEE Transactions on Magnetics, 1992, 28(5): 2620-2622.
    [60] K. Harrouche, Z. Derouiche, J. M. Rouvaen and C. Delebarre. Thickness measurement of multi-layered structures: A neural net approach, ultrasonics Symposium, 1993 IEEE: 749-752.
    [61] Francesco Trevisan. 3-D eddy current analysis with the cell method for NDT problems. IEEE transacttions, 2004, 40(2): 1314-1317.
    [62] Yann Le Bihan. 3-D finite-element analysis of eddy-current evaluation of curved plates. IEEE transactions on magnetics, 2002, 38(2): 1161-1164.
    [63] 杨乐平等.虚拟仪器技术概论.北京:电子工业出版社,2002.
    [64] 杨乐平.LabVIEW程序设计与应用.北京:电子工业出版社,2001.
    [65] 李刚.LabVIEW—易学易用的计算机图形化编程语言.北京:北京航天航空大学出版社,2001.
    [66] 胡文平等.基于虚拟仪器技术的电力设备在线监测.高压电器,2003,4(39):38-40.
    [67] 刘森等.虚拟仪器的现状与发展.生物医学工程,1996,(5):13-17.
    [68] Benneff P, Virtual Instrument What they are, where they are at. Electronic Products. 1993, (7): 37-39.
    [69] 雷振山.LabVIEW 7 Expresx 使用技术教程.北京:中国铁道出版社,2004.
    [70] 李恒灿.虚拟仪器系统理论研究.[硕士学位论文],武汉理工大学,2004.
    [71] 任吉林.电磁无损检测.北京:航空工业出版社,1989.
    [72] 孙金立,陈新波等.放置式探头榆测工件时特征频率的计算.无损检测,2001,23(5):185-189.
    [73] 刘本田,雷银照.磁导率变化的半无限大媒质涡流问题解析解.无损检测,2002,24(8):323-327.
    [74] 赵燕平等.巨磁电阻材料及应用.天津理工学院学报,2003,19(3):50-53.
    [75] 吴海霞,姚素薇.纳米金属多层膜的巨磁电阻效应.电镀与涂饰,2004,23(3):26-29.
    [76] 芦正启.自旋阀巨磁电阻效应及其应用.物理,1998,(6):373.
    [77] 王浩.巨磁电阻材料及其在电子元器件上的应用.磁性材料及器件,1997,1(29):43.
    [78] http://www.nve.com.
    [79] C.V.Dodd, W. E. Deeds. Analytical solutions to eddy-current probe-coil problems. Journal of Applied physics, 1968, 39(6): 2829-2837.
    [80] 雷银照.时谐电磁场解析方法.北京:科学出版社,2000年.
    [81] 雷银照,马信山.涡流线圈的阻抗计算.电工技术学报,1996,11(1):17-20.
    [82] Erol Uzal, John C. Moulder, Sreeparna Mitra, and James H. Rose. Impedance of coils over layered metals with continuously variable conductivity and permeability: theory and experiment. Journal of Applied Physics, 1993, 74(3): 2076-2089.
    [83] 金建铭,王建国,葛德彪.电磁场有限元方法.西安:西安电子科技大学出版社,2001年.
    [84] 蒋敦斌,李文英.非电量测量与传感器应用.北京:国防工业出版社,2005.
    [85] 许海燕,付炎.嵌入式系统技术与应用.机械工业出版社,2002.
    [86] MATLAB External Interfaces Reference. Version 7. Mathworks. 2004.
    [87] 苏金明,黄国明,刘波.MATLAB与外部程序接口.北京:电子工业出版社,2004.
    [88] MATLAB Builder for COM User's Guide. Mathworks, 2004.
    [89] 刘君华.基于LabVIEW的虚拟仪器设计.北京:电子工业出版社,2003.
    [90] 杨乐平,李海涛,赵勇等.LabVIEW高级程序设计.北京:清华大学出版社,2003.
    [91] 秦树人等.智能控件化虚拟仪器系统.北京:科学出版社,2004.
    [92] 孙传友等.测控系统原理与设计.北京:北京航空航天大学出版社,2002.
    [93] Don Box著,潘爱民译.COM本质论.北京:中国电力出版社,2001.
    [94] Dale Rogerson著,杨秀章等译.COM技术内幕——微软组件对象模型.北京:清华大学出版社,1999.
    [95] 胡劲松,周方洁.基于COM的MATLAB与Delphi混合编程研究.计算机应用研究,2005,22:165-166.
    [96] 王晓燕,武玉强.Borland C++Builder与Matlab混合编程之COM实现方法.现代计算机,2005,(6):78-80.
    [97] 岳玉芳,尤忠生,张玉双.基于COM的VC与Matlab混合编程.微机发展,2005,15(5):46-48,52.
    [98] 谢永华,傅德胜.VC++和Matlab混合编程在图像处理中的应用.计算机应用与软件,2005,22(2):120-121.
    [99] 唐建锋,罗湘南.基于LabVIEW与MATLAB混合编程的虚拟仪器设计及实现.湖南文理学院学报(自然科学版),2004,16:66-68.
    [100] 裴锋,汪翠英.利用COM技术的LabVIEW与MATLAB的无缝集成.仪器仪表用户,2005,12(2):97,98,102.
    [101] 张彬斌,邵俊鹏,金婉如等.LabVIEW和SQL Server数据库之间的互访.哈尔滨理工大学学报,2005,10(1):14-16.
    [102] PCL—816 User's Manual. Advantech Corporation, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700