航天测控优化调度模型及其拉格朗日松弛求解算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天测控优化调度是在给定的天地基测控资源配置下,将天地基测控资源及使用时间合理地分配给高中低轨道航天器,尽可能满足高中低轨道航天器的航天测控需求。航天测控优化调度问题是一个带时间窗口的组合最优化问题,具有约束种类繁多,涉及因素较多且关系复杂的特点。该问题的建模和求解都具有很大的困难。对航天测控优化调度问题模型及求解算法进行研究,可以支持航天测控系统的顶层规划与决策,为航天测控管理部门提供测控调度方案依据。全文主要的研究工作和创新点包括:
     (1)航天测控优化调度模型研究
     分析了任务可用时间窗口作为航天测控优化调度决策变量的不足之处,提出了任务可能开始时刻的概念。论述了以任务可能开始时刻作为航天测控优化调度决策变量的特点。根据约束的强度将所有约束区分为硬约束和软约束,并在航天测控优化调度中区别对待。根据约束的对象将所有硬约束归纳为四类约束:时间窗口约束、测控任务约束、测控设备约束和航天器约束。综合考虑了航天器用户方和测控设备管理方对航天测控优化调度的要求,提出了航天测控优化调度的目标函数。用任务可能开始时刻作为决策变量分别对各种类型硬约束和目标函数进行了形式化描述,建立了航天测控优化调度0-1整数规划模型。该模型能够更充分地利用测控设备资源,并克服了其它模型不易设计最优解求解算法的缺点,为设计航天测控优化调度问题上界和可行解的求解算法打下了模型基础。
     (2)航天测控优化调度问题上界求解方法研究
     针对航天测控优化调度0-1整数规划模型,设计了三种松弛策略及对应的航天测控优化调度拉格朗日松弛问题,并研究了具体的求解方法,讨论了松弛策略的选取方法。为了求解航天测控优化调度问题上界,论文构造了航天测控优化调度拉格朗日对偶问题。在一般次梯度优化算法的基础上,设计了历史次梯度优化算法求解拉格朗日对偶问题,并证明了历史次梯度优化算法在收敛性方面优于一般次梯度优化算法。运用历史次梯度优化算法得到的航天测控优化调度问题较优上界,可以评价其它启发式算法的优劣和当前想定配置的合理性。
     (3)航天测控优化调度问题最优解求解方法研究
     航天测控优化调度的目的是得到当前想定配置下的航天测控调度方案。当航天测控优化调度问题规模较小时,在可以接受的时间内得到航天测控优化调度问题的最优解是有可能的。论文分析了求解上界过程中得到的航天测控优化调度启发式信息,利用启发式信息设计了分枝策略,并在此基础上构造了求解航天测控优化调度问题最优解的基于拉格朗日松弛的分枝定界算法。
     (4)航天测控优化调度问题满意解求解方法研究
     当航天测控优化调度问题规模较大时,难以在可以接受的时间内求得问题的最优解。针对这种情况,论文利用航天测控优化调度启发式信息设计了固定变量选择策略,结合拉格朗日松弛算法设计了基于固定-松弛策略的拉格朗日启发式算法,在可以接受的时间内求得航天测控优化调度问题的一个满意解,可以较好地满足大规模航天测控优化调度问题的需要。
     (5)航天测控调度方案优化方法研究
     由于求解航天测控调度方案时没有考虑航天测控优化调度的软约束,因此,论文设计了根据航天测控优化调度的软约束对航天测控调度方案进行调整优化的方法。由于用任务可能开始时刻作为航天测控优化调度的决策变量时,人为地对测控任务执行时间增加了约束。因此,设计了通过去除增加的约束对航天测控调度方案的测控时间进行优化的方法。通过对航天测控调度方案的优化,减少了对软约束的违反情况,增大了测控设备利用率。
The Space Tracking Telemetry and Command (TT&C) System optimal scheduling is to appropriately and effectively assign TT&C resource and their use time to various types of spacecrafts when given the configuration of both space and ground TT&C resource, so that TT&C requirements of all spacecrafts can be best satisfied. The Space TT&C System optimal scheduling problem is a combinatorial optimization problem with time windows and has various kinds of constraints, many involved elements and complex relations between elements. These characteristics make it difficult to describe and solve the problem. Research on model and algorithm of Space TT&C System optimal scheduling problem can support planning and decision-making of Space TT&C system and provide Space TT&C System scheduling alternatives for TT&C management department. The main research works are:
     (1) Research on the Space TT&C System optimal scheduling model
     The limitations of using task useable time window as decision variable for Space TT&C System optimal scheduling is analyzed, and the concept of task possible start time is proposed. The characteristics of using task possible start time as decision variable of Space TT&C System optimal scheduling is discussed. All constraints are divided into hard constraints and soft constraints according to the intensity of the constraint, and the constraints are distinctively treated in the process of Space TT&C System optimal scheduling. All hard constraints are classified into four categories according to constraints’object: time window constraint, TT&C task constraint, TT&C equipment constraint and spacecraft constraint. Both spacecraft user and TT&C equipment manager’s requirements on Space TT&C System optimal scheduling are jointly considered, and the objective function of Space TT&C System optimal scheduling is proposed. Based on using task possible start time as decision variable to formally describe all kinds of hard constraints and objective function, the Space TT&C System optimal scheduling 0-1 integral programming model is constructed. The model can more adequately utilize TT&C equipment resource, and overcome the other models’disadvantage on designing optimal solution algorithm. The model provides a basis for designing solution algorithm of Space TT&C System optimal scheduling problem’s upper bound and feasible solution.
     (2) Research on upper bound solution method of Space TT&C System optimal scheduling problem
     Based on the Space TT&C System optimal scheduling 0-1 integral programming model, three relaxation strategies and corresponding Space TT&C System optimal scheduling Lagrangian relaxation problem are designed and their solutions are investigated, then how to select an appropriate relaxation strategy is discussed. To obtain upper bound of Space TT&C System optimal scheduling problem, Space TT&C System optimal scheduling Lagrangian dual problem is constructed. Base on general subgradient optimization algorithm, history subgradient optimization algorithm is designed to solve Lagrangian dual problem, and it is proven that history subgradient optimization algorithm is better than general subgradient optimization algorithm on convergence. The upper bound of Space TT&C System optimal scheduling problem obtained from history subgradient optimization algorithm can evaluate the performance of other heuristics and the rationality of the current scenario’s configuration.
     (3) Research on optimal solution method of Space TT&C System optimal scheduling problem
     The purpose of Space TT&C System optimal scheduling is to obtain Space TT&C System scheduling alternatives in current scenario’s configuration. When the scale of Space TT&C System optimal scheduling problem is relatively small, it is possible to obtain the optimal solution of Space TT&C System optimal scheduling problem in acceptable time. Space TT&C System optimal scheduling heuristic information obtained in the process of solving upper bound is analyzed, the branch strategy utilizing heuristic information is designed, and a branch and bound algorithm based on Lagrangian relaxation for solving Space TT&C System optimal scheduling problem is constructed.
     (4) Research on satisfactory solution method of Space TT&C System optimal scheduling problem
     When the scale of Space TT&C System optimal scheduling problem is large, obtaining the optimal solution in acceptable time is difficult. In view of this situation, a choosing strategy on fix variable utilizing Space TT&C System optimal scheduling heuristic information is designed, and a Lagrangian heuristic algorithm based on fix-relax strategy is designed combined with Lagrangian relaxation algorithm, then a satisfactory solution of Space TT&C System optimal scheduling problem can be obtained in acceptable time which can better satisfy the requirement of large scale Space TT&C System optimal scheduling problem.
     (5) Research on optimizing method of Space TT&C System scheduling alternatives
     Because the soft constraints of Space TT&C System optimal scheduling is not onsidered when solving Space TT&C System scheduling alternatives, so an optimizing method of Space TT&C System scheduling alternatives according to soft constraints of Space TT&C System optimal scheduling is designed in the dissertation. When using task possible start time as decision variable of Space TT&C System optimal scheduling, additional constraint is imposed on TT&C task execution time. Therefore, a method of optimizing TT&C time of Space TT&C System scheduling alternatives by removing the increased constraint is designed. Through optimizing the Space TT&C System scheduling alternatives, the violation of soft constraints will decrease while TT&C equipment utilization rate will increase.
引文
[1]余高达,赵潞生.军事装备学[M].北京:国防大学出版社, 2000.
    [2]常显奇.军事航天学[M].北京:国防工业出版社, 2005.
    [3]夏南银.航天测控系统[M].北京:国防工业出版社, 2002.
    [4]陈峰.多星测控调度问题的遗传算法研究[D].长沙:国防科学技术大学, 2010.
    [5] Arbabi M. Range Scheduling Automation[J]. IBM Technical Directions, 1984, 10(3): 57-62.
    [6] Gooley T D. Automating the Satellite Range Scheduling Process[D]. Ohio:Air Force Institute of Technology, 1993.
    [7] T.D.Gooley, Borsi J J, J.T.Moore. Automating Air Force Satellite Control Network (AFSCN) Scheduling[J]. mathl. Comput. Modelling, 1996, 24(2): 91-101.
    [8] Schalck. Automating Satellite Range Scheduling[D]. Ohio:Air Force Instituteof Technology, 1993.
    [9] Jang.K. The Capacity of The Air Force Satellite Control Network[D]. Ohio:Air Force Institute of Technology, 1996.
    [10] Rojanasoonthon S, Bard J F, Reddy S D. Algorithms for parallel machine scheduling: a case study of the tracking and data relay satellite system[J]. Journal of the Operational Research Society, 2003, 54: 806-821.
    [11] Marinelli.F, Nocella.S, Rossi.F. A Lagrangian Heuristic for Satellite Range Scheduling with Resource Constraints[R]. Technical Reprot TRCS 004, 2005.
    [12] Wu Bin, Li Yuanxin, Huang Yong Xuan. Optimal Scheduling of TT&C Network Resources Based on Genetic Algorithm[J]. Journal of Astronautics, 2006, 27(6): 1136-1132.
    [13]贺仁杰.成像侦查卫星调度问题研究[D].长沙:国防科学技术大学, 2004.
    [14]刘洋,陈英武,谭跃进.卫星地面站系统任务调度的动态规划方法[J].中国空间科学技术, 2005, 1: 44-47.
    [15]金光,武小悦,高卫斌.卫星地面站资源调度优化模型及启发式算法[J].系统工程与电子技术, 2004, 26(12): 1839-1841.
    [16]李元新,吴斌.基于遗传算法的测站资源优化分配方法研究[J].飞行器测控学报, 2005, 24(4): 1-5.
    [17] Zhang Na, Feng Zuren, Feng Yuanjing. An Optimization Model for Multisatellite Resources Scheduling[C]. // Proceedings of the 6th World Congress On Intelligent Control and Automation. 2006: 7400-7404.
    [18] J.C.Pemberton. A Constraint-Based Approach to Satellite Scheduling[C]. // Proceedings of Constraint Programming and Large Scale Discrete Optimization. 2001:101-104.
    [19]贺仁杰,谭跃进.基于约束满足的卫星地面站资源优化分配问题研究[J].计算机工程与应用, 2004, 40(18): 229-232.
    [20]陈英武,方炎申,李菊芳,贺仁杰.卫星任务调度问题的约束规划模型[J].国防科技大学学报, 2006, 28(5): 126-131.
    [21]方炎申,陈英武.基于约束满足问题的中继卫星调度问题研究[J].运筹与管理, 2005, 14(4): 74-79.
    [22]方炎申,陈英武,王军民.中继卫星多址链路调度问题的约束规划模型及算法研究[J].航天返回与遥感, 2006, 27(4): 62-67.
    [23]刘洋,贺仁杰,谭跃进.基于约束满足的多卫星调度模型研究[J].系统工程与电子技术, 2004, 26(8): 1076-1079.
    [24]刘洋,陈英武,谭跃进.一种有新任务到达的多卫星动态调度模型与方法[J].系统工程理论与实践, 2005, (4): 35-41.
    [25]刘洋,陈英武,谭跃进.一类多卫星动态调度问题的建模与求解方法[J].系统仿真学报, 2004, 16(12): 2696-2699.
    [26]金光.卫星地面站测控资源调度CSP模型[J].系统工程与电子技术, 2007, 29(7): 1117-1120.
    [27]李云峰,陈祥国,武小悦.卫星数传调度模型研究[J].国防科技大学学报, 2007, 29(6): 121-125.
    [28]李云峰.基于多星联合侦察的卫星数传调度问题模型[J].北京航空航天大学学报, 2008, 34(8): 948-951.
    [29]李云峰.卫星-地面站数传调度模型及算法研究[D].长沙:国防科学技术大学, 2008.
    [30]陈祥国.卫星数传调度的蚁群优化模型及算法研究[D].长沙:国防科学技术大学, 2010.
    [31]凌晓冬.多星测控调度问题建模及算法研究[D].长沙:国防科学技术大学, 2009.
    [32]陈峰,武小悦.天地一体化测控资源调度模型[J].宇航学报, 2010, 31(5): 1405-1412.
    [33]王远振,赵坚,聂成.多星地面站设备优化调度方法研究[J].计算机仿真, 2003, 20(7): 17-19.
    [34]王远振,赵坚,聂成.多卫星-地面站系统的Petri网模型研究[J].空军工程大学学报, 2003, 4(2): 7-11.
    [35]王远振,赵坚,聂成,高卫斌.卫星地面站设备配置效能评价指标体系研究[J].军事运筹与系统工程, 2003, 1: 59-64.
    [36]王远振,赵坚,聂成.任务优先级调度策略性能分析[J].空军工程大学学报(自然科学版), 2003, 4(3): 31-35.
    [37]王远振,高卫斌,聂成.多星地面站系统资源配置优化研究综述[J].系统工程与电子技术, 2004, 26(4): 437-439.
    [38]金光,武小悦,高卫斌.卫星地面站资源配置仿真研究[J].系统仿真学报, 2004, 16(11): 2401-2403.
    [39]朱彦伟,杨乐平,陈钦.基于多Agent技术的卫星星座设计分析[J].系统仿真学报, 2004, 16(9): 2006-2008.
    [40]王红飞,李绪志,陈立军.基于Multi-agent的卫星计划调度系统智能机制[J].计算机工程, 2006, 32(22): 194-196.
    [41]王红飞,李绪志.基于智能Agent的卫星计划系统协作中间件研究[J].飞行器测控学报, 2005, 24(3): 32-36.
    [42]赵建立,闻英友,王光兴.一种基于移动Agent与SNMP相结合的卫星网络管理[J].小型微型计算机系统, 2004, 25(11): 1913-1915.
    [43]贺勇军,戴金海.基于MAO的复杂多卫星系统整体建模与仿真方法[J].系统仿真学报, 2005, 17(12): 3014-3018.
    [44]赵磊,沈毅.卫星编队多Agent软件结构仿真研究[J].航天控制, 2006, 24(1): 57-60.
    [45]凌晓冬,武小悦,刘琦.基于Agent的航天测控资源调度问题建模分析[J].系统工程与电子技术, 2008, 30(11): 2220-2223.
    [46] Zufferey N, Amstutz P. Graph colouring approaches for a satellite range scheduling problem[J]. Journal of Scheduling, 2008, 11: 263-277.
    [47]张帆,王钧,李军,景宁.基于时间序无圈有向图的多准则优化成像调度[J].国防科技大学学报, 2005, 27(6): 61-66.
    [48]王均,陈慧中,左怀玉,靳肖闪,李军,景宁.基于时间序有向图的对地观测卫星成像预调度[J].兵工学报, 2008, 29(5): 608-614.
    [49] L.Barbulescu, A.E.Howe, J.P.Watson, L.D.Whitley. Satellite Range Scheduling: A Comparison of Genetic, Heuristic and Local Search[C]. // Proceedings of the Seventh International Conference on Parallel Problem-Solving From Nature. Granada: Springer Verlag. 2002: 611-620.
    [50] Laura Barbulescu, Jean-Paul Watson, L.Darrell Whitley, Adele E. Howe. Scheduling Space–Ground Communications for the Air Force Satellite Control Network[J]. Journal of Scheduling, 2004, 7(1): 7-34.
    [51] E.Bensana, G.Verfaillie, J.C.Agnese, N.Bataille, D.Blumstein. Exact and Inexact Methods for The Daily Management of an Earth Observation Satellite[C]. // Proceedings of the Fourth International Symposium on Space Mission Operations andGround Data Systems. 1996: 507-514.
    [52] S.Burrowbridge. Optimal Allocation of Satellite Network Resources[D]. Virginia:Virginia Polytechnic Institute and State University, 1999.
    [53] Rojanasoonthon S, Bard J. A GRASP for Parallel Machine Scheduling with Time Windows[J]. Informs Journal on Computing, 2005, 17(1): 32-51.
    [54]刘洋,陈英武,谭跃进.基于贪婪算法的卫星地面站任务规划方法[J].系统工程与电子技术, 2003, 25(10): 1239-1241.
    [55] Howe A E, Whitley L D, Barbulescu L, Watson J P. Mixed Initiative Scheduling for the Air Force Satellite Control Network[C]. // Proceedings of the 2th International NASA Workshop on Planning and Scheduling for Space. 2000.
    [56] Howe A E, Whitley L D, Watson J P, Barbulescu L. A Study of Air Force Satellite Access Scheduling[C]. // Proceedings of the World Automation Conference. Maui, HI. 2000.
    [57] J.Frank, A.Jonsson, R.Morris, D.Smith. Planning and Scheduling for Fleets of Earth Observing Satellites[C]. // Proceedings of the Sixth International Symposium on Artificial Intelligence Robotics. 2001.
    [58]金光,武小悦,高卫斌.基于冲突的卫星地面站系统资源调度与能力分析[J].小型微型计算机系统, 2007, 28(2): 310-312.
    [59]李云峰,武小悦.基于试探性的卫星数传任务调度算法研究[J].系统工程与电子技术, 2007, 29(5): 764-767.
    [60]李云峰,武小悦.基于综合优先度的卫星数传调度算法[J].系统工程学报, 2007, 22(6): 644-648.
    [61]凌晓冬,武小悦.一种求解多星测控调度问题的启发式算法[J].兵工自动化, 2008, 27(1): 71-73.
    [62]陈理江,武小悦,李云峰.基于时间灵活度的中继卫星调度算法[J].航空计算技术, 2006, 36(4): 48-51.
    [63] Laurence A. Kramer, Stephen F. Smith. Maximizing Flexibility: A Retraction Heuristic for Oversubscribed Scheduling Problems[C]. // Proceedings of 18th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufman Publisher Inc. 2003: 1218-1223.
    [64] Minton S. Minimizing Conflicts: A Heuristic Repair Method for Constrant-Satisfaction Scheduling Problem[J]. Journal of Artificial Intelligence Research, 1992, 58: 161-205.
    [65]方炎申.中继卫星调度模型研究[D].长沙:国防科学技术大学, 2007.
    [66] Michel Lemaitre, Gerard Verfaillie, Frank Jouhaud, Jean-Michel Lachiver, Nicolas Bataille. Selecting and Scheduling Observations of Agile Satellites[J]. Aerospace Science and Technology, 2002, 6: 367-381.
    [67] Roberts M, Whitley L D, Howe A E, Barbulescu L. Random Walks and Neighborhood Bias in Oversubscribed Scheduling[C]. // Proceedings of the 2th Multidisciplinary International Conference on Scheduling: Theory and Applications. New York, USA. 2005.
    [68]靳肖闪.成像卫星星地综合调度技术研究[D].长沙:国防科学技术大学, 2009.
    [69] E.D.Joslin, D.P.Clements. "Squeaky Wheel" Optimization[J]. Journal of Artificial Intelligence, 1993, 10: 353-373.
    [70]王磊,黄文奇.求解工件车间调度问题的一种新的邻域搜索算法[J].计算机学报, 2005, 28(5): 809-816.
    [71]曾立平,黄文奇.求解Job Shop调度问题的一种新的邻域搜索算法[J].计算机研究与发展, 2005, 42(4): 582-587.
    [72] Bianchessi N, and et al. A heuristic for the multi-satellite, multi-orbit multi-user management of earth observation satellites[J]. European Journal of Operational Research, 2007, 117: 750-762.
    [73] Vasquez M, Hao J K. A "Logic-Constrained" Knapsack Formulation a Tabu Algorithm for the Daily Photograph Scheduling of an Earth Observation Satellite[J]. Computational Optimization Applications, 2001, 20: 137-157.
    [74] S.A.Parish. A Genetic Algorithm Approch to Automating Satellite Range Scheduling[D]. Ohio:Air Force Institute of Technology, 1994.
    [75] barbulescu L, A.Howe, L.D.Whitley. AFSCN Scheduling: How the problem and solution have evolved[J]. Mathematical Computer Modeling, 2006, 43: 1023-1037.
    [76] Barbulescu L, A.E.Howe, L.D.Whitley, M.Roberts. Trading Places: How to Schedule More in a Multi-Resource Oversubscribed Scheduling Problem[C]. // Proceedings of International Conference on Automated Planning Scheduling (ICAPS-04). 2004: 227-234.
    [77] L barbulescu, A.E.Howe, L.D.Whitley, M Roberts. Understanding Algorithm Performance on an Oversubscribed Scheduling Application[J]. Journal of Artificial Intelligence Research, 2006, 27: 577-615.
    [78] Barbulescu L, Whitley L D, et al. Leap Before You Look: An Effective Strategy in an Oversubscribed Scheduling Problem[C]. // Proceedings of the 19th National Conference on Artificial Intelligence (AAAI-04). 2004: 143-148.
    [79] Rao J D, Soma P, Padmashree G S. Multi-Satellite Scheduling System for Leo Satellite Operations[C]. // Proceedings of SpaceOps-98. Tokyo, Japan. 1998.
    [80] Soma P, Venkateswarlu S, Santhalakshmi S. Multi-Satellite Scheduling Using Genetic Algorithms[C]. // Proceedings of 10th International SpaceOps Symposium. Motreal, Cannada. 2004.
    [81]陈英武,方炎申,顾中舜.中继卫星单址链路调度模型与算法研究[J].中国空间科学技术, 2007, 2: 52-58.
    [82]李云峰,武小悦.遗传算法在卫星数传调度问题中的应用[J].系统工程理论与实践, 2008, 28(1): 158-164.
    [83]凌晓冬,武小悦,刘琦.多星测控调度问题的禁忌遗传算法研究[J].宇航学报, 2009, 30(5): 2133-2139.
    [84]陈峰,武小悦.基于协同进化的航天测控资源优化调度[J].系统工程与电子技术, 2009, 31(11): 2672-2676.
    [85] Fidanova Stefka. Hybrid Heuristic Algorithm for GPS Surveying Problem[C]. // Proceedings of the 6th International Conference on Numerical Methods and Applications. Berlin Heidelberg: Springer Verlag. 2006: 239-246.
    [86]张娜,柯良军,冯祖仁.一种新的卫星测控资源调度模型及其求解算法[J].宇航学报, 2009, 30(5): 2140-2145.
    [87]邢立宁,陈英武.基于混合蚁群优化的卫星地面站系统任务调度方法[J].自动化学报, 2008, 34(4): 414-418.
    [88]顾中舜.中继卫星动态调度问题建模及优化技术研究[D].长沙:国防科学技术大学, 2008.
    [89]白保存,陈英武,贺仁杰,李菊芳.基于分解优化的多星合成观测调度算法[J].自动化学报, 2009, 35(5): 596-403.
    [90]白保存.考虑任务合成的成像卫星调度模型与优化算法研究[D].长沙:国防科学技术大学, 2009.
    [91]陈祥国,武小悦.基于解构造图的卫星数传调度ACO算法[J].系统工程与电子技术, 2010, 32(3).
    [92]陈祥国,武小悦.基于不同信息素更新策略的卫星数传调度蚁群优化算法[J].运筹与管理, 2009, 18(3): 57-63.
    [93]陈祥国,武小悦.卫星数传调度的蚁群优化模型及算法[J].计算机工程与应用, 2009, 45(16): 225-231.
    [94]陈祥国,武小悦.基于信息素评价的卫星数传调度蚁群算法[J].系统仿真学报, 2009, 21(20): 6418-6423.
    [95]陈祥国,武小悦.蚁群算法在卫星数传调度问题中的应用[J].系统工程学报, 2009, 24(4): 451-456.
    [96]陈祥国,武小悦.卫星数传资源负荷均衡调度模型及蚁群优化算法[J].系统工程, 2008, 26(12): 91-97.
    [97]常飞,武小悦.基于改进粒子群算法的卫星数传任务调度[J].系统工程与电子技术, 2009, 31(10): 2404-2408.
    [98] M.L.Fisher. An Applications Oriented Guide to Lagrangian Relaxation[J].INTERFACES, 1985, 15(2): 11-21.
    [99] Tao Sun, Peter B.Luh, Min Liu. Lagrangian Relaxation for Complex Job Shop Scheduling[C]. // Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, Florida. 2006: 1432-1437.
    [100] Lixin Tang, Hua Xuan, Jiyin Liu. A new Lagrangian relaxation algorithm for hybrid flowshop scheduling to minimize total weighted completion time[J]. Computers & Operations Research, 2006, 33: 3344-3359.
    [101] Haoxun Chen, Peter B.Luh. An alternative framework to Lagrangian relaxation approach for job shop scheduling[J]. European Journal of Operational Research, 2003, 149: 499-512.
    [102] Peter B.Luh, Xing Zhao, Yajun Wang, Lakshman S. Thakur. Lagrangian Relaxation Neural Networks for Job Shop Scheduling[J]. IEEE Transactions on Robotics and Automation, 2000, 16(1): 78-88.
    [103] Sashirekha Appalasamy, Sutinah Salim. JSSP solver with a modified and augmented Lagrangian Relaxation Neural Network (LRNN)[C]. // Proceedings of the 2nd IMT-GT Regional Conference on Mathematics. Statistics and Applications University Sains Malaysia, Penang,. 2006.
    [104] Lixin Tang, Hua Xuan, Jiyin Liu. Hybrid backward and forward dynamic programming based Lagrangian relaxation for single machine scheduling[J]. Computers & Operations Research, 2007, 34: 2625-2636.
    [105] M.L.Fisher. The lagrangian relaxation method of solving integer programming problems[J]. Management Science, 1981, 27(1): 1-18.
    [106] X.Zhao, P.B.luh, J.Wang. The Surrogate Gradient Algorithm for Lagrangian Relaxation Method[C]. // Proceedings of the 36th Conference on Decision & Control San Diego, California USA. 1997: 305-310.
    [107] X.Zhao, P.B.luh. Fuzzy Gradient Method in Lagrangian Relaxation for Integer Programming Problems[C]. // Proceedings of the 37th IEEE Conference on Decision & Control. Tampa, Florida USA. 1998: 3372-3377.
    [108] X.ZHAO, P.B.luh, J.Wang. Surrogate Gradient Algorithm for Lagrangian Relaxation[J]. Journal of Optimization Theory and Applications, 1999, 100(3): 699-712.
    [109] R.S.BURACHIK, and et al. On a Modified Subgradient Algorithm for Dual Problems via Sharp Augmented Lagrangian[J]. Journal of Global Optimization, 2006, 34: 55-78.
    [110] F.Fumero. a modified subgradient algorithm for lagrangean relaxation[J]. Computers & Operations Research, 2001, 28: 33-52.
    [111] X.H.Guan, Q.Z.Zhai, F.Lai. New Lagrangian Relaxation Based Algorithm for Resource Scheduling with Homogeneous Subproblems[J]. Journal of Optimization Theory and Applications, 2002, 113(1): 65-82.
    [112]周威,金以慧.利用模糊次梯度算法求解拉格朗日松弛对偶问题[J].控制与决策, 2004, 19(11): 1213-1217.
    [113]陶继平,徐文艳,王豪.逐步次梯度法在基于LR的调度算法中的应用[J].控制工程, 2007, 14(5): 566-568.
    [114]轩华,唐立新.实时无等待HFS调度的一种拉格朗日松弛算法[J].控制与决策, 2006, 21(4): 376-380.
    [115] S.Wang. An improved stepsize of the subgradient algorithm for solving the lagrangian relaxation problem[J]. Computers and Electrical Engineering, 2003, 29: 245-249.
    [116]陈静,于伟伟,倪明放.改进的次梯度优化算法的收敛性研究[J].金陵科技学院学报, 2008, 24(3): 12-16.
    [117] H.Y.Yamin, S.M.Shahidehpour. Unit commitment using a hybrid model between Lagrangian relaxation and genetic algorithm in competitive electricity markets[J]. Electric Power Systems Research, 2004, 68: 83-92.
    [118] Chuan-Ping Cheng, Chih-Wen Liu, Chun-Chang Liu. Unit Commitment by Lagrangian Relaxation and Genetic Algorithms[J]. IEEE Transactions on Power Systems, 2000, 15(2): 707-714.
    [119]聂兰顺,徐晓飞,战德臣.基于拉格朗日松弛和遗传算法的供应链协同计划[J].计算机集成制造系统, 2006, 12(11): 1869-1875.
    [120]葛祖全,王华,马军.解决聚合组播的自适应拉格朗日松弛算法[J].计算机应用, 2007, 27(4): 811-813.
    [121] Tatsushi Nishi, Yuichiro Hiranaka, Masahiro Inuiguchi. Lagrangian relaxation with cut generation for hybrid flowshop scheduling problems to minimize the total weighted tardiness[J]. Computers & Operations Research, 2010, 37: 189-198.
    [122] A.M.GEOFFRION. Lagrangean Relaxation for Integer Programming[J]. Mathematical Programming Study, 1974, 2: 82-114.
    [123] Shunji Tanaka, Mituhiko Araki. A branch-and-bound algorithm with Lagrangian relaxation to minimize total tardiness on identical parallel machines[J]. international journal of production economics, 2008, 113: 446-458.
    [124]盛红波,孙娟,孙小玲. 0-1多项式背包问题的一种精确算法[J].上海大学学报(自然科学版), 2006, 12(4): 389-393.
    [125] V.Jeet, E.Kutanoglu. Lagrangian relaxation guided problem space search heuristics for generalized assignment problems[J]. European Journal of Operational Research, 2007, 182: 1039-1056.
    [126] Sebastian Ceria, Paolo Nobili, Antonio Sassano. A Lagrangian-based heuristic for large-scale set covering problems[J]. Mathematical Programming, 1998, 81: 215-228.
    [127] W.Matthew Carlyle, Johannes O.Royset, R.Kevin Wood. Lagrangian Relaxation and Enumeration for Solving Constrained Shortest-Path Problems[EB/OL]. Wiley InterScience. www.interscience.wiley.com.
    [128]鲁奎,杨昌辉,戴道明.运输能力受限与费用时变批量问题的拉格朗日松弛启发式算法[J].系统工程理论与实践, 2008, 10: 47-52.
    [129]周威,金以慧.利用拉格朗日松弛算法协调多厂供应链生产计划[J].计算机集成制造系统, 2005, 11(9): 1255-1259.
    [130]周威,金以慧.基于拉格朗日松弛算法的分布式供应链优化[J].控制工程, 2006, 13(2): 130-134.
    [131] C.E.Bell. Scheduling Deep Space Network Data Transmissions: A Lagrangian Relaxation Approach[C]. // Proceedings of Applications of Artificial Intelligence. 1993: 330-340.
    [132] Roberto Cordone, Federico Gandellini, Giovanni Righini. Solving the swath segment selection problem through Lagrangean relaxation[J]. Computers & Operations Research, 2008, 35: 854-862.
    [133]靳肖闪,李军,刘湘辉,郭玉华,景宁.基于拉格朗日松弛与最大分支算法的卫星成像调度算法[J].宇航学报, 2008, 29(2): 694-699.
    [134]靳肖闪,李军,王钧,景宁.基于随机搜索与松弛方法的多卫星联合成像优化调度研究[J].兵工学报, 2009, 30(1): 49-55.
    [135]金永德.导弹与航天技术概论[M].哈尔滨:哈尔滨工业大学出版社, 2002.
    [136]郑荣跃.航天工程学[M].长沙:国防科技大学出版社, 1999.
    [137]郝岩.航天测控网[M].北京:国防工业出版社, 2004.
    [138]姜昌,范晓玲.航天通信跟踪技术导论[M].北京:北京工业大学出版社, 2003.
    [139]褚桂柏.航天技术概论[M].北京:中国宇航出版社, 2002.
    [140]谢红卫.航天测控系统[M].长沙:国防科技大学出版社, 2000.
    [141]于志坚.航天测控系统工程[M].北京:国防工业出版社, 2008.
    [142]张兵山.天地通信技术[M].北京:国防工业出版社, 2002.
    [143]周智敏,李企舜.现代航天测控原理[M].长沙:国防科技大学出版社, 1998.
    [144]贾世楼.空间飞行器跟踪与通信[M].北京:宇航出版社, 1998.
    [145]陈峰,武小悦.多星测控调度的遗传算法分析[J].北京航空航天大学学报, 2010, 36(5): 534-539.
    [146] Vasquez M, Hao J K. Upper Bounds for the SPOT 5 Daily Photograph Scheduling Problem[J]. Journal of Combinatorial Optimization, 2003, 7: 87-103.
    [147]邢文训,谢金星.现代优化计算方法[M].清华大学出版社, 2006.
    [148] G.H.CHEN, M.T.KUO, J.P.SHEU. An Optimal Time Algorithm for Findinga Maximum Weight Inependent Set in a Tree[J]. BIT, 1988, 28: 353-356.
    [149] Ju Yuan Hsiao, Chuan Yi Tang. An efficient algorithm for finding a maximum weight 2-independent set on interval graphs[J]. Information Processing Letters, 1992, 43: 229-235.
    [150] MAW-SHANG CHANG. Efficient Algorithms for the Domination Problems on Interval and Circular-Arc Graphs[J]. SIAM J. COMPUT, 1998, 27(6): 1671-1694.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700