多智能体系统的稳定性研究及其在人工股票市场上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,复杂系统的研究已成为富有挑战性的前沿方向之一,多智能体系统作为复杂系统的一个典型代表备受关注:本文基于国家自然科学基金项目、辽宁省高等学校创新团队支持计划项目和辽宁省高等学校优秀人才支持计划项目,对多智能体系统的稳定性及其在人工股票市场上的应用做了深入的探讨。
     本文以李亚普诺夫稳定性理论为基础,讨论了多智能体系统的动态性质和稳定性,并以此为依托,深入研究了人工股票市场的稳定性和控制问题。
     论文主要工作可总结如下:
     1.讨论了多智能体系统的稳定性问题。首先,将随机扰动引入到多智能体系统,提出了一个一阶随机多智能体模型,并应用李亚普诺夫稳定性理论研究了系统中心的运动状态,系统的指数稳定性,及其收敛性质:研究了多智能体系统在不同扰动条件下的实用稳定性问题,给出了实用稳定性条件;其次,应用拉普拉斯图理论,讨论了一个二阶多智能体系统的运动状态和渐进稳定性质。
     2_通过在系统中加入一个或多个可控智能体,在不破坏局部规则的条件下,成功地改变了系统的运动状态,并以一阶、二阶多智能体系统为例,分别给出了相应的控制规则;应用粒子群算法讨论了可控智能体的数量选择问题,指出适当的增加可控智能体的数量可以提高系统的收敛速度;此外,通过在系统中加入多个可控智能体,实现了多智能体系统的分化。
     3.应用多智能体稳定性理论,研究了人工股票市场的稳定性问题。首先,以圣塔菲人工股票市场模型为基础,结合简单的吸引排斥函数,给出了价格期望反馈模型,并讨论了该模型的价格稳定性问题。其次,提出了一个包含五种交易群体的多群体人工股票市场模型,针对不同的交易群体,分别给出了各自的交易规则,分析了各自的价格动态性质,并模仿真实股票市场的竞价机制,提出了一种新的交易出清机制。
     4.基于可控智能体理论,讨论了人工股票市场的控制和稳定性问题。与传统的股票市场的稳定性理论不同,本文通过在人工股票市场模型中加入可控智能体,利用可控智能体特定的交易规则,改变市场中买入量和卖出量的比例,以达到调节股票价格,稳定金融市场的目的。
The complex systems are one of the most challenging directions in recent years. Multi-agent system, which is a typical complex system, is gradually attracting more attention. Based on the National Natural Science Foundation of China, program for Liaoning Innovative Research Team in University and Liaoning Excellent Talents in University, stability of multi-agent system and its applications on artificial stock market is studied.
     Based on Liapunov stability theory, the dynamic and stability of multi-agent system is discussed. As multi-agent system's applications, the control and stability for multi-agent system is considered.
     The main contributions in this thesis are in four aspects:
     1. A stochastic multi-agent model is proposed, and Liapunvo stability theory is applied to study the center movement, exponent stability and convergence of the proposed stochastic model. Practical stability of a multi-agents system is discussed with different oscillations and necessary conditions are given for practical stability. A control rule for two orders multi-agent model is proposed to coordinated control, and the movement and stability of the model is studied on the based on the Laplace figure theory.
     2. The stability of multi-agent system is studied by adding some special agents, called 'control agents', which can change movement, but keep the basic local rule of the existing agents in the system. Special rules are applied for two kinds of multi-agents systems. Particle swarm optimization is applied to optimize the number of'control agents'. It's obviously that convergence rate is faster through adding properly more'control agents'. Moreover, divide of multi-agents system is studied by adding several'control agents'.
     3. Based on stability theory in multi-agent system, stability in artificial stock market (ASM) is studied. Firstly, expected price model, which is relational to SantaFe artificial stock market, is generated by simple attraction/rejection function. The price stability of model is discussed. Secondly, a new ASM including five populations is proposed. Different rules are applied for five populations, which will produce different price dynamic. Further more, a new clearing mechanism is offered by simulating real stock market.
     4. Based on'control agents'theory, the control and stability in artificial stock market model is discussed. It's different from the traditional stability theory in stock market. It's important to add the'control agents', who make decision by special trading rules to change the proportion of the orders, which can control fluctuation of the stock price and stability the finance market.
引文
[1]Parrish J K, Edelstein K L. Complexity, pattern, and evolutionary trade-offs in animal aggregation [J]. Science,1999,284(5411):99-101.
    [2]Ball P. Biophysics:Science in motion [J]. Nature,2000,406(6793):244-245.
    [3]Grunbaum D. Behavior:align in the sand [J]. Science,2006,312(5778):1320-1322.
    [4]Auyang S Y. Foundations of Complex System Theories [M]. New York:Cambridge University Press,1998.
    [5]Buhl J, Sumpter D J T, Couzin I D, et al. From disorder to order in marching locusts [J]. Science,2006,312(5778):1402-1406.
    [6]Narayan V, Ramaswamy S, Menon N. Long-lived giant number fluctuations in a swarming granular nematic [J]. Science,2007,317(5834):105-108.
    [7]Diggle S P, Griffin A S, Campbell G S et al. Cooperation and conflict in quorum-sensing bacterial populations [J]. Nature,2007,450(7168):411-414.
    [8]Shehory 0, Kraus S. Method for task allocation via agent coalition formation [J]. Artificial Intelligence,1998,101(1-2):165-200.
    [9]Kude C R, Bonabeau E. Cooperative transport by ants and robots [J]. Robotics and Autonomous System,2000,30(1):85-101.
    [10]Visscher P K. Animal behaviour-How self-organization evolves [J]. Nature,2003, 421 (6925):799-800.
    [11]Michael W,石纯一译.多Agent系统引论[M].北京:电子工业出版社,2003.
    [12]Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence:From Natural to Artificial Systems [M]. New York:Oxford University Press,1999.
    [13]Kennedy J, Eberhart R C, Shi Y H. Swarm Intelligence [M]. San Francisco:Morgan Kaufmann Publishers,2001.
    [14]Theraulaz G, Bonabeau E. Modeling the collective building of complex architectures in social insects with lattice swarms [J]. Journal of Theoretical Biology,1995,177(4): 381-400.
    [15]Kunz H, Hemelrijk C K. Artificial fish schools:collective effects of school size, body size, and body form [J]. Artificial Life,2003,9(3):237-253.
    [16]Nishimura S I, Ikegami T. Emergence of collective strategies in a prey predator game model [J]. Artificial Life,1997,3(4):243-261.
    [17]Nowak M A, Sigmund K. Evolution of indirect reciprocity [J]. Nature,2005,437 (7063): 1291-1298.
    [18]Liu Y, Passino K M. Biomimicry of social foraging bacteria for distributed optimization Models, principles, and emergent behaviors [J]. The Journal of Optimization Theory and Applications,2002,115(3):603-628.
    [19]Passino K M. Biomimicry of bacterial foraging for distributed optimization and control [J]. IEEE Control Systems Magazine,2002,22(3):52-67.
    [20]Gazi V, Passino K M. Stability analysis of social foraging swarms [J]. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics),2004,34(1):539-557.
    [21]Holland J H. Emergence [M]. New York:Addison-Wesley,1998.
    [22]Caraco T, Martindale S, Pulliam H R. Avian flocking in the presence of a predator [J]. Nature,1980,285(5764):400-401.
    [23]Grunbaum D. Schooling as a strategy for taxis in a noisy environment [J]. Evolutionary Ecology,1998,12(5):503-522.
    [24]Moore P D. Ecology:Crowd trouble for predators [J]. Nature,200.1,413(6853):265.
    [25]张嗣瀛.复杂系统的演化过程,n(n-1)律,自聚集[J].复杂系统与复杂性科学,2005,2(3):84-90.
    [26]Arai T, Pagello E, Parker L E. Guest editorial advances in multirobot systems [J]. IEEE Transaction on Robotics and Automation,2002,18(5):655-661.
    [27]Balch T, Arkin R C. Behavior-based formation control for multirobot team [J]. IEEE Transaction on Robotics and Automation,1998,14(6):926-939
    [28]Wang F Y. Agent-based control for networked traffic management systems [J], IEEE Intelligent Systems,2005,20(5):92-96.
    [29]Liu J G, Li Q S, Wang N S. Scheduling of Flexible Manufacturing System Based on Cooperative Game [J]. Jounal of South China University of Technology (Natural Science Edition),2007,35(9):101-106.
    [30]景广军,李松仁,陈松乔.基于Multi-agent的分布式专家系统协作机制[J].中国有色金属学报,2001,11(6):1104-1108.
    [31]焦李成,刘静,钟伟才.协同进化计算与多智能体系统[M].科学出版社,2006.
    [32]Cheng L, Wang Y J. Communication-based multiple mobile robots rigid formation control [C]. Proceeding of eighth International Conference on Control, Automation, Robotics and Vision, New York:IEEE,2004:729-734.
    [33]Singh M. P. Multi-Agent System:A Theoretical Framework for Intentions, Know-how, and Communications [M]. Berlin:Springer-Verlag KG,1994.
    [34]Gazi V, Passino K M. Stability analysis of swarms [J]. IEEE Transactions on Automatic Control,2003,48(4):692-697.
    [35]Passino K M. Biomimicry for optimization, control, and automation [M]. Springer Verlag,2005.
    [36]Gazi V, Passino K M. A class of attractions/repulsion functions for stable swarm aggregations [J]. International Journal of Control,2004,77(18):1567-1579.
    [37]Gazi V. Swarm aggregations using artificial potentials and sliding-mode control [J]. IEEE Transactions on Robotics,2005,21(6):1208-1214.
    [38]Liu Y, Passino K M. Stable social foraging swarms in a noisy environment [J]. IEEE Transactions on Automatic Control,2004,49(1):30-44.
    [39]Pan F C, Chen X B, Li L. Stability Analysis of Stochastic Swarms System [C]. Proceeding of the sixth World Congress on Control and Automation, Dalian,21-23 June, 2006:1048-1051
    [40]Pan F C, Chen X B, Li L. Practical Stability Analysis of Stochastic Swarms [C]. Third International Conference on Innovative Computing, Information and Control, Dalian,18-20 June,2008.
    [41]Pan F C, Chen X B, Li L. Practical Stability in Swarms System [J]. Journal Applying Math and Informatics,2008,26(1-2):203-212.
    [42]Dorigo M, Maniezzo V, Colorni A. The ant system:optimization by a colony of cooperating agents [J], IEEE Transaction On Systems, Man and Cybernetics, Part B,1996,26(1): 29-41.
    [43]Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [C]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya,4-6 Oct,1995:39-43.
    [44]Kennedy J, Eberhart R C, Particle swarm optimization [C], Proceeding IEEE International Conference on Neural Networks, Perth, Austral ia,1995, Ⅳ:1942-1948.
    [45]Kennedy J. The particle swarm:Social Adaptation of Knowledge [C], IEEE International Conference on Evolutionary Computation, Piscataway NJ:IEEE Service Center,1997: 303-308.
    [46]Kennedy J. and Mendes R. Neighborhood topologies in fully informed and best of neighborhood particle swarms [C], Proceedings of the 2003 IEEE Imitationa Workshop on Soft Computing in Industrial Applications,2003:45-50.
    [47]Mendes R, Kennedy J. The fully informed particle swarm:simpler, maybe better [J], IEEE Transactions on Evolutionary Computation,2004,8(3):204-210.
    [48]Lafferriere G, Williams A, Caughman J, et al. Decentralized control of vehicle formations [J]. Systems and Control Letters,2005,54(9):899-910.
    [49]Ren W, Beard R W. Decentralized scheme for spacecraft formation flying via the virtual structure approach [J]. Journal of Guidance Control and Dynamics,2004,27(1):73-82.
    [50]Stipanovic D M, Inalhan G, Teo R, et al. Decentralized overlapping control of a formation of unmanned aerial vehicles [J]. Automatica,2004,40(8):1285-1296.
    [51]Gazi V. Formation control of a multi-agent system using non-linear servo-mechanism [J]. International Journal of Control,2005,78(8):554-565.
    [52]Dunbar W B, Murray R M. Distributed receding horizon control for multi-vehicle formation stabilization [J]. Automatica,2006,42(4):549-558.
    [53]Lin Z, Francis B, Maggiore M. Necessary and sufficient graphical conditions for formation control of unicycles [J]. IEEE Transactions on Automatic Control,2005, 50(1):121-127.
    [54]McMickell MB, Goodwine B. Motion planning for nonlinear symmetric distributed robotic formations [J]. The International Journal of Robotics Research,2007,26(10): 1025-1041.
    [55]Yu C, Hendrickx J M, Fidan B, Anderson B D O, Blondel V D. Three and higher dimensional autonomous formations:rigidity, persistence and structural persistence [J]. Automatica,2007,43(3):387-402.
    [56]Anderson B D O, Yu C, Dasgupta S, et al. Control of a three-coleader formation in the plane [J]. Systems and Control Letters,2007,56(9-10):573-578.
    [57]Anderson E P, Beard R W, McLain T W. Real-time dynamic trajectory smoothing for unmanned air vehicles [J]. IEEE Transactions on Control Systems Technology,2005,13(3): 471-477.
    [58]Reynolds C. Flocks, herds and schools:a distributed behavioral model [J]. Computers and Graphics,1987,21(4):25-34.
    [59]Vicsck T, Czirook A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles [J]. Physics Review Letters,1995,75(6):1226-1229.
    [60]Toner J, Tu J. Flocks, herds, and schools:A quantitative theory of flocking [J]. Physics Review E,1998,58(4):4828-4858.
    [61]Levine H, Rappel W J, Cohen I. Self-organization in systems of self-propelled particles [J]. Physics Review E,2001,63(1-2),017101.
    [62]Olfati-Saber R, Murray R M. Consensus protocols for networks of dynamic agents [C]. Proceedings of the American Control Conference. Piscataway, NJ, USA:IEEE,2003: 951-956.
    [63]Olfati-Saber R, Shamma J. Consensus filters for sensor networks and distributed sensor fusion [C]. The 44th IEEE Conference on Decision and Control,12-15, Dec,2005: 6698-6703.
    [64]Li G, Daizhan C. Comment on Coordination of groups of mobile autonomous agents using nearest neighbor Rules [J]. IEEE Transactions on Automatic Control,2005,50(11): 1913-1916.
    [65]Bertsekas D P, Tsitsiklis J N. Comments on Coordination of groups of mobile autonomous agents using nearest neighbor rules [J]. IEEE Transactions on Automatic Control,2007, 52(5):968-969.
    [66]Ren W, Beard R W, Ella M A. Information consensus in multivehicle cooperative control [J]. IEEE Control Systems Magazine,2007,27(2):71-82.
    [67]Martinez S, Bullo F, Cortes J, et al. On synchronous robotic networks, part I:models, tasks, and complexity [J]. IEEE Transactions on Automatic Control,2007,52(12): 2199-2213.
    [68]Ando H, Oasa Y, Suzuki I, et al. Distributed memory less point convergence algorithm for mobile robots with limited visibility [J]. IEEE Transactions on Robotics and Automation,1999,15(5):818-828.
    [69]Dimos V D, Kostas J K. On the rendezvous problem for multiple nonholonomic agents [J]. IEEE Transactions on Automatic Control,2007,52(5):916-922.
    [70]Smith S L, Broucke M E, Francis B A. Curve shortening and the rendezvous problem for mobile autonomous robots [J]. IEEE Transactions on Automatic Control,2007,52(6): 1154-1159.
    [71]Cortes J, Martinez S, Bullo F. Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions [J]. IEEE Transactions on Automatic Control, 2006,51(8):1289-1298.
    [72]Vicsek T, Czirok A, Ben-Jacob E,et al. Novel type of phase transitions in a system of self-driven particles [J], Physical Review Letters,1995,75(6):1226-1229.
    [73]Moreau L. Stability of multiagent systems with-time-dependent communication links [J]. IEEE Transactions on Automatic Control,2005,50(2):169-182.
    [74]Liu Y, Passino K M, Polycarpou M. Stability analysis of one-dimensional asynchronous swarms [J].IEEE Transactions on Automatic Control,2003,48(10):1848-1854.
    [75]Liu Y, Passino K M, Polycarpou M. Stability analysis of M-dimensional asynchronous swarms with a fixed communication topology [J]. IEEE Transactions on Automatic Control, 2003,48(1):76-95.
    [76]Mogilner A, Edelstein K L. Spatio-temporal order in populations of self-aligning objects:formation of oriented patches [J].Physica D,1996,89:346-367.
    [77]Olfati-Saber R, Murray R. Consensus problems in networks of agents with switching topology and time-delays [J]. IEEE Transactions on Automatic Control,2004,49(9): 1520-1533.
    [78]Moreau L. Stability of continuous time distributed consensus algorithms [C]. Proceedings of the 42th IEEE Conference on Decision and Control, Paradise Island,2004: 3070-3075.
    [79]Meng J, Muhammad A, Egerstedt M. Leader-Based Multi-Agent Coordination: Controllability and Optimal Control [C]. Proceedings of the 2006 American Control Conference Minneapolis, Minnesota, USA,14-16 June,2006:1358-1368.
    [80]Shi H, Wang L, Chu T G. Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions [J]. Physica D,2006,213(1):51-65.
    [81]Leonard N E, Fiorelli E. Virtual Leaders, Artificial Potentials and Coordinated Control of Groups [C]. Proceeding of the 40th IEEE Conference on Decision and Control, Orlando, Dec,2001:2968-2973.
    [82]Tanner H. Flocking with obstacle avoidance in switching networks of interconnected vehicles [C]. IEEE International Conference Robotics and Automation, New Orleans LA, April 26-May 1,2004:3006-3011.
    [83]LeBaron B. Agent-Based Financial Markets:Matching Stylized Facts with Style. in Post Walrasian Macroeconomics Beyond the Dynamic Stochastic General Equilibrium Model [M]//D. C. Coler, Ed. Cambridge, U.K.:Cambridge Univ. Press,2006:221-235.
    [84]Arthur B W, Holland J Ⅱ, LeBaron B, et al. Asset pricing under endogenous expectations in an artificial stock market [M]//In Arthur B, Durlauf S, Lane D ed. The Economy As an Evolving Complex System Ⅱ. Boston:Addison-Wesley,1997:15-44.
    [85]Levy M, Levy H, Solomon S. Microscopic Simulation of Financial Markets:From Investor Behavior to Market Phenomena [M]. Academic Press,2000.
    [86]Bouchaud J P. Economics need a scientific revolution [J]. Nature,2008,455(7217): 1181-1181.
    [87]Figlewski S. Market efficiency in a market with heterogeneous information [J]. Journal of Political Economy,1978,86(4):581-597.
    [88]Cohen K J, Maier S F, Schwartz R A, et al. A simulation model of stock exchange trading [J]. Simulation,1983,41(5):181-191.
    [89]Harald A B, Jose L G, Juan P P, et al. Market efficiency and learning in an artificial stock market:A perspective from Neo-Austrian economics [J]. Journal of Empirical Finance,2010,17(4):668-688.
    [90]Frankel J A, Froot K A. Explaining the demand for dollars:International rates of return and the expectations of chartists and fundamentalists [M]. CO:Westview Press,1988: 25-88.
    [91]Kirman A P. Epidemics of opinion and speculative bubbles in financial markets [M]. In: Money and Financial Markets (M. Taylor, Eds.), Macmillan,1991:354-368.
    [92]De Grauwe P, Dewachter H, Embrechts M. Exchange Rate Theory:Chaotic Models of Foreign Exchange Markets [M], Oxford:Blackwell,1993:8-20.
    [93]Marco R., Silvano C., Sergio M, et al. Traders'Long-Run Wealth in an Artificial Financial Market [J]. Computational Economics,2003,22(2-3):255-272.
    [94]Kim G, Markowitz H. Investment rules, margin, and market volatility [J]. Journal of Portfolio Management,1989,16(1):45-52.
    [95]Bullard J. A model of learning and emulation with artificial adaptive agents [J], Journal of Economic Dynamics and Control,1998,22(2):179-207.
    [96]何屹.意大利开发出股票交易人工模型[N].科技日报,2010-7-20.
    [97]张维,赵帅特,熊熊,张永杰.简单技术规则与时间序列收益可预测性:基于计算实验金融的研究[J].管理科学,2008,21(3):74-84.
    [98]韩立岩,夏坤,刘唯妮.羊群行为的多主体仿真模型[J].北京航空航天大学学报(社会科学版),2007,20(3):10-14.
    [99]宋逢明,李超.股票市场涨跌停板设置的微模拟研究[J].运筹与管理.2007,01:100-106.
    [100]于同奎,曹国华.基于SWARM的模拟股市及其特征性事实[J],重庆大学学报(自然科学版),2007,30(11):152-156.
    [101]杨敏,马进胜.基于主体的人工股市建模及其实证研究[J].管理科学学报,2010,13(5):91-96.
    [102]Cortes J, Martinez S, Bullo F. Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions [J]. IEEE Transactions on Automatic Control, 2006,51(8):1289-1298.
    [103]Arcak M. Passivity as a design tool for group coordination [J]. IEEE Transactions on Automatic Control,2007,52(8):1380-1390.
    [104]Lee D, Spong M W. Stable flocking of multiple inertial agents on balanced graphs [J]. IEEE Transactions on Automatic Control,2007,52(8):1469-1475.
    [105]Egerstedt M, Hu X M. Formation Constrained Multi-Agent Control [J]. IEEE Transactions on Robotics and Automation,2001,17(6):947-951.
    [106]Herbert G T, Jadbabaie A, George J, Pappas. Flocking in Teams of Nonholonomic Agents [M]. Lecture Notes in Control and Information Sciences, Springer,2003:229-239.
    [107]Moshtagh N, Michael N, Jadbabaie V. Vision-based, distributed control laws formotion coordination of nonholonomic robots [M]. IEEE Transactions on Robotics, Aug.2009, 25(4):851-860.
    [108]Okubo A. Dynamical aspects of animal grouping:swarms, schools, flocks, and herds [J]. Advances in Biophysics,1986,22:1-94.
    [109]Warburton K, Lazarus J. Tendency-distance models of social cohesion in animal groups [J]. Journal of Theoretical Biology,1991,150(4):473-488.
    [110]Kardar M, Parisi G, Zhang Y C. Dynamic scaling of growing interfaces [J]. Physical Review Letters,1986,56(9):889-892.
    [111]Beni G, Liang P. Pattern reconfiguration in swarms convergence of a distributed asynchronous and bounded iterative algorithm [J]. IEEE Trans on Robotics and Automation,1996,12(3):485-490.
    [112]Mikhailov A, Sand D, Zannette. Noise induced breakdown of collective coherent mot ion in swarms [J]. Physical Review E,1999,60(4):4571-4575.
    [113]Shimoyama N, Sugawa K, Mizuguchi T. Collective motion in a system of motile elements [J]. Physical Review Letters,1996,76(20):3870-3873.
    [114]Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules [J]. IEEE Transactions on Automatic Control,2003,48(6): 988-1001.
    [115]Shang Y L. Leader-following consensus problems with a time-varying leader under [J/OL]. Measurement Noise. http://arxiv. org/PS_cache/arxiv/pdf/0909/0909.4349vl.pdf
    [116]吴止平,俞辉,王仁明.具有动态拓扑有领航者的多智能体群集运动控制[J].华中科技大学学报(自然科学版),2008,36(10):29-31.
    [117]杨洪勇,曹科才,张嗣瀛.具有领航者的时延多智能体系统的群集运动[J].计算机研究与发展,2011,48(2):203-208.
    [118]Tanner Ⅱ G, Jadbabaie A, Pappas G J. Stable flocking of mobile agent, Part I:Fixed Topology [C]. Proceeding of 42th IEEE conference on Decision and Control, Piscataway: IEEE,2003:2010-2015.
    [119]Wang J, Yao Z, Cui C. Analysis and Modelling of Financial Complex Systems Based on Agent Approach [J]. Systems Engineering,2010,28(11):16-20.
    [120]Palmer R, Arthur W B, Holland J H, et al. Artificial economic life:A simple model of a stock market [J]. Physica D,1994,75(1-3):264-274.
    [121]Bollcrslcv T. Generalised Autoregrcssive Conditional Hetcrosccdasticity [J]. Journal of Econometrics,1986,31 (3):307-327.
    [122]Cont R. Empirical properties of asset returns:stylized facts and statistical issues [J]. Quantitative Finance.2001,1(2):223-236.
    [123]DeLong J B, Shlcifer A, Summers L H, Waldmann R J. Positive feedback Investment Strategies and destabilizing rational speculation [J]. Journal of Finance,1990, 45(2):379-395.
    [124]Westerhoff F. Speculative markets and the effectiveness of price limits [J]. Journal of Economic Dynamics and Control,2003,28(3):493-508.
    [125]Mackinson S. Variation in structure and distribution of pre - spawning pacific herring shoals in Two regions of British Columbia [J]. Journal of Fish Biology.1999,55(5): 972-989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700