白颈长尾雉空间生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1999~2003年,在浙江省开化县境内调查了白颈长尾雉栖息地斑块及斑块内该雉的分布情况。研究白颈长尾雉栖息地丧失与片段化,以及斑块特征与种群分布、相对密度的关系。在此基础上,引入集合种群理论构建分析开化县白颈长尾雉集合种群,提出种群在斑块间的平均扩散距离估算方法,研究白颈长尾雉保护对策。主要的研究结果如下:
     1.利用遥感与地理信息系统技术,从开化县的TM遥感数据中识别1986年及2000年分别有284个和151个自颈长尾雉栖息地斑块。14年间该雉的栖息地面积丧失13309.74ha,平均邻近距离从416.18m增加到673.93m,片段化程度也相应加剧。由于很多小栖息地斑块的丧失及局部的封山育林,使得2000年的平均栖息地斑块面积218.32ha要比1986年大56.21ha。层次网络分析表明,1986年栖息地斑块网络结构中各层次间与各类簇内部斑块间的联系都比2000年紧密。
     2.以羽迹法实地调查开化县内151个栖息地斑块的占有情况,其中52个为白颈长尾雉占有。选取栖息地斑块的面积、形状指数、邻近距离、邻近指数、高程、坡度、坡向、植被指数、离最近公路距离、离最近居民点距离、离最近河流距离等11种景观参数,并分析它们对斑块占有的影响。t检验分析表明斑块的面积、形状指数、邻近距离、植被指数等四个特征对白颈长尾雉的栖息地斑块占有有极显著的影响。前向逐步选择的多元二值逻辑斯蒂回归分析得到白颈长尾雉栖息地斑块占有回归模型:其中P(y_i=1)斑块i内有白颈长尾雉出现的概率,HA_i、PR_i和VI_i分别是斑块i的面积、邻近指数和植被指数。
     3.在古田山自然保护区及周边,对27个栖息地斑块内的植被与景观特征以及白颈长尾雉的羽迹密度进行了调查。为减少数据冗余将总盖度、乔木层盖度、灌木层盖度、乔木层高度、灌木层高度、植被类型等6个栖息地斑块内的植被特征进行主成分分析,得到反映生态外貌特征的PC1和反映灌木层特征PC2。PC1与PC2连同斑块面积、海拔、坡度、连接度、干扰度、相对保护区位置等栖息地斑块特征被用于白颈长尾雉斑块占有影响分析,以及可预测模型的建立。t验与χ~2检验表明只有斑块面积显著影响斑块占有。采用逐步降元的多元线性回归分析建立模型:
     D_i=0.852+0.078PA_i-0.137PI_i-0.006PD_i其中:D_i为预测栖息地斑块i内局部种群的相对密度,PA_i为斑块i的面积,PI_i为斑块i的连接度,PD_i为斑块i内的干扰度。
     4.以估计的参数u=0.04、x=2、α=1、b=0.5及y=2,构建开化县白颈长尾雉概率函数集合种群模型。该模型预测开化县境内的白颈长尾雉种群可以长期续存,未来100年里平均的斑块占有率为18.0%。参数α、b及y敏感性分析结果表明:反映种群在斑块间的平均扩散距离的α参数对整个集合种群续存影响最大,当α=0.67时,开化县未来100年里平均的斑块占有率从18.0%扩大到34.0%。分析两种斑块间邻近距离对模型预测的影响表明斑块间边界邻近距离替代重心点间邻近距离对提高斑块占有率不显著。区域随机的引入,使集合种群的续存能力降低。当加入五十年一遇区域随机后,开化县未来100年里平均的斑块占有率从18.0%减少到8.0%。
     5.基于集合种群原理,通过空间等级层次聚类分析,搜寻已占有斑块与其它斑块相隔最远的距离确定种群在栖息地斑块系统内最长扩散距离,搜寻一个所有斑块都未灭绝的斑块族群,这一族群内斑块间最大的隔离距离确定为种群经常扩散距离,最长扩散距离与经常扩散距离的中间值即为种群的平均扩散距离。该斑块间扩散距离估算模型利用GIS控件实现了软件化,并通过实例集合种群的应用对比实际斑块间平均扩散距离,验证了该模型实用性,同时也说明了其局限性。
     6.选择四种较典型类型的白颈长尾雉栖息地斑块系统,在现状基础上设置斑块面积丧失50%与恢复20%、斑块间的隔离距离增加50%与缩短20%四种栖息地斑块变化情景,并分析各斑块系统内集合种群的生存能力。依据分析结果提出白颈长尾雉的保护原则:①应以整体区域复杂栖息地斑块系统的全局保护优先,②局部区域栖息地斑块系统内应以恢复栖息地面积优先。
During 1999 to 2003, habitat patches and distribution of Elliot's pheasant were investigated in Kaihua county, Zhejiang province, China. The current status of habitat loss and fragmentation, and the effects of habitat patch attributes on population distribution and relative population density were analyzed. Furthermore, the Elliot's pheasant metapopulation in Kaihua county was constructed and analyzed. Also with metapopulation theory, a new method to evaluating average population dispersal distance between habitat patches was developed, and new conservation strategy on Elliot's pheasant was presented. The major results are as follows.
     1. A total of 284 Elliot's pheasant habitat patches in 1986 and 151 in 2000 were identified from the satellite image data using techniques of remote sensing and geographic information system. There had been lost 13309.74 ha habitat area and lengthened average nearest neighbor distance from 416.18 m to 673.93 m during 1986 to 2000, which made habitat fragmentation more seriously. Many small habitat patches had been removed and few local area had reforested, that made average habitat patches size increase from 162.11 ha in 1986 to 218.32 ha in 2000. The results of hierarchic network analysis showed that habitat patches were tighter in 1986 than in 2000 not only inter-clusters lever but also at intra-cluster lever.
     2. Using collecting molted feathers in line transects, a total of 52 habitat patches occupied by Elliot's pheasant were recorded in all 151 habitat patches in Kaihua county. The patch area, shape index, distance to nearest neighbor, proximity index, altitude, slope degree, slope aspect, vegetation index, distance to the nearest road, distance to the nearest village, and distance to the nearest river were selected as variables to describe each habitat patch, and the effects of those patch attributes on Elliot's pheasant were analyzed. The results t test showed that patch area, shape index, distance to nearest neighbor, and vegetation index significantly affect habitat patch occupancy. The predictable habitat patch occupancy of Elliot's pheasant was generated by binary logistic regression using all variables in a forward stepwise selection method. Here is the model: where: P(y_i=1) is the probability of being occupied in patch i, HA_i is area of patch i, PR_i is proximity index of patch i, and VIi is vegetation index of patch i.
     3. The number of molted feathers which could be calculated to express as relative local population size were collected with transaction line method, and the vegetation properties were surveyed in every one of 27 habitat patches in Gutian Mountain Nature Reserve and its vicinities. The vegetation properties of habitat patch, such as total cover, arbor cover, shrub cover, arbor height, shrub height, and vegetation type, were analyzed using principal component analysis to reduce data redundancy, and its PC1 present external ecological appearance and PC2 present shrub properties. In these attributes variables, such as PC1, PC2, area, elevation, slope degree, connectivity index, disturbance index, relative location, the patch area was the only variable that showed significant positive relationship to local relative population density in t test and x 2 test. The predictable local relative population density of Elliot's pheasant was generated by multiple variables general linear model procedure in a backward stepwise selection method. Here is the model: D_i = 0.852 + 0.078PA_i - 0.137PI_i - 0.006PD_i where: D_i is local relative population density in patch i, PA_i is area of patch i; PI_i is disturbance index in patch i.
     4. With estimated parameters (u=0.04, x=2,α=1, b=0.5, y=2), the Elliot's pheasant metapopulation in Kaihua county was constructed as incidence function metapopulation model. This metapopulation predicted 18.0% average patch occupancy in 100 years and its long time persistence. The results of parameters (α, b, and y) sensitivity analysis showed that metapopulation persistence was significantly affected withα, which is relative to the average population dispersal distance between habitat patches. Asαreduced to 0.67, the average patch occupancy would increase from 18.0% to 34.0% in 100 years. No significant effects on metapopulation persistence took place if center-to-center nearest neighbor distance replaced with the border-to-border nearest neighbor distance in metapopulation model. When regional stochasticity enclosed in model, metapopulation persistence would decrease. If there had one of fifty years encounter regional stochasticity, the average patch occupancy would decrease from 18.0% to 8.0% in 100 years.
     5. Based on metapopulation principles, using spatial hierarchic cluster analysis for patchy system, the longest population dispersal distance between habitat patches is the longest nearest neighbor distance of an occupied habitat patch, the frequenty population dispersal distance between habitat patches is the longest nearest neighbor distance in a cluster with all occupied habitat patches, the average population dispersal distance between habitat patches is average value of the longest population dispersal distance and the frequenty population dispersal distance. This average population dispersal distance estimate method had been carried out software program using GIS Active X Control. With the help of some metapopulation examples, the average population dispersal distance estimated out of this program could contrast with the known value, which could validate its practicability and limitation.
     6. Four typical habitat patch system were chosen, and made every patch system to encounter four suppositional patch change scenario, in which the first was to lose 50% patch area, the second was to recover 20% patch area, the third was to increase 50% distance to nearest neighbor, and the fourth was to decrease 20% distance to nearest neighbor. The Elliot's pheasant metapopulation persistence in each scenario was analyzed. And according analysis results, the major principles of Elliot's pheasant conservation are: the precedence protection action should manage the whole big area with complicated habitat patch system, and recover habitat area was very important action for habitat patch system in relative isolated local region.
引文
[1] Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C., Diaz, S. Consequences of changing biodiversity. Nature. 2000, 405.
    [2] Jablonski, D. Extinction: past and present. Nature. 2004, 427: 589.
    [3] homas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., B.F.N.Erasmus, Siqueira, M. F. d., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Jaarsveld, A. S. v., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., Williams., S, E. Extinction risk from climate change. Nature. 2004, 427: 145-148.
    [4] Barbault, R., Sastraprajda, S. Generation, Maintenance and Loss of Biodiversity. Cambridge: Cambridge University Press, 1995.
    [5] Pimm, S. L., Russell, G. J., Gittleman, J. L., Brooks, T. M. The future of biodiversity. Science. 1995, 269: 347-350.
    [6] Pimm, S. L., Raven, P. Extinction by numbers. Nature. 2000, 403: 843-845.
    [7] Sala, O. E., Chapin II., F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. E, Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M., Wall, D. H. Global biodiversity scenarios for the year 2100. Science. 2000, 287: 1770-1774.
    [8] Jenkins, M. Prospects for biodiversity. Science. 2003, 302: 1175-1177.
    [9] Fahrig, L. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics. 2003, 34: 487-515.
    [10] Wilcox, B. A., Murphy, D. D. Conservation strategy-the effects of fragmentation on extinction. American Naturalist. 1985, 125: 879-887.
    [11] Settele, J., Margules, C. R., Poschlod, P., Henle, K. Species Survival in Fragmanted Landscapes. Netherlands: Kluwer Academic Publishers, 1996.
    [12] Whitmore, T. C. Tropic forest disturbance, disappearance, and species loss. Chicago, USA: University of Chicago Press, 1997.
    [13] Casagrandi, R., Gatto, M. A mesoscale approach to extinction risk in fragmented habitats. Nature 1999, 400: 560-562.
    [14] Soule, M. E., Orians, G. H. Conservation biology: Research priorities for the next decade. Washington, USA: Island Press, 2001.
    [15] Gaston, K. J., Blackburn, T. M., Goldewijk, K. K. Habitat conversion and global avian biodiversity loss. Proceedings of the Royal Society B: Biological Sciences. 2003, 270 1293-1300
    [16] Smith, J. N. M., Hellmann, J. J. Population persistence in fragmentation landscape. Trends in Ecology and Evolution 2002, 17: 397-399.
    [17] Hanski, I., Ovaskainen, O. The metapopulation capacity of a fragmented landscape. Nature 2000, Nature 755-758.
    [18] Thomas, C. D., Bodsworth, E, J., Wilson, R. J., Simmons, A. D., Davies, Z. G., Musche, M., Conradt, L. Ecological and evolutionary processes at expanding range margins, nature. 2000, 411: 577-581.
    [19] Johst, K., Brandl, R., Eber, S. Metapopulation persistence in dynamic landscapes: the role of dispersal distance. Oikos 2002, 98: 263-270.
    [20] Lens, L., Dongen, S. V., Norris, K., Githiru, M., Matthysen, E. Avian persistence in fragmented rainforest. Science 2002, 298: 1236-1238.
    [21] Olff, H., Ritchie., M. E. Fragmented nature: consequences for biodiversity. Landscape and Urban Planning. 2002, 58: 83-92.
    [22] Taberlet, P., Cheddadi, R. Quaternary refugia and persistence ofbiodiversity. Science. 2002, 297: 2009-2010.
    [23] Wahlberg, N., Moilanen, A., Hanski, L. Predicting the occurrence of endangered species in fragmented landscapes. Science. 1996, 273: 1536-1538.
    [24] Dooley, J. J. L., Bowers, M. A. Demographic responses to habitat fragmentation: experimental tests at the landscape and patch scale. Ecology. 1998, 79: 237-248.
    [25] Cale, P. G. The influence of social behaviour, dispersal and landscape fragmentation on population structure in a sedentary bird. Biological Conservation. 2003, 109: 237-248.
    [26] Soule, M. E., Wilcox, B. A. Conservation biology: An evolutionary-ecological approach. Sunderland Massachusetts, USA: Sinauer Associates Inc, Publisher, 1980.
    [27] Soule, M. E. Conservation biology: The science of scarcity and diversity. Sunderland, Massachusetts, USA: Sinauer Associates Inc. Publishers, 1986.
    [28] Wiens, J. A. Habitat fragmentation, Island v landscape perspectives on bird conservation. Ibis. 1995, 137: 97-104.
    [29] Gause, G. F. The struggle for existence. Baltimore: Williams and Wilkins, 1935.
    [30] Huffaker, C. B. Experimental studies on predation:dispersion factors and predator-prey oscillations. Hilgardia. 1958: 343-383.
    [31] Preston, F. W, The canonical distribution of commonness and rarity: part Ⅰ.. Ecology 1962, 43: 185-215.
    [32] Preston, F. W. The canonical distribution of commonness and rarity: part Ⅱ.. Ecology 1962, 43: 410-432.
    [33] Macarthur, R. H., Wltson, E. O. The theory of island biogeography.. Princeton, New Jersey: Princeton Univ. Press, 1967.
    [34] MacArchur, R. H., Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution. 1963, 17: 373-387.
    [35] Levins, R. Some demographic and genetic consequences of environmental heteorgeneity for biological. control. Bulletin of the Entomological Society of America. 1969, 15: 237-240.
    [36] Levins, R. Extinction. Providence, Rhode Island: American Mathematical Society, 1970.
    [37] Hanski, I., Moilanen, A., Gyllenberg, M. Minimum viable metapopulation size. The American naturalist. 1996, 147: 527-421.
    [38] Harrison, S., Taylor, A. D. Empirical evidence for metapopulation dynamics, in: Hanski, I. and Gilpin, M. E., editors. Metapopulation Dynamics: Ecology, Genetics and Evolution, San Diego, California, USA: Academic Press, Inc.; 1997.
    [39] Grimm, V., Lorek, H., Finke, J., Koester, F., Malachinski, M., Sonnenschein, M., Moilanen, A., Storch, I., Wissel, C., Frank, K. META-X: A generic software for metapopulation viability analysis. Biodiversity and Conservation. 2004, 13: 165-188.
    [40] Matter, S. F., Hansk, I., Gyllenberg, M. A test of the metapopulation model of the species-area relationship. Journal of Biogeography. 2002, 29: 977-983.
    [41] Biedermann, R. Metapopulation dynamics of the froghopper Neophilaenus albipennis (F., 1798) (Homoptera, Cercopidae)-what is the minimum viable metapopulation size? Journal of Insect Conservation. 2000, 4:99-107.
    [42] Jemery, R. D., Possingham, H. P. A Stochastic Metapopulation Model with Variability in Patch Size and Position. Theoretical Population Biology 1995, 48: 333-360.
    [43] Troll, K. Luftbildplan und okologische Bodenforschung. Berlin Nr: Zeitschrift der Gesellschaft fur Erdkunde zu, 1939.
    [44] 傅伯杰,陈利顶,马克明.景观生态学原理及应用.北京:科学出版社,2001.
    [45] 邬建国.景观生态学中的十大研究论题.生态学报.2004,24:2074-2076.
    [46] 杨彪.景观生态学原理与自然保护区设计.林业调查规划.2001,26:51-53.
    [47] Tilman, D., Kareiva, P. Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions. Princeton, New Jersey, USA: Princeton University Press, 1997.
    [48] Bissonette, J. A. Scale-sensitive ecological properties: historical context, current meaning. New York, New York, USA.: Springer-Verlag, 1997.
    [49] 徐基良,张正旺,郑光美。鸟类栖息地片段化研究的现状.生物学通报.200,39:7-10.
    [50] 邬建国.景观生态学概念与理论.生态学杂志.2000,19:42-52.
    [51] Hunter, M. D. Landscape structure, habitat fragmentation, and the ecology of insects. Agricultrural and forest entomology. 2002, 4: 159-166.
    [52] Debinski, D. M., Holt., R. D. A survey and overview of habitatfragmentation experiments. Conservation Biology 2000, 14: 342-355.
    [53] Bjornstad, O. N., Andreassen, H. P., Ims, R. A. Effects of habitat patchiness and connectivity on the spatialecology of the root vole Microtus oeconomus. Journal of Animal Ecology. 1998, 67: 127-140.
    [54] Sole, R. V., Alonso, D., Saldana, J. Habitat fragmentation and biodiversity collapse in neutral communities. Ecological Complexity. 2004, 1: 65-75.
    [55] Neuhaser, C. Mathematical Challenges in Spatial Ecology. Notices of the American Mathematical Society. 2001, 48: 1304-1314.
    [56] Swinhoe, R. Descriptions of two new pheasant and a new Garnrulax from Ningbo, China. London: Proc.Zool.Soc. 1872.
    [57] 陈怡平,谢祖培.白颈长尾雉的人工繁殖.动物园.1990,1:29-30.
    [58] 郑作新.中国动物志鸟纲:鸡形目.北京:科学出版社,1978.
    [59] Beebe,W. Pheasants,their lives and homes.New York:Doubleday,Page & Co./New York Zoological Society 1926.
    [60] 李炳华.皖南的白颈长尾雉.野生动物.1985,27:18-20.
    [61] 龙迪宗.白颈长尾雉的生态.野生动物.1985,23:24-25.
    [62] 陈谦.白颈长尾雉在人工饲养条件下繁殖初探.动物园.1988,1:31-33.
    [63] 丁平.白颈长尾雉的生态与保护研究:[博士论文].生物系,北京师范大学,1998.
    [64] 丁平,李智,姜仕仁,诸葛阳.白颈长尾雉栖息地小区利用度影响因子研究.浙江大学学报(理学版). 2002.29:103-108.
    [65] 丁平,杨月伟,李智,姜仕仁,诸葛阳.白颈长尾雉栖息地的植被特征研究.浙江大学学报(理学版). 2001,28:557-562.
    [66] 丁平,杨月伟,李智,姜仕仁,诸葛阳.白颈长尾雉的夜宿地选择研究.浙江大学学报(理学版).2002,29:564-568.
    [67] 丁平,诸葛阳.白颈长尾雉(Syrmaticus ellicti Swinhoe)的生态研究.生态学报.1988,8:44-50.
    [68] 丁平,诸葛阳.白颈长尾雉.动物学杂志.1989,24:39-42.
    [69] 丁平,诸葛阳,石斌山.浙江西部山区珍稀雉类生态学研究.杭州大学学报(自然科学版).1989,16:302-309.
    [70] 丁平,诸葛阳,张词祖.白颈长尾雉繁殖生态的研究.动物学研究.1990,11:139-153.
    [71] 石建斌,郑光美.白颈长尾雉的活动区.北京师范大学学报(自然科学版).1995,31:513-519.
    [72] 石建斌,郑光美.白颈长尾雉栖息地的季节变化.动物学研究.1997,18:275-283.
    [73] 杨月伟,丁平,姜仕仁,诸葛阳.针阔混交林内白颈长尾雉栖息地利用的影响因子研究.动物学报.1999,45:279-286.
    [74] 丁平,杨月伟,梁伟,姜仕仁,诸葛阳.贵州雷公山自然保护区白颈长尾雉栖息地研究.动物学报.1996,42:62-68.
    [75] 丁平,姜仕仁,诸葛阳.浙江西部白颈长尾雉栖息地片断化研究.动物学研究.2000,21:65-69.
    [76] 彭岩波,丁平.白颈长尾雉春季扩散活动的影响因子.动物学研究.2005,26:373-337.
    [77] Jiang,P P,Fang,S.G,Ding,P.An application of control region sequence as a matrilineage marker for Elliot's Pheasant of a zoo population.Animal Biotechnology.2005,16:1-5.
    [78] Jiang,P P,Lang,Q.L.,Fang,S.G,Ding,P.,Chen,L.M.A genetic diversity comparison between captive individuals and wild individuals of Elliot's Pheasant(Syrmaticus ellioti)using mitochondrial DNA.J Zhejiang Univ.SCI.2005,6B:413-417.
    [79] 郑光姜.王歧山.中国濒危动物红皮书-鸟类卷.北京:科学出版社,1998.
    [80] Fuller, A., Garson, P. J., Status survey and conservation action plan 2000-2004 pheasants, Technical Report 2-8317-0539-8, IUCN, Gland, Switzerland and Cambridge, UK and the World Pheasant Association, Reading, UK: 2000.
    [81] IUCN, IUCN Red List of Threatened Species., Technical 27 January 2005, 2004.
    [82] 周霞,张林艳,叶万辉.生态空间理论及其在生物入侵研究中的应用.地球科学进展.2002,17:588-595.
    [83] Austin,M.P.Spatial prediction of species distribution:an interface between ecological theory and statistical modelling.Ecological Modelling.2002,157:101-118.
    [84] 丁平.长尾雉的地理分布及其系统关系的初步分析.北京师范大学学报(自然科学版).1998,2:121.131.
    [85] 诸葛阳,丁平.浙江省珍稀雉类的分布生境和资源保护.野生动物.1988,44:3-4.
    [86] 开化县志编纂委员会.开化县志.杭州:浙江人民出版社,1988.
    [87] 刘鹏,陈立人.浙江开化森林植被的区系特点及开发.亚热带植被通迅.1998,27:17-22.
    [88] 张荣祖.中国自然地理-动物地理.北京:科学出版社,1979.
    [89] 沈钧.白颈长尾雉的饲育.动物学杂志。1988a,23:37-38.
    [90] 黄松,方秀峰,黄接棠.白颈长尾雉(Syrmaticus ellioti)的人工繁殖.安徽大学学报(自然科学版).2003,
    [91] Morrison, M. L., Marcot, B. G., Mannan, R. W. Wildlife-habitat relations: concepts and applications. Madison, WI.: The University of Wisconsin Press, 1992.
    [92] 万冬梅.大鸨繁殖期栖息地选择与濒危机制的研究:[博士论文].东北师范大学,2002.
    [93] Ragsdale, G. H. Change of Winter Habitat in the Grass Finch. Auk. 1887, 4: 259-260.
    [94] Sheppard, D. H., Klopfer, P. H., Oelke, H. Habitat selection: differences in stereotypy between insular and continental birds. Wilson Bulletin. 1968, 80: 452-457.
    [95] Pagen, R. W., Thompson Ⅲ, F. R., Burhans, D. E. Breeding and Post-Breeding Habitat Use by Forest Migrant Songbirds in the Missouri Ozarks. Condor. 2000, 102: 738-747.
    [96] Illera, J. C. Habitat selection by the Canary Islands stonechat (Saxicola dacotiae) (Meade-Waldo, 1889) in Fuerteventura Island: a two-tier habitat approach with implications for its conservation. Biological Conservation. 2001, 97: 339-345.
    [97] Conner, R. N., Rudolph, D. C. Forest habitat loss, fragmentation, and red-cockaded woodpecker populations. Wilson Bulletin. 1991, 103: 446-457.
    [98] Villard, M. A., Martin, P. R., Drummond, C. G. Habitat fragmentation and pairing success in the Ovenbird (Seiurus aurocapillus). Auk. 1993, 110: 759-768.
    [99] Burke, D. M., Nol, E. Influence of food abundance, nest-site habitat, and forest fragmentation on breeding Ovenbirds. Auk. 1998, 115: 96-104.
    [100] Stephens, S. E., Koons, D. N., Rotella, J. J., Willey, D. W. Effects of habitat fragmentation on avian nesting success: a review of the evidence at multiple spatial scales. Biological Conservation. 2004, 15:101-110.
    [101] 吴明川.广西雉类的生态及分布.野生动物.1984,22:12-14.
    [102] 汤国安,赵牡丹.地理信息系统.北京:科学出版社,2000.
    [103] Witham, J. W., Kimball, A. J. Use of a geographic information system to facilitate analysis of spot-mapping data. Journal of Field Ornithology. 1996, 67: 367-375.
    [104] Hunter, J. E., Gutierrez, R. J., B., F. A. Habitat Configuration Around Spotted Owl Sites in Northwestern California. Condor. 1995, 97: 684-693.
    [105] Koenen, M. T., Leslie, J. D. M., Gregory, M. Habitat changes and success of artificial nests on an alkaline flat. Wilson Bulletin. 1996, 108: 292-301.
    [106] 赵淑清,方精云,陈安平,雷刚.洞庭湖保护区1989~1998年水禽栖息地动态研究.自然资源学报.2003.18:726-733.
    [107] 李欣海,李典谟,马志军,路宝忠,翟天庆.朱鹮栖息地质量的初步评价.生物多样性.1999,7:161-169.
    [108] Brandt, C. A., Parrish, J. K., Hodges, C. N. Predictive approaches to habitat quantification: Dark-romped petrels on Haleakala, Maui. Auk. 1995, 112: 571-579.
    [109] Sykes, P. W.,.H., C. M. Winter habitat of Kirtland's Warbler: an endangered Nearctic/Neotropical migrant. Wilson Bulletin. 1993, 110: 244-261.
    [110] 李文军,王子健.盐城自然保护区的缓冲带设计—以丹顶鹤为目标种分析.应用生态学报.2000,11:843.847.
    [111] 屈延华,雷富民,尹祚华.雪雀属鸟类栖息地在中国的分布.动物学报.2002,48:471-479.
    [112] Wilson, U. W., Atkinson, J. B. Black brant winter and apring-staging use at two Washington coastal areas in relation to eelgrass abundance. Condor. 1995, 97: 91-98.
    [113] Haney, J. C. Wintering phalaropes off the southeastern United States: application of remote sensing imagery to seabird habitat analysis at oceanic fronts. Journal of Field Ornithology. 1985, 56:321-333.
    [114] Lloyd, P., Palmer, A. R. Abiotic factors as predictors of distribution in southern African Bulbuls. Auk. 1998,115: 404-411.
    [115] 王金亮,陈姚.3s技术在野生动物生境研究中的应用.地理与地理信息科学.2004:44-47.
    [116] Russell, K. R., Mizrahi, D. S., Gauthreaux, S. A. Large-scale mapping of Purple Martin pre-migratory roosts using WSR-88D weather surveillance radar. Journal of Field Ornithology. 1998, 69:316-325.
    [117] Farmer, A. H., Parent, A. H. Effects of the Landscape on Shorebird Movements at Spring Migration Stopovers. Condor. 1997, 99: 698-707.
    [118] Gustafson, E. J., Parker, G. R. Evaluating spatial pattern of wildlife habitat: a case study of the Wild Turkey (Meleagris gallopavo). American Midland Naturalist 1994, 131: 24-33.
    [119] McGarigal, K., Cushman, S. A., Neel, M. C., Ene, E., FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps, Technical University of Massachusetts, Amherst: Massachusetts, Amherst, 2002.
    [120] Schmielgelow, F. K. A., Monkkonen, M. Habitat loss and fragmentation in dynamic landscapes: avian perspectives from the boreal forest. Ecological Applications. 2002, 12: 375-389.
    [121] Andren, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportious of suitable habitat: A review. Oikos. 1994, 71: 335-366.
    [122] Fahrig, L. Relative effects of habitat and fragmentation on population extinction. Journal of Wildlife Management. 1997, 61 : 603-610.
    [123] Andrew, S., Gunnar, J. B., Gordon, L. Habitat loss: ecological, evolutionary and genetic consequences. Trends in Ecology & Evolution. 2000, 15: 132-134.
    [124] 张正旺,丁长青,丁平,郑光美.中国鸡形目鸟类的现状与保护对策.生物多样性.2003,11:414-421.
    [125] 韩联宪,周伟.中国鸡形目鸟类研究保护及持续利用探讨.北京:中国林业出版社,2000.
    [126] 徐小静,许琳,郑华福,黄凤生,钱孝炎,孙敏华,沈建军.荒山定向经营技术研究.浙江林业科技. 2004.24:8-11.
    [127] 高瑞莲,昊健平.3s技术在生物多样性研究中的应用.遥感技术与应用.2000,15:205-209.
    [128] 天兵.美国的照相侦察卫星.中国航天.2002,8:14-17.
    [129] 沈琪,马金辉.高分辨率遥感数据在现代城市规划中的应用.甘肃科学学报.2006,18:44-48.
    [130] 王净,江刚武.GIS在数字地球时代的新发展.地理空间信息.2005,4:43-44.
    [131] 张爱兵,谭声江,陈建,李典谟.空间分子生态学—分子生态学与空间生态学相结合的新领域.生态学报.2002,752-769.
    [132] Noss, R., Cooperrider, A. Saving nature's legacy. Washington, DC: Island Press, 1994.
    [133] Forman, R. T., Galli, A. E., Leck, C. F. Forest size and avian diversity in New Jersey woodlots with someland-use implications. Oecologia. 1976, 26: 1-8.
    [134] Kruess, A., Tscharntke, T. Species richness and parasitism in a fragmented landscape: experiments and field studies with insects on Vicia sepium. Oecologia. 2000, 122: 129-137.
    [135] Russell, R. E., K., S. R., Feng, Z. Population consequences of movement decisions in a patchy landscape. OIKOS. 2003, 103: 142-152.
    [136] Hunt, P. D. Evidence from a landscape lopulation model of the importance of early successional habitat to the American redstart. Conservation Biology. 1998, 12: 1377-1389.
    [137] Cihlar, J., St Laurent, L., Dyer, J. A. The relation between normalized differences vegetation index and ecological variables. Remote Sensing of Environment. 1991, 35: 279-298.
    [138] Gould, W. Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecological Application. 2000, 10:1861-1870.
    [139] Jensen, J. R. Introductory digital image processing: a remote sensing perspective. New Jersey, USA: Prentice Hall, Upper Saddle River, 1996.
    [140] Viedma, O., Melia, J., Segarra, D., Garcia, H. J. Modeling rates of ecosystem recovery after fires by using Landsat TM data. Remote Sensing of Environment. 1997. 61: 383-398.
    [141] 沈钧.我国特产的长尾雉.生物学教学.1988b.29:41-41.
    [142] Lu, X., Zheng, G. M. Habitat selection and use by a bybrid of white and Tibetan eared pheasants in eastern Tibet during th post-incubation period. Can J. Zool. 2001, 79:319-324.
    [143] Hosmer, D. W., Lemeshow, S. Applied Logistic Regression. New York: John Wiley & Sons, Inc., 1989.
    [144] Naugle, D. E., Higgins, K. F., Estey, M. E., Johnson, R. R., Nusser, S. M. Local and landscape-level factors influencing black tern habitat suitability. Journal of Wildlife Management. 1999, 64: 253-260.
    [145] Bender, D. J., Contreras, T. A., L., F. Habitat loss and population decline: a meta-analysis of the patch size effect, ecology. 1998, 79: 517-533.
    [146] Hanski, I. Metapopulation ecology. Oxford: Oxford University Press, 1999.
    [147] Hanski, I., Gilpin, M. E. Metapopulation biology: ecology, genetics, and evolution. San Diego: Academic Press, 1997.
    [148] Allen, A. W., Habitat suitability index models: Gray partridge, Technical Fish and Wildlife Service: Washington, DC, 1984.
    [149] Jasmer, G. E. Ring-necked pheasant(phasianus colchicus) habitat management. Biology technical note. 2001, 67: 1-12.
    [150] East, R., Williams, G. R. Island biogeography and the conservation of New Zealand's indigenous forest-dwelling avifauna. New Zealand Journal of Ecology. 1984, 7: 27-35.
    [151] 韩兴国.岛屿生物地理学理论与生物多样性保护.北京:中国科学技术出版社,1994.
    [152] 桑卫国,马克平,郑豫.片段化生境的特点及对生态系统过程的影响.北京:中国林业出版社,1998.
    [153] Gustafson, E. J., Parker, G. R. Relationships between landcover proportion and indices of landscape spatial pattern. Landscape Ecology. 1992, 7:101-110.
    [154] Laing, K. K., Raveling, D. G. Habitat and food selection by Emperor Geese goslings. Condor. 1993, 95: 879-888.
    [155] Jefferies, R. L. Vegetational mosaics, plant-animal interactions and resources for plant growth. London: Chapman & Hall, 1988.
    [156] Wang, J., Price, K. P., Rich, P. M., Kettle, W. D. Relations between NDVI and Tree Productivity in the Central Great Plains. International Journal of Remote Sensing. 2004, 25:3127-3138.
    [157] Aurambout, J., Endress, A., Deal, B. A Spatial Model to Estimate Habitat Fragmentation and Its Consequences on Long-Term Persistence of Animal Populations. Environmental Monitoring and Assessment,. 2005, 109: 199-225.
    [158] Boiger, D. T., Alberts, A. C., Soulr, M., E. Occurrence patterns of bird species in habitat fragments: sampling, extinction, and nested species subsets. American Naturalist. 1991, 137: 155-166.
    [159] Harrison, S. Local extinction in a metapopulation context: an empirical evaluation. Biological Journal. of the Linnean Society. 1991, 42: 73-88.
    [160] Hobbs, R. J., Saunders, D. A. Reintegrating fragmented landscapes: towards sustainable production and nature conservation. New York: Springer, 1993.
    [161] Bennett, A. F. Habitat corridors and the conservation of small mammals in a fragmented forest. Landscape Ecology. 1990, 4: 109-122.
    [162] Diffendorfer, J. E., Gaines, M. S., Holt, R. D. Habitat fragmentation and movements of three small mammals (Sigmodon, Microtus, Peromyscus). Ecology. 1995, 76: 827-839.
    [163] Baguette, M., Mennechez, G., Petit, S., Schtickzelle, N. Effect of habitat fragmentation on dispersal in the butterfly Proclossiana eunomia. Comptes Rendus Biologies. 2003, 326:200-209
    [164] Frankham, R. Conservation genetics Annual Review of Genetics. 1995, 29: 305-332.
    [165] Lienert, J., Diemer, M., Schmid, B. Effects of habitat fragmentation on population structure and fitness components of the wetland specialist Swertia perennis L. (Gentianaceae). Basic and Applied Ecology. 2002, 3: 101-114.
    [166] Wissel, C., Stocker, S. Extinction of populations by random influences. Theoretical Population Biology. 1991, 39: 315-328.
    [167] Da Fonseca, G. A. B., Robinson, J. G. Forest size and structure: competitive and predatory effects on small mammal communities. Biological Conservation. 1990, 53: 265-294.
    [168] Santos, T., Tellerla, J. L. Edge effects on nest predation in Mediterranean fragmented forests. Biological Conservation. 1992, 60: 1-6.
    [169] Luck, G. W. Differences in the reproductive success and survival of the rufous treecreeper (Climacteris rufa) between a fragmented and unfragmented landscape. Biological Conservation. 2003, 109: 1-14
    [170] MacNally, R., Bennett, A. F. Species-specific predictions of the impact of habitat fragmentation: Local extinction of birds in the box-ironbark forests of central Victoria, Australia. Biological Conservation. 1997, 82: 147-155.
    [171] Bowers, M. A., Matter, S. F. Landscapeecology of mammals: relationships between densityand patch size. Journal of Mammalogy. 1997, 78: 999-1013.
    [172] Tischendorf, L., Grez, A., Zaviezo, T., Fahrig, L. Mechanisms affecting population density in fragmented habitat. Ecology and Society. 2005, 10: 7.
    [173] 陈利生,吴和平,余泽平,陈琳,左文波.江西省官山自然保护区白颈长尾雉资源调查.动物学杂志.2004,39:48-45.
    [174] Williamson, M. The MacArthur and Wilson theory today: true but trivial. Journal of Biogeography. 1989, 16: 3-4.
    [175] Gyllenberg, M., Hanski, I. Habitat deterioration, habitat destruction, and metapopulation persistence in a heterogenous landscape. Theoretical Population Biology. 1997, 52:198-215.
    [176] Kendall, B. E. Estimating the magnitude of environmental stochasticity in survivorship data. Ecological Application. 1998, 8: 84-193.
    [177] Donovan, T. M., Goetz, J. E. Exploring demographic and environmental stochasticity with spreadsheets. ESA Bulletin. 1999, 80: 235-239.
    [178] Hanski, I., Simberloff, D. The metapopulation approach, its history, conceptual domain, and application to conservation, in: Hanski, I. and Gilpin, M. E., editors. Metapopulation Biology: Ecology, Genetics and Evolution, San Diego, California, USA: Academic Press, Inc.; 1997.
    [179] 张大勇,雷光春,Hanski,I.集合种群动态:理论与应用.生物多样性.1999,7:81-90
    [180] Hui, C., Zhang, F., Han, X. Z., Li, Z. Z. Cooperation evolution and self-regulation dynamics in metapopulation: Stage-equilibrium hypothesis. Ecological Modelling. 2005, 184:175-418.
    [181] Tilman, D., May, R. M., Lehman, C. L., Nowak, M. A. Habitat destruction and the extinction debt. Nature. 1994, 371: 65-66.
    [182] 尚玉昌.普通生态学.北京:北京大学出版社,2002.
    [183] 孙儒泳,李博.普通生态学.北京:高等教育出版社,1993.
    [184] Solomon, M. E. Population Dynamics. London: Edward Arnold, 1976.
    [185] Gilpin, M., Hanski, I. Metapopulation dynamics: empirical and theoretical investigations. London: Academic Press, 1991.
    [186] Diamond, J. M. The island dilemma: Lessons of modern biogeographic studies for the design of natural reserves. Biological Conservation. 1975, 7: 129-146.
    [187] Moilanen, A., Smith, A. T., Hanski, I. Long-term dynamics in a metapopulation of the American pika. American Naturalist 1998, 152: 530-542.
    [188] Moilanen, A. SPOMSIM: software for stochastic patch occupancy models of metapopulation dynamics. Ecological Modelling. Ecological Modelling. 2004, 179: 533-550.
    [189] Hanski, I., Alho, J., Moilanen, A. Estimating the parameters of migration and survival for individuals in metapopulations, ecology. 2000, 81: 239-251.
    [190] Verheyen, K., Vellend, M., Van Calster, H., Peterken, G, Hermy, M. Metapopulation dynamics in changing landscapes: a new spatially realistic model for forest plants. Ecology. 2004, 85:3302-3312.
    [191] Martin, K., Stacey, P. B., Braun, C. E. Recruitment, dispersal, and demographic rescue in spatially-structured white-tailed Ptarmigan populations. Condor. 2000, 102:503-516.
    [192] Dewoody, Y. D., Feng, Z., Swihart, R. K. Merging Spatial and Temporal Structure within a Metapopulation Model. American Naturalist. 2005, 166: 42-55.
    [193] Hanski, I. Metapopulation theory, its use and misuse. Basic and Applied Ecology. 2004, 5: 225-229.
    [194] Hanski, I., Ovaskainen, O. Metapopulation theory for fragmentedland scapes. Theoretical Population Biology. 2003, 64:119-127.
    [195] Tyre, A. J., Possingham, H. R, Niejalke, D. P. Detecting environmental impacts on metapopulations of mound spring invertebrates assessing an incidence function model. Environment International. 2001, 27: 225-229.
    [196] Wahlberg, N., Klemetti, T., Hanski, I. Dynamic populations in a dynamic landscape: the metapopulation structure of the marsh fritillary butterfly. Ecography. 2002, 25: 224-232.
    [197] Hels, T., Nachman, G. Simulating viability of a spadefoot toad Pelobates fuscus metapopulation in a landscape fragmented by a road. Ecography. 2002, 25: 730-744.
    [198] Baguette, M. The classical metapopulation theory and the real, natural world: a critical appraisal. Basic and Applied Ecology. 2004, 5:213-224.
    [199] Peltonen, A., Hanski, I. Patterns of island occupancy explained by colonization and extinction rates by shrews, ecology. 1991, 72: 1698-1708.
    [200] Hansk, I. Metapopulation theory, its use and misuse. Basic and Applied Ecology. 2004, 5: 225-229.
    [201] Hokit, D. G., Stith, B. M., Branch, L. C. Comparison of two types of metapopulation models in real and artificial landscapes. Conservation Biology. 2000, 15:1102-1113.
    [202] 张育新,马克明,牛树奎.异质种群动态模型:破碎化景观动态模拟的新途径.生态学报.2003,23:1877-1890.
    [203] Thomas, C. D., Bodsworth, E. J., Wilson, R. J., Simmons, A. D., Davies, Z. G., Musche, M., Conradt, L. Ecological and evolutionary processes at expanding range margins, nature. 2001,411:577-581.
    [204] 陶毅,王祖望.异质种群动态.杭州:浙江科学技术出版社出版,1998.
    [205] 肖治术.扩散生态学——一门新的学科.生物多样性通讯.2003,29:18-22.
    [206] Dallimer, M., Blackburn, C., Jones, P. J., Pemberton, J. M. Genetic evidence for male-biased dispersal in the red-billed quelea Quelea quele. Molecular Ecology. 2002, 11: 529-533.
    [207] Prugnolle, F., de Meeus, T. Inferring sex-biased dispersal frompopulation genetic tools: a review. Heredity. 2002, 88: 161-165.
    [208] 马祖飞,李典谟.种群统计随机性和环境随机性对种群绝灭的影响.生态学报.2003,23:2702-2710.
    [209] Quinn, J. E, Hastings, A. Extinction in subdivided habitats. Conservation Biology. 1987, 1: 198-208.
    [210] 赵淑清,方精云,雷光春.物种保护的理论基础—从岛屿生物地理学理论到集合种群理论.生态学报. 2001.21:1171-1180.
    [211] Baars, M. A., Dijk Van, T. H. Population dynamics of two carabid beetles at a Dutch heathland. I. Subpopulation fluctuations in relation to weather and dispersal. Journal of Animal Ecology. 1984, 53: 375-388.
    [212] Nathan, R. The challenges of studying dispersal. Trends in Ecology & Evolution. 2001, 16: 481-483.
    [213] Hamilton, W. D., May, R. M. Dispersal in stable habitats. Nature. 1977, 269: 578-581.
    [214] Dieckmann, U., O'Hara, B., Weisser, W. The evolutionary ecology of dispersal Trends in Ecology & Evolution. 1999, 14: 88-90.
    [215] Dobson, F. S. Why did I leave home? Trends in Ecology & Evolution. 2001, 16: 656.
    [216] Nathan, R. Seeking the secrets of dispersal. Trends in Ecology & Evolution. 2003, 18: 275-276.
    [217] Eriksson, O. Dispersal: from bacteria to vertebrates. Global ecology biogeography. 2003, 12: 261-264.
    [218] Bullock, J. M., Kenwood, R. E., Hails, R. S. Dispersal ecology, in., Oxford: Blackwell Science; 2002.
    [219] Ferriere, R., Belthoff, J. R., Olivieri, I. Evolving dispersal: where to go next? Trends in Ecology & Evolution. 2000, 15: 5-7.
    [220] Wiens, J. A. The landscape context of dispersal. Oxford: Oxford University Press, 2001.
    [221] Walters, R. J. Dispersal behavior: an Ornithological frontier. Condor. 2000, 102: 479-481.
    [222] Dobson, F. S. Competition for mates and predominant juvenile male dispersal in mammals. Animal Behaviour. 1982, 30:1183-1192.
    [223] Walters, J. R., Hansen, W. K., Carter, J. H. Long-distance dispersal of an adult Red-cockaded Woodpecker. Wilson Bulletin. 1988, 100: 494-496.
    [224] Clobert, J., Danchin, E., Dhondt, A. A. Dispersal. Oxford: Oxford University Press, 2001.
    [225] Greenwood, R J., Harvey, P. H. The natal and breeding dispersal of birds. Annual Review of Ecology and Systematics. 1982, 13: 1-21.
    [226] Hansson, B., Bensch, S., Hasselquist, D., Nielsen, B. Restricted dispersal in a long-distance migrant bird with patchy distribution, the great reed warble. Oecologia. 2002, 130:536-542
    [227] Mφller, A. P., Erritzee. Dispersal, vaccination and regression of immune defence organs. Ecology Letters. 2001,4: 1-7.
    [228] Johnson, M. L., Gaines, M. S. Evolution of dispersal: theoretical model and empirical tests using birds and mammals. Annual Review of Ecology and Systematics. 1990, 21: 449-480.
    [229] Drilling, N. E., Thompson, C. F. Natal and breeding dispersal in house wrens (Troglodytes aedon).. Auk. 1988, 105: 342-352.
    [230] Kareiva, P. Population dynamics in spatially complex environments: theory and data. Phil. Trans. Soc. Lond. 1990, B330: 175-190.
    [231] Kareiva, P. Assessing the data requirements of spatially explicit dispersal models. Conservation Biology. 1997, 11: 1298-1306.
    [232] Moilanen, A. Single-species dynamic site selection. Ecological Applications. 2002, 12:913-926.
    [233] Moilanen, A. Patch occupancy models ofmetapopulation dynamics: efficient parameter estimation using implicit statistical inference. Ecology. 1998, 80:1031-1043.
    [234] May, R. M. Complexity and Stability in Model Ecosystems. Princeton: Princeton University Press, 1973.
    [235] 李义明.种群生存力分析准确性和保护应用.生物多样性.2003,11:340-350.
    [236] Coulson, T., Albon, S. D., Guinness, F. E., Pemberton, J., Clutton-Brock, T. H. Population substructure, local density, and calfwinter survival in red deer. Ecology. 1997, 78: 852-863.
    [237] WASER, P. M., BUSCH, J. D., McCORMICK, C. R., DeWOODY, J. A. Parentage analysis detects cryptic precapture dispersal in a philopatric rodent. Molecular Ecology. 2006, 15:1929-1937.
    [238] Ridley, H. N. The dispersal of plants throughout the world. Kentucky, USA: L. Reeve, Ashford, 1930.
    [239] Tackenberg, O., Poschlod, P., Bonn, S. Assessment of wind dispersal potential in plant species. Ecological Monograph. 2003, 73: 191-205.
    [240] Stewart, R A. Dispersal, breeding behavior, and longevity of banded barn owls in north america. Auk. 69: 227-245.
    [241] Pasinelli, G., Schiegg, K., Walters, J. R. Genetic and Environmental Influences on Natal Dispersal Distance in a Resident Bird Species. heamericannat. 2004, 164: 660-669.
    [242] Epperson, B. K. Estimating dispersal from short distance spatial autocorrelation. Heredity. 2005, 95: 7-15.
    [243] Storz, J. F. Population genetics: Nonrandom dispersal and local adaptation. Heredity. 2005, 95: 3-4.
    [244] Sinervo, B., Clobert, J. Morphs, Dispersal Behavior, Genetic Similarity, and the Evolution of Cooperation. Science. 2003, 20: 1949-1951.
    [245] Jackel, A. K., Poschlod, P. Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space. Evolutionary ecology. 1997, 51: 1730-1741.
    [246] Waples, R. Separating the wheat from the chaf: Patterns of genetic differentiationin high gene flow species. heredity. 1998, 89: 438-450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700