深层气井射孔测试联作工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,大庆油田开发不断向外围及深层的方向发展,在深井、超深井射孔和测试管柱及工艺技术方面进行了一些研究,但随着大庆徐家围子深层气井勘探和开发,深层气井的射孔和测试的工作量不断增加,现有的深井、超深井射孔和测试管柱及工艺技术无法满足大庆油田深层气井的勘探开发,需要研制出一套适合于深层气井的射孔和测试管柱及工艺技术,包括耐高温、高压的射孔器材、测试仪器仪表,及保证深层气井测试的管柱等。
     深层气井射孔和测试有别于其它深井射孔和测试,主要体现在:第一、井底压力大、温度高;第二、施工管柱长,受井壁的磨擦阻力增大。大庆油田的地温梯度在全国是比较高的,完钻的葡深1井井深5200m,井底温度达219℃,平均地温梯度为3.98℃/100m。受磨阻和温度的影响,施工管柱的强度要求越来越高,对于射孑L施工的火药温度、测试施工的仪器仪表都要有很高的技术指标。同时,面对大庆油田深层具有的井深、高温、高压、高产、低渗及压后地层漏失的特点,目前的深层射孔试油测试工艺技术还存在着多项技术难题需要解决:现有的MFE工具、封隔器、密封胶筒和压力计等不能满足井深4000—4500m、井温高于140℃、压差大于35MPa深井的试气测试施工,存在着测试难、封隔难、压井难和资料录取难等问题,成为制约深层气井试油测试的“瓶颈”。如:深层特别是高产气井MFE测试时井下截流和开关井操作难的问题;深层测试需要液垫来平衡封隔器压差造成回压及影响液性判断的问题;电子压力计在井温超过140℃后,长时间耐高温的不稳定导致取不到资料和电子压力计损坏问题;压井工艺不完善及压井液漏失量大的问题。
     该课题是针对大庆油田深层油气勘探和开发,完成深层气井射孔和测试任务而提出和开展了此项研究,其成果已在大庆油田深层油气勘探和开发中普遍推广应用,特别是在大庆徐家围子深层气井施工方面,达到年施工60多层的深层气井射孔及测试任务;解决深井、超深井中存在的异常高温、高压难题,并保证安全作业,顺利完成射孔和测试作业任务,创造出较大的社会经济效益。
Recently, Daqing oil field has continuously developed peripheral and deep zone and researchedperforating technology, well testing string and well testing technology of deep well & ultra deep well. Butwith exploration and production of Daqing Xujiaweizi oil field, deep gas well perforating and well testingoperation has continuously increased. Existing perforating technology and well testing string and welltesting technology of deep well & ultra deep well can't meet the requirement. Therefore, we should developa set of perforating technology and well testing string and well testing technology that are suitable for deepgas well, such as thermal and overpressure resistant perforation equipment, testing hardware, deep gas welltesting string, and so on.
     Perforating and well testing operation of deep gas well is different from it of other deep wells. Thereasons are:
     a. Pressure and temperature are high at downhole.
     b. Well testing string is long and friction resistance from borehole wall is increased.
     Geothermal gradient in Daqing oilfield is relative high among our country. For example, total depth ofPushen 1 is 5200m, bottom hole temperature is up to 219℃, average geothermal gradient is 3.98℃/m.Because of friction resistance effect and temperature effect, intensity-requirement to operation stringbecomes higher and higher. Technical description is high for gunpowder temperature of perforating andequipment & instrument of well testing. At the same time, deep gas well of Daqing have some uniquefeathers, such as deep, hypothermic, high pressure, productive, low permeable, leaky after fracturing, andso on. So, there are many technical problems need to be solved in perforating and well testing of deep gaswell: existing MFE tool, packer, seal packing element and pressure gauge can't meet the well testingrequirement of 4000~5000m, 140℃, 35MPa (pressure difference) deep well. Well testing, packing, wellkilling and data measuring are all difficult. It becomes "bottle neck" of deep gas well testing. The technicalproblems are shown as follows:
     -Bottom hole cut off and flow/shut in operation are very difficult during MFE test, especially in highproductivity well.
     -Need fluid cushion to balance packer pressure difference during deep well well testing. It will causebackpressure and affect liquidity judgment.
     -When well temperature exceeds 140℃, electronic pressure gauge become unsteady to lead to dataabsence and gauge damage.
     -Well killing technology is imperfect and kin fluid leakage is high.
     To solve the problems mentioned above, research has been carried on in the theme. The achievementhas been widespread applied to deep gas exploration and production of Daqing oil field, especially inXujiaweizi gas field. Perforating and well testing layers are more than 60 layers per year. It solves theproblem about abnormal high temperature and pressure in deep well &ultra deep well. It ensures operationsecurity and successfully performs perforating and well testing tasks. Significant social and economicbenefits achieved.
引文
[1] 张元泽,王涛.四川射孔工艺技术的发展[J].天然气工业,1999,19(6):29-32.
    [2] 王旱祥,颜廷杰,李增亮.射孔对套管强度的影响[J].石油机械,2000,28(5):42-45.
    [3] 张学鸿,李艳,董振刚等.侧钻水平井射孔管柱力学与强度分析[J].大庆石油学院学报,2000,4(2):57-59.
    [4] 魏军,池连浚,荀忠义等.油管传输射孔引爆系统研究及改进[J].石油仪器,2001,15(6):48-50,52.
    [5] 刘忠楠,李艳,史景春.过压射孔工艺技术[J].油气井测试,2002,11(3):30-32.
    [6] 姜伟.渤海QK17-2大位移水平井TCP射孔技术实践[J].天然气工业,2002,22(5):49-52.
    [7] 陈锋,袁吉诚.水平井再射孔的起爆方法[J].测井技术,2000,24(1):74-77.
    [8] 陈锋,袁吉诚.超正压射孔工艺技术及在碳酸岩地层的应用[J].测井技术,2001,25(6):447-451.
    [9] Gavin P. Flening, Kevin R. George.钢丝传输定向射孔技术在双管柱无油管完并中的应用[J].国外油田工程,2002,18(5):40-41.
    [10] 安丰春,姜云辉.水平井射孔技术在塔里木油田的应用分析[J].油气井测试,2002,10(3):30-32.
    [11] 李善维,王伟,陈杰等.赛汉油田开发中的完井与射孔技术[J].断块油气田,1998,5(5):60-62.
    [12] Millheim K K. Bottom-hole assembly analysis using the finite element method [J]. JPI, 1978, 265-274.
    [13] 王连刚(译).采用TCP支撑剂携带器进行过压增产措施[J].今日世界石油,1997,(3.4)
    [14] 姜伟.大位移钻井技术在渤海QK17-2油田的应用[J].石油钻采工艺,2000,(3):1-7.
    [15] 赵海库,王宁.射孔-测试联作工艺的优化设计与研究[J].油气井测试,1999,8(2):67-70.
    [16] L.A.Behrmann, Bryan McDonald. Underbalance or Extreme Overbalance [C]. SPE57390
    [17] 贝尔著.油气井射孔井壁取心技术手册.2000 [3]1-17
    [18] 沈琛.试油测试工程监督[J].2006[3]18-19
    中困[19] 刘国志.试井解释及评价技术[J].石油钻采工艺,2000,(3):1-7.
    [20] 刘国志.试油测试技术[J].石油钻采工艺,2000,(3):10-18.
    [21] 刘方玉.射孔完井技术[J].石油钻采工艺,2000,(3):1-2.
    [22] 郑长建.水平井射孔技术[J].石油钻采工艺,2000,(3):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700