抵抗素与炎症及动脉粥样硬化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分心绞痛患者血浆抵抗素水平的研究
     研究背景:抵抗素是一种新的脂肪细胞因子,最初研究表明抵抗素可能是联系肥胖、胰岛素抵抗和2型糖尿病的细胞因子。但啮齿类动物抵抗素主要由脂肪细胞分泌,而人类抵抗素主要是由单核-巨噬细胞分泌,研究证实在小鼠和人的动脉粥样硬化斑块存在抵抗素蛋白,且抵抗素可能在动脉粥样硬化形成发展中具有潜在作用。抵抗素水平在冠心病患者显著升高,是动脉粥样硬化的一个独立的炎症标志物。但不同的心绞痛患者间,抵抗素水平是否存在变化国内尚无报道。
     目的:观察不同心绞痛患者循环抵抗素水平的变化,以及循环抵抗素水平与代谢指标、炎症指标等之间的相关性。
     方法:序贯入选因疑诊冠心病而在阜外医院行择期冠脉造影检查的患者114例,根据造影结果及临床表现,将研究对象分为不稳定心绞痛组(UAP,46例)、稳定心绞痛组(SAP,37例)和对照组(31例)。收集患者一般临床资料及生化指标,免疫比浊法检测高敏C反应蛋白(hs-CRP)水平;放免法检测血清胰岛素和内皮素-1(ET-1)水平;ELISA法检测不同人群血浆抵抗素、大内皮素的水平。
     结果:UAP组血浆抵抗素水平(12.09(8.40,18.08)ng/ml)显著高于SAP组(9.04(7.09,11.44)ng/ml)(P<0.05),以及对照组(8.71(6.58,11.56)ng/ml)(p<0.001);而SAP组和对照组之间无明显差异。我们证实了抵抗素与年龄(R~2=0.06,P=0.009)、白细胞计数(R~2=0.05,P=0.013)以及hs-CRP(R~2=0.05,P=0.014)之间呈正相关,而且还发现血浆抵抗素与大内皮素(R~2=0.05,P=0.013)以及FT-1(R~2=0.07,P=0.005)水平呈正相关。在校正年龄、性别和腰围后,除了大内皮素外,这些相关性仍存在。
     结论:血浆抵抗素水平在冠心病患者、尤其是UAP患者显著升高,而且与白细胞计数、hs-CRP及ET-1水平独立正相关。提示抵抗素可能通过影响系统的炎症反应和内皮活化而参与冠心病的发生发展。
     第二部分CRP对人单核细胞抵抗素表达影响的实验研究
     背景:动脉粥样硬化是一种慢性炎症过程,抵抗素是一种新的脂肪细胞因子,既往被认为与胰岛素抵抗相关。但近几年研究表明,抵抗素参与炎症反应和动脉粥样硬化的病理生理过程,且是动脉粥样硬化的一个独立的炎症标志物。C反应蛋白(CRP)是冠心病的一个重要的危险因素,同时还能调控参与动脉粥样硬化的多种基因的表达。CRP不仅是一个炎症标志物,还有可能直接参与炎症反应和动脉粥样硬化过程。多项研究表明循环抵抗素水平与CRP水平呈正相关,但CRP与抵抗素的因果关系如何,是系统低度炎症反应引起抵抗素分泌?还是抵抗素同IL-6等类似、是CRP的另一诱导因子,目前无相关的研究。
     目的:本部分主要研究CRP对培养的人外周血单核细胞抵抗素mRNA和蛋白表达的影响。
     方法:采用密度梯度离心法分离人外周血单核细胞。在培养基中分别加入不同浓度的CRP(0,5,10,25,50μg/ml),培养24小时,以检测CRP影响抵抗素表达的剂量效应。另一组实验检测CRP影响抵抗素表达的时间效应,即在培养基中加入25μg/ml CRP,分别培养不同的时间(0,3,6,12,24小时)。分别用real time PCR和ELISA方法检测单核细胞抵抗素mRNA表达及细胞培养液中抵抗素的浓度。
     结果:CRP呈剂量依赖性诱导抵抗素mRNA表达,与空白对照组抵抗素mRNA水平相比,5μg/mlCRP刺激单核细胞24h,抵抗素mRNA表达显著增加2.1倍(p<0.05)。当CRP浓度为25μg/ml,该效应最大,为9.8倍(p<0.05)。对照组培养基中的抵抗素水平很低,甚至检测不出。但是与5μg/ml CRP孵育后,培养基中抵抗素水平为0.35±0.01ng/ml(p<0.05)。当CRP为50μg/ml时,这种刺激效应最大,抵抗素是水平为1.19±0.30ng/ml(p<0.05)。CRP诱导抵抗素的表达也呈时间依赖性。25μg/mLCRP与人单核细胞孵育不同的时间发现,抵抗素m RNA在CRP刺激3小时后即开始明显升高,为基础水平的2.9倍(P<0.05),并随刺激的时间延长而进一步增加,于24小时达峰值(10倍,P<0.05)。而培养基中的抵抗素蛋白水平经CRP刺激3小时后仍未检测出,6小时后,抵抗素蛋白水平才显著升高,为0.21±0.12ng/ml(p<0.05),也于24小时达峰值,为0.89±0.16ng/ml(p<0.05)。
     结论:促炎因子CRP可呈剂量依赖性和时间依赖性地诱导人单核细胞抵抗素mRNA和蛋白表达,可能是急性冠状动脉综合征患者循环中抵抗素水平升高的机制之一,也进一步证实了CRP在血管炎症和动脉粥样硬化的病理生理过程中的直接作用。
     第三部分他汀类药物对CRP诱导的抵抗素表达的调节作用
     背景:HMG-CoA还原酶抑制剂(他汀类药物)广泛用于心血管疾病的治疗,并能显著降低心血管相关的发病率和死亡率。近几年研究发现,他汀类药物除了传统的降脂外,还具有独立于降脂作用以外的抗炎作用。动脉粥样硬化是一种慢性炎症性疾病。抵抗素是一种新的脂肪细胞因子,也参与炎症反应和动脉粥样硬化的病理生理过程。本研究第二部分结果表明CRP可呈剂量依赖性和时间依赖性地诱导人单核细胞抵抗素mRNA和蛋白表达。他汀类药物是否能影响CRP诱导的单核细胞抵抗素表达,目前尚无相关的研究。
     目的:本研究主要比较辛伐他汀、洛伐他汀、血脂康几种他汀类药物对CRP诱导的人外周血单核细胞抵抗素表达的影响,并对相关的信号通路进行初步探讨。
     方法:采用密度梯度离心法分离人外周血单核细胞。单核细胞分别与不同浓度的辛伐他汀(0.1,1,10μM)、洛伐他汀(0.1,1,10μM)或血脂康(25,50,100μg/ml)预孵育2小时,再与25μg/ml CRP共同培养24小时,以检测药物对CRP诱导的抵抗素表达的影响。另一组信号通路实验中,单核细胞分别与不同他汀类药物以及甲羟戊酸(100μM)或法尼基焦磷酸(FPP)(10μM)或牻牛儿基栊牛儿基焦磷酸(GGPP)(10μM)预孵育2小时,再与25μg/ml CRP共同孵育24小时。分别用real time PCR和ELISA方法检测单核细胞抵抗素mRNA表达及细胞培养液中抵抗素的浓度。
     结果:辛伐他汀和洛伐他汀与单核细胞预孵育2小时能剂量依赖性抑制25μg/mlCRP诱导的抵抗素表达。1μM辛伐他汀和洛伐他汀均能显著抑制抵抗素m RNA水平表达,分别为CRP刺激组的55.4±4.2%,59.6±5.1%(P<0.05),以及蛋白水平表达[0.54±0.02ng/ml,0.58±0.08ng/ml,与CRP刺激组(0.89±0.16ng/ml)比较P<0.05]。甲羟戊酸和GGPP几乎完全逆转两种他汀类药物对CRP诱导的抵抗素表达的抑制作用。50μg/ml血脂康亦显著抑制抵抗素m RNA水平表达,为CRP刺激组的34.9±5.4%(P<0.01);下调抵抗素蛋白水平表达,为0.47±0.07ng/ml(P<0.01)。甲羟戊酸和GGPP只能部分逆转血脂康对CRP诱导的抵抗素表达的抑制作用。
     结论:三种他汀类药物均能完全或部分通过抑制类异戊二烯代谢及GGPP依赖的信号通路,不同程度地抑制CRP诱导的抵抗素的表达。进一步支持了他汀类药物的抗炎和抗动脉粥样硬化和作用。
Part one
     Plasma Resistin Is Increased in Patients with Unstable Angnia
     Background: Resistin, a novel adipokine , was originally regarded to link insulin resistance and obesity in rodents. In rodents, resistin is derived almost exclusively from adipose tissue, however subsequent studies produced disparate findings regarding the role of resistin in obesity and insulin resistance in human. In contrast to rodents, resistin is expressed primarily in inflammatory cells in humans, especially macrophages. Studies have shown a potential role of resistin in atherosclerosis ,and resistin mRNA and protein have been reported to be present in atherosclerotic lesions in both huaman and mice. Resistin levels increased in patients with coronary artery disease (CAD), and it was an independent inflammatory marker of atherosclerosis in human.While data concerning resistin in different stages of CAD in Chinese people are lacking.
     Objective: The aim of this study was to assess whether plasma concentrations of resistin differed between patients with unstable and stable angina pectoris in China, and if any correlations existed among resistin levels, other inflammatory markers and
     metabolic parameters.
     Methods : One hundred and forteen consecutive patients hospitalized for elective diagnostic coronary angiography were studied, including 46 patients with unstable angina (UAP), 37 with stable angina (SAP) and 31 control subjects. Clinical and biochemical characteristics were collected. The levels of high-sensitivity C-reactive protein (hs-CRP) were determined by immunoturbidometry. The endothelin-1 (ET-1) and insulin concentrations were determined by radioimmunoassay .Plasma resistin and Big endothelin concentrations were measured by ELISA.
     Results: Plasma concentrations of resistin were significantly increased in UAP group 12.09 (8.40,18.08)) in comparison with SAP (9.04 (7.09,11.44)) and control groups (8.71 (6.58 ,11.56)). No differences in resistin levels were found between patients with SAP and controls. We confirmed prior findings of positive correlations of resistin with age(R~2 =0.06, P =0.009), leukocyte counts(R~2 =0.05, P =0.013)and hs-CRP(R~2 =0.05, P =0.014). We also found that plasma resistin positively correlated with big-endothelin(R~2 =0.05, P=0.013) and ET-1 (R~2 =0.07, P=0.005). All of these associations remained significant after adjusting for age, sex and waist, excpt for big-endothelin.
     Conclusions: These findings suggested that resistin may be involved in the development of CAD through systemic inflammation and endothelial activation.
     Part two Effects of C-reactive on resistin expression in cultured human monocytes
     Background : Atherosclerosis is an inflammatory disease. Resistin, a novel adipokine, was originally proposed as a link between obesity and insulin resistance/diabetes. Currently accumulating evidence indicates that resistin is involved in inflammatory response and atherosclerosis, and resistin is an inflammatory marker of atherosclerosis. C-reactive protein (CRP) is an important risk factor for coronary heart disease, and also modifies the expression of genes involved in atherogenesis. Consequently, CRP may not only be a nonspecific marker of inflammation, it is also possible that CRP plays a direct role in the pathogenesis of inflammation/ atherosclerosis. Clinical studies have shown a positive correlation between CRP and resistin. However whether low grade inflammation induces resistin expression or resistin is another inducer of CRP is not yet known. It is not clear about the effect of CRP on resistin expression in human monocytes.
     Objective: The aim of the present study was to assess the possible effects of CRP on the expression of resistin by cultured human monocytes.
     Methods : Human peripheral blood monocytes were isolated from the whole blood of healthy volunteers by density gradient centrifugation. For dose-dependent study, cells were incubated with varying concentrations of CRP (0, 5, 10, 25 and 50μg/ml, n=6 for each) for 24 h. To evaluate time-dependent effects of CRP, human monocytes were incubated with 25μg/ml of CRP for different time (0, 3, 6, 12, 24, n=6 for each point respectively). Quantitative real-time reverse transcription- polymerase chain reaction analyses were performed to analyze resistin mRNA gene expression.The resistin in supernatants of cultured medium was measured by ELISA.
     Results : After stimulation with CRP for 24 hours, resistin mRNA expression increased significantly in a concentration-dependent manner. At a concentration of 5μg/ml CRP, resistin mRNA expression increased 2.1 fold (p<0.05) compared to unstimulated monocytes. This effect was maximal in the presence of 25μg/ml CRP (9.8 fold, p<0.05). The effect of CRP on resistin protein was also concentration- dependent. Resistin level in supernatant of unstimulated monocytes was undetectable. But 24-hour incubation even with 5μg/ml CRP showed a significant induction of resistin protein(0.35±0.01ng/ml, p<0.05). These changes were maximal with the concentration of 50μg/ml CRP(1.19±0.30ng/ml, p<0.05). In a 24-hour time course study, CRP at a concentration of 25μg/mL induced resistin mRNA expression significantly within 3 hour(2.9 fold, P<0.001), with a maximal effect at 24 hours (10 fold, P<0.05). Resistin protein in medium was not detectable until incubation of monocytes with C RP for 6 hours (0.21±0.12ng/ml; p<0.05). Then re sistin secretion increased with the time, reached the peak at 24 hours (0.89±0.16ng/ml; p<0.05).
     Conclusions: CRP induced the expression of resistin in cultured human monocytes in a dose and time-dependent manner. Our findings strengthen the role of CRP in the pathogenesis of vascular inflammation and atherosclerosis, and may partly explain the increased levels of resistin in patients of acute coronary syndrome.
     Background: Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A(HMG-CoA) reductase (statins) have been widely used in medical routine practice, and they are reported to reduce greatly cardiovascular-related morbidity and mortality in patients with and without coronary disease. Recent studies have shown that statins possess anti-inflammatory properties that are independent of their lipid-lowering action. Atherosclerosis is an inflammatory disease. Resistin, a novel adipokine, was reported to be involved inflammatory response and atherosclerosis. CRP, an important risk factor for coronary heart disease, could also induce the expression of resistin in cultured human monocytes in a dose and time-dependent manner. However whether statins could modulate resistin expression induced by CRP in cultured human monocytes is not yet known.
     Objective: The aim of the present study was to assess the possible effects of statins on the expression of resistin induced by CRP in cultured human monocytes, as well as the possible signal pathway.
     Methods: Human peripheral blood monocytes were isolated from the whole blood of healthy volunteers by density gradient centrifugation. To evaluate the effects of statins on resistin production subjected to CRP, cells were pretreated with simvastain (0.1,1,10μM), or lovastain (0.1,1,10μM), or xuezhikang (25, 50,100μg/ml) respectively for 2 h, and then co-incubated with 25μg/ml CRP for 24 h. In additional experiments, isoprenoids were used to identify the mode of statins' action. Monocytes were incubated with different statins in the absence or presence of 100μM mevalonate or 10μM geranylgeranyl-pyrophosphate (GGPP) or 10μM farnesylpyrophosphate (FPP) for 2h, then co-incubated with CRP for 24 h. Quantitative real-time reverse transcription-polymerase chain reaction analyses were performed to analyze resistin mRNA gene expression. The resistin in supematants of cultured medium was measured using commercial assay kits by ELISA
     Results: Pre-incubation of monocytes with different concentrations of simvastatin and lovastatin suppressed the CRP-induced resistin expression in monocytes in a dose-dependent manner. 1μM statins significantly reduced the resistin mRNA levels (simvastain 55.4±4.2%, lovstatin 59.6±5.1% of CRP-treated cells, P<0.05), and resistin protein in medium(simvastain 0.54±0.02ng/ml, lovstatin 0.58±0.08ng/ml, vs CRP-treated cells 0.89±0.16ng/ml, P<0.05). Further co-treatment with 100μM mevalonate or 10μM GGPP, but not FPP almost reversed completely the inhibitory effects of statins on resistin expression. 50μg/ml xuezhikang also inhibited the resistin mRNA levels(34.9±5.4% of CRP-treated cells, P<0.01) and protein(0.47±0.07ng/ml vs 0.89±0.16ng/ml, P<0.01)markedly. While the inhibitory effect of xuezhikang on resistin expression only partly reversed by 100μM mevalonate and 10μM GGPP.
     Conclusions: Resistin expression induced by CRP were inhibited by different statins through interfering with cellular isoprenoid metabolism and GGPP-dependent processes. Our results contribute to the growing volume of evidence on the anti-inflammatory and anti-atherosclerotic effects of statins, and indicate that statins may control inflammatory responses partially by inhibiting expression of resistin.
引文
1. Steppan CM, Brown EJ, Wright CM, et al. A family of tissue-specific resistin-like molecules. Proc Natl Acad Sci U S A 2001; 98: 502-6.
    2. Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature 2001; 409 (6818): 307-12.
    3. Kim KH, Lee K, Moon YS, et al. A cysteine-rich adipose tissue specific secretory factor inhibits adipocyte differentiation. J Biol Chem 2001; 276: 11252-6.
    4. Rajala MW, Qi Y, Patel HR, et al. Regulation ofresistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes 2004; 53: 1671-9.
    5. Fehmann HC, Heyn J. Plasma resistin levels in patients with type 1 and type 2 diabetes mellitus and in healthy controls. Horm Metab Res 2002; 34: 671-3.
    6. McTernan PG, Fisher FM, Valsamakis G, et al. Resistin and type 2 diabetes: regulation of resistin expression by insulin and rosiglitazone and the effects of recombinant resistin on lipid and glucose metabolism in human differentiated adipocytes. J Clin Endocrinol Metab 2003; 88: 6098-106.
    7. Youn BS, Yu KY, Park HJ, et al. Plasma resistin concentrations measured by enzyme-linked immunosorbent assay using a newly developed monoclonal antibody are elevated in individuals with type 2 diabetes mellitus. J Clin Endocrinol Metab 2004; 89: 150-6.
    8. Yannakoulia M, Yiannakouris N, Bluher S, et al. Body fat mass and macronutrient intake in relation to circulating soluble leptin receptor, free leptin index, adiponectin, and resistin concentrations in healthy humans. J Clin Endocrinol Metab 2003; 88: 1730-6.
    9. Patel L, Buckels AC, Kinghorn IJ, et al. Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun 2003; 300: 472-6.
    10. Lu SC, Shieh WY, Hsu SC, et al. Lipopolysaccharide increases resistin gene expression in vivo and in vitro. FEBS Lett 2002; 530(1-3): 158-62.
    11. Kaser S, Kaser A, Sandhofer A, et al. Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem Biophys Res Commun. 2003; 309(2): 286-90.
    12. Michael L, Muredach P, Segan C, et al. An Inflammatory Cascade Leading to Hyper resistinemia in Humans. PLoS Med. 2004; 1(2), e45-53.
    13. Bokarewa M, Nagaev I, Dahlberg L, et al. Resistin, an adipokine with potent proinflammatory properties. J Immunol. 2005; 174(9): 5789-95.
    14. Silswal N, SinghAK, Aruna B, et al. Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem Biophys Res Commun 2005; 334(4): 1092-101.
    15. Verma S, Li SH, Wang CH, et al. Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation 2003; 108: 736-40.
    16. Daiji K, Koji M, Norihiko T, et al. Direct reciprocal effects ofresistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endotheliai cell interactions. Biochem Biophys Res Commun 2004; 314: 415-419.
    17. Shen YH, Zhang L, Gan Y, et al. Up-regulation of PTEN mediates p38 MAPK stress signal-induced inhibition of insulin signaling ---A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells. J Biol Chem 2006; 281(12): 7727-36.
    18. Calabro P, Samudio I, Willerson JT, et al. Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation 2004; 110(21): 3335-40.
    19. Burnett MS, Lee CW, Kinnaird TD, et al. The potential role ofresistin in atherogenesis. Atherosclerosis. 2005; 182(2): 241-8.
    20. Jung HS, Park KH, Cho YM, et al. Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc Res 2006; 69(1): 76-85.
    21. Reilly MP, Lehrke M, Wolfe ML, et al. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 2005; 111(7): 932-9.
    22. Mu H, Ohashi R, Yan S, et al. Adipokine resistin promotes in vitro angiogenesis of human endothelial cells. Cardiovasc Res 2006; 70(1): 146-57.
    23. Rae C, Graham A. Human resistin promotes macrophage lipid accumulation. Diahetologia 2006; 49(5): 1112-4.
    24. Ohmori R, Momiyama Y, Kato R, et al. Associations Between Serum Resistin Levels and Insulin Resistance, Inflammation, and Coronary Artery Disease. J Am Coil Cardiol 2005; 46(2): 379-80.
    25. Lubos E, Messow CM, Schnabel R, et al. Resistin, acute coronary syndrome and prognosis results from the AtheroGene study. Atherosclerosis. 2006 Jun 27; [Epub ahead of print].
    26. Diez JJ, Iglesias P, Fernandez-Reyes MJ, et al. Serum concentrations of leptin, adiponectin and resistin, and their relationship with cardiovascular disease in patients with end-stage renal disease. Clin Endocrinol Clin Endocrinol (Oxf) 2005; 62: 242-9.
    27. Burnett MS, Devaney JM, Adenika RJ,. et al. Cross-sectional associations of resistin, coronary heart disease, and insulin resistance. J Clin Endocrinol Metab. 2006; 91(1): 64-8.
    28. Pischon T, Bamberger CM, Kratzsch J, et al. Association of plasma resistin levels with coronary heart disease in women. Obes Res. 2005; 13(10): 1764-71.
    29. Lim S, Koo BK, Cho SW, et al. Association of adiponectin and resistin with cardiovascular events in Korean patients with type 2 diabetes: The Korean atherosclerosis study (KAS) A 42-month prospective study. Atherosclerosis. 2006 Dec 16; [Epub ahead of print].
    30. Pilz S, Weihrauch G, Seelhorst U, et al. Implications of resistin plasma levels in subjects undergoing coronary angiography. Clin Endocrinol (Oxf). 2007; 66(3): 380-6
    31. Brown DW, Giles WH, et al. White blood cell count: an independent predictor of coronary heart disease mortality among a national cohort. J Clin Epidemiol. 2001; 54(3): 316-22
    32. Barton HV, Harr SD, Radford MJ, et al. The association between white blood cell count and acute myocardial infarction mortality in patients > or=65 years of age: findings from the cooperative cardiovascular project. J Am Coll Cardiol. 2001; 38(6): 1654-61.
    33. Al-Daghri N, Cherty R, McTernan PG, et al. Serum resistin is associated with C- reactive protein &ldl cholesterol in type 2 diabetes and coronary artery disease in a Saudi population. Cardiovasc Diabetol. 2005; 4: 10-15.
    34. Bo S, Gambino R, Pagani A, et al. Relationships between human serum resistin, inflammatory markers and insulin resistance. Int J Obes (Lond) 2005; 29: 1315-20.
    35. Shetty, GS, Economides PA, Horton ES, et al. Circulating Adiponectin and Resistin Levels in Relation to Metabolic Factors, Inflammatory Markers, and Vascular Reactivity in Diabetic Patients and Subjects at Risk for Diabetes. Diabetes Care 2004; 27: 2450-7.
    36. Rubanyi GM, Polokoff MA. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 1994; 46: 325-415.
    37. HarithyRN AI Ghamdi S. Serum resistin, adiposity and insulin resistance in Saudi women with type 2 diabetes. Ann Saudi Med 2005; 25(4): 283-287.
    38. Nagaev I, Smith U. Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle. Biochem Biophys Res Commun. 2001 Jul 13; 285(2): 561-4.
    39. Utzschneider KM, Cart DB, Tong J, et al. Resistin is not associated with insulin sensitivity or the metabolic syndrome in humans. Diabetologia 2005; 48(11): 2330-3.
    40. Iqbal N, SeshedriP, SternL, et al, Se rum resistin isnot associated with obesity or insulin resistance in humans. Eur Rev Med Pharmacol Sci 2005; 9(3): 161-165.
    41. Xu W, Yu L, Zhou W, et al. Resistin increases lipid accumulation and CD36 expression in human macrophages. Biochem Biophys Res Commun. 2006; 351(2): 376-82.
    1. Ross R. Atherosclerosis — An Inflammatory Disease. N Engl Med J 1999; 340: 115-126
    2. Shah PK. Circulating markers of inflammation for vascular risk prediction: are they ready for prime time? Circulation. 2000; 101: 1758-1759.
    3. Jialal I, Devaraj S, Venugopal SK. C-reactive protein: risk marker or mediator in atherothrombosis?Hypertension. 2004; 44(1): 6-11
    4. Steppan CM, Bailey ST, Bhat S, et al.The hormone resistin links obesity to diabetes. Nature 2001; 409 (6818): 307-12.
    5. Mu H, Ohashi R, Yan S, et al. Adipokine resistin promotes in vitro angiogenesis of human endothelial cells. Cardiovasc Res 2006; 70(1): 146-57.
    6. Verma S, Li SH, Wang CH, et al. Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation 2003; 108: 736-40.
    7. Daiji K, Koji M, Norihiko T, et al. Direct reciprocal effects ofresistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions. Biochem Biophys Res Commun 2004; 314(2), 415-419
    8. Rae C, Graham A. Human resistin promotes macrophage lipid accumulation. Diabetologia 2006; 49(5): 1112-4.
    9. Bokarewa M, Nagaev I, Dahlberg L, et al. Resistin, an adipokine with potent proinflammatory properties. J Immunol. 2005; 174(9): 5789-95.
    10. Silswal N, Singh AK, Aruna B, et al. Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem Biophys Res Commun 2005; 334(4): 1092-101.
    11. Calabro P, Samudio I, Willerson JT, et al. Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation 2004; 110(21): 3335-40.
    12. Kaser S, Kaser A, Sandhofer A, Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem Biophys Res Commun. 2003; 309(2): 286-90.
    13. Michael L, Muredach P, Segan C, et al. An Inflammatory Cascade Leading to Hyper resistinemia in Humans. PLoS MEDICINE 2004; 1(2), e45-53
    14. Lu SC, Shieh WY, et al. Lipopolysaccharide increases resistin gene expression in vivo and in vitro. FEBS Lett 2002; 530(1-3): 158-62.
    15. Shen YH, Zhang L, Gan Y, et al. Up-regulation ofPTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal-induced inhibition of insulin signaling. A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells. J Biol Chem. 2006; 281(12): 7727-36.
    16. Kougias P, Chai H, Lin PH, et al. Adipocyte-derived cytokine resistin causes endothelial dysfunction of porcine coronary arteries. J Vasc Surg. 2005; 41(4): 691-8.
    17. Burnett MS, Lee CW, Kinnaird TD, et al. The potential role of resistin in atherogenesis. Atherosclerosis. 2005; 182(2): 241-8.
    18. Reilly MP, Lehrke M, Wolfe ML, et al. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 2005; 111 (7): 932-9.
    19. Ohmori R, Momiyama Y, Kato R, et al. Associations Between Serum Resistin Levels and Insulin Resistance, Inflammation, and Coronary Artery Disease. J Am Coil Cardiol 2005; 46(2): 379-80.
    20. Lubos E, Messow CM, Schnabel R, et al. Resistin, acute coronary syndrome and prognosis results from the AtheroGene study. Atherosclerosis. 2006 Jun 27; [Epub ahead of print]
    21. Li J-J, Fang C-H. C-reactive protein is not only an inflammatory marker but also a direct cause of cardiovascular disease. Med Hypotheses 2004; 62: 499-506.
    22. Jialal I, Devaraj S. Inflammation and atherosclerosis: the value of the high sensitive C-reactive protein assay as a marker. Am J Clin Pathol 2001; 116: S108-15.
    23. Robey FA, Ohura K, Futaki S, Fujii N, Yajima H, Goldman N, et al. Proteolysis of human C-reactive protein produces peptides with potent immunomodulating activity. J Biol Chem 1987; 262: 7053-7.
    24. Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation 2003; 107: 398-404.
    25. Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation 2002; 106: 1439-41.
    26. Venugopal SK, Devaraj S, Jialal I. C-reactive protein decreases prostacyclin release from human aortic endothelial cells. Circulation 2003; 108: 1676-8.
    27. Haverkate F, Thompson SG, Pyke SD, et al. Production of C-reactive protein and risk of coronary events in stable and unstable angina: European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. Lancet. 1997; 349: 462-466.
    28. LiuzzoG, Biasucci LM , Gallimore JR, et al. Proguostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N Engl J Med, 1994, 331: 417-424.
    29. de Winter RJ, Bholasingh R, Lijmer JG, et al. Independent prognostic value of C-reactive protein and troponin I in patients with unstable angina or non-Q-wave myocardial infarction. Cardiovasc Res. 1999; 42(1): 240-5.
    1. Veillard NR, Mach F. Statins: the new aspirin? Cell Mol Life Sci 2002;59:1771—86.
    2. Rosenson RS, Tangney CC. Antiatherothrombotic properties of statins: implications for cardiovascular event reduction. JAMA 1998;279:1643—50.
    3. Ridker PM, Rifai N, Pfeffer MA, et al. Long-term effects of pravastatin on plasma concentration of C-reactive protein: the Cholesterol and Recurrent Events (CARE) Investigators. Circulation. 1999; 100:230 —235.
    4. Schonbeck U, Libby P. Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents? Circulation. 2004,109(21 Suppl 1):II18-26。
    5. Field KM. Effect of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on high-sensitivity C-reactive protein levels.Pharmacotherapy. 2005 Oct;25(10):1365-77.
    6. Ling L, Zhao SP, Cheng LC,et al. Xuezhikang Decreases Serum Lipoprotein(a) and C-reactive Protein Concentrations in Patients with Coronary Heart Disease. Clinical Chemistry. 2003;49:1347-1352.
    7. Chang LT, Sun CK, Chiang CH, et al. Impact of simvastatin and losartan on antiinflammatory effect: in vitro study. J Cardiovasc Pharmacol. 2007;49(1):20-6.
    8. Li JJ, Chen XJ. Simvastatin inhibits interleukin-6 release in human monocytes stimulated by C-reactive protein and lipopolysaccharide. Coron Artery Dis. 2003 Jun; 14(4):329-34.
    9. Michael L, Muredach P, Segan C, et al.An Inflammatory Cascade Leading to Hyper resistinemia in Humans.PLoS Med. 2004; 1 (2),e45-53.
    10. Ichida Y, Hasegawa G, Fukui M, et al.Effect of Atorvastatin on in vitro Expression of Resistin in Adipocytes and Monocytes/Macrophages and Effect of Atorvastatin Treatment on Serum Resistin Levels in Patients with Type 2 Diabetes. Pharmacology. 2005,76(1):34-39.
    11.血脂康调整血脂对冠心病二级预防研究协作组.中国冠心病二级预防研究.中华心血管病杂志.2005,33(2):109-115.
    12. Goldstein JL, Brown MS. Regulation of the mevalonate pathway.Nature. 1990;343:425—430.
    13. Zhang FL, Casey PJ. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 1996;65:241—269.
    14. Casey PJ. Protein lipidation in cell signaling. Science. 1995;268:221—225.
    15. Liu L, Moesner P, Kovach NL, et al. Integrin-dependent leukocyte adhesion involves geranylgeranylated protein(s). J Biol Chem. 1999;274:33334—33340.
    16. Yoshida M, Sawada T, Ishii H, et al. HMG-CoA reductase inhibitor modulates monocyte-endothelial cell interaction under physiological flow conditions in vitro: involvementl 1 of Rho GTPase-dependent mechanism. Arterioscler Thromb Vasc Biol. 2001 ;21:1165-1171.
    17.. Munro E, Patel M, Chan P, et al. Inhibition of human vascular smooth muscle cell proliferation by lovastatin: the role of isoprenoid intermediates of cholesterol synthesis. Eur J Clin Invest. 1994;24:766-772.
    18.. Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem. 1998;273:24266-24271.
    19.. Laufs U, La Fata V, Liao JK. Inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase. J Biol Chem. 1997;272:31725-31729.
    20. Furman C, Copin C, Kandoussi M,et al. Rosuvastatin reduces MMP-7 secretion by human monocyte-derived macrophages: potential relevance to atherosclerotic plaque stability. Atherosclerosis. 2004 ;174(1):93-8.
    21. Veillard NR, Braunersreuther V, Arnaud C,et al. Simvastatin modulates chemokine and chemokine receptor expression by geranylgeranyl isoprenoid pathway in human endothelial cells and macrophages. Atherosclerosis. 2006; 188(1):51-8.
    22. Liuzzo G, Santamaria M, Biasucci LM,et al. Persistent activation of nuclear factor kappa-B signaling pathway in patients with unstable angina and elevated levels of C-reactive protein evidence for a direct proinflammatory effect ofazide and lipopolysaccharide-free C-reactive protein on human monocytes via nuclear factor kappa-B activation. J Am Coll Cardiol. 2007, 49(2):185-94.
    23. Finco TS, Baldwin Jr AS. Kappa B site-dependent induction of gene expression by diverse inducers of nuclear factor kappa B requires Raf-1. J Biol Chem 1993;268:17676-9.
    24. Mitin N, Kudla AJ, Konieczny SF, et al. Differential effects of Ras signaling through NFkappaB on skeletal myogenesis. Oncogene 2001 ;20:1276-86
    25.徐伯平,程蕴琳,鲁翔.血脂康及氧化低密度脂蛋白对牛血管平滑肌细胞增殖的影响.中华老年医学杂志.2001,20(5):384-385.
    26.寇文镕。血脂康基础与临床研究概述。中华内科杂志,1998,37:364-366。
    27. Zhao SP, Liu L, Cheng YC,et al. Xuezhikang, an extract of cholestin, protects endothelial function through antiinflammatory and lipid-lowering mechanisms in patients with coronary heart disease. Circulation. 2004 Aug 24; 110(8):915-20.
    28. Li JJ, Wang Y, Nie SP,et al. Xuezhikang, an extract of cholestin, decreases plasma inflammatory markers and endothelin-1, improve exercise-induced ischemia and subjective feelings in patients with cardiac syndrome X. Int J Cardiol. 2006 Dec 27; [Epub ahead of print]
    29. Jeon T, Hwang SG, Hirai S,et al. Red yeast rice extracts suppress adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 cells. Life Sci. 2004 ;75(26):3195-203.
    1. Steppan CM, Bailey ST, Bhat S, et al.. The hormone resistin links obesity to diabetes. Nature. 2001; 409 (6818):307-12.
    2. Rajala MW, Obici S, Scherer PE ,et al. Adipose-derived resistin and gut-derived resistin-like molecule-beta selectively impair insulin action on glucose production. J Clin Invest. 2003;111: 225-230.
    3. Banerjee RR, Rangwala SM, Shapiro JS,et al.Regulation of fasted blood glucose by resistin. Science. 2004;303:1195-1198.
    4. Savage DB, Sewter CP, Klenk ES, et al.. Resistin / Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes. 2001; 50:2199-2202.
    5. Patel L, Buckels AC, Kinghorn IJ, et al. Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators, Biochem. Biophys. Res. Commun. 2003;300: 472—476.
    6. Lehrke M, Reilly MP, Millington SC, Iqba1 N, et al. An inflammatory cascade leading to hyperresistinemia in humans. PLoS. Med. 2004; 1 (2): 161-168.
    7. Gomez-Ambrosi J, Fruhbeck G. Do resistin and resistin-like molecules also link obesity to inflammatory disease? Ann Intern Med. 2001; 135:306 -307.
    8. Lu SC, Shieh WY, Chen CY, et al. Lipopolysaccharide increases resistin gene expression in vivo and in vitro.FEBS. Lett. 2002; 530: 158-162.
    9. Kaser S, Kaser A, Sandhofer A, et al. Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem. Biophys. Res. Commun. 2003; 309 : 286-290.
    10. Silswal N, Singh AK, Aruna B, et al. Human resistin stimulates the pro-inflammatory cytokines TNF-α and IL-12 in macrophages by NF-kB-dependent pathway.Biochem. Biophys. Res. Commun. 2005; 334:1092-1101.
    11. Bokarewa M, Nagaev I, Dahlberg L, et al. Resistin, an adipokine with potent proinflammatory properties. J. Immunol. 2005; 174: 5789-5795.
    12. Ross R.. Atherosclerosis—An Inflammatory Disease.N Engl Med J. 1999; 340:115-126.
    13. Adeghate E. An update on the biology and physiology of resistin.Cell Mol Life Sci. 2004; 61(19-20):2485-96.
    14. Nagaev I, Smith U. Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle. Biochem Biophys Res Commun. 2001; 285:561-564.
    15. Fain JN. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm. 2006; 74: 443-477.
    16. Bastard JP, Maachi M, Lagathu C, Kim MJ et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17: 4-12.
    17. Rajala MW, Lin Y, Ranalletta M, et al.Cell type-specific expression and coregulation of murine resistin and resistin-Like molecule-alpha in adipose tissue. Mol Endocrinol. 2002; 16:1920-1930.
    18. Shojima N, Sakoda H, Ogihara T, et al. Humoral regulation of resistin expression in 3T3-L1 and mouse adipose cells. Diabetes. 2002;51:1737-1744.
    19. Fasshauer M, Klein J, Neumann S, et al. Tumor necrosis factor alpha is a negative regulator of resistin gene expression and secretion in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2002;288:1027-1031.
    20. Xu W, Yu L, Zhou W, et al. Resistin increases lipid accumulation and CD36 expression in human macrophages. Biochem Biophys Res Commun. 2006; 351 (2):376-82.
    21. Kawanami D, Maemura K, Takeda N, et al. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions. Biochem Biophys Res Commun. 2004; 314(2):415-9.
    22. Verma S, Li SH, Wang CH, et al. Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction.Circulation. 2003; 108(6):736-40.
    23. Skilton MR, Nakhla S, Sieveking DP, et al.. Pathophysiological levels of the obesity related peptides resistin and ghrelin increase adhesion molecule expression on human vascular endothelial cells. Clin Exp Pharmacol Physiol. 2005;32(10):839-44.
    24. Burnett MS, Lee CW, Kinnaird TD, Stabile E, et al.The potential role of resistin in atherogenesis. Atherosclerosis. 2005; 182(2):241-8.
    25. Shen YH, Zhang L, Gan Y, et al. Up-regulation ofPTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal-induced inhibition of insulin signaling. A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells. J Biol Chem. 2006; 281(12):7727-36.
    26. Jung HS, Park KH, Cho YM, Chung SS, et al. Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc Res. 2006; 69(1):76-85.
    27. Mu H, Ohashi R, Yan S, et al. Adipokine resistin promotes in vitro angiogenesis of human endothelial cells. Cardiovasc Res. 2006; 70: 146-157.
    28. Bokarewa M, Nagaev I, Dahlberg L, et al. Resistin, an adipokine with potent proinflammatory properties. J Immunol. 2005; 174(9):5789-95.
    29. Silswal N, Singh AK, Aruna B, et al. Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem Biophys Res Commun. 2005;334(4): 1092-101.
    30. Calabro P, Samudio I, Willerson JT et al. Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. 2004;Circulation. 110(21):3335-40.
    31. Dick GM, Katz PS, Farias M 3rd, et al. Resistin Impairs Endothelium-Dependent Dilation to Bradykinin, but Not Acetylcholine, in the Coronary Circulation. Am J Physiol Heart Circ Physiol. 2006; 291 : H2997-H3002.
    32. Bahia L, Aguiar LG, Villela N, et al. Relationship between adipokines, inflammation, and vascular reactivity in lean controls and obese subjects with metabolic syndrome. Clinics. 2006; 61(5):433-40.
    33. Kougias P,Chai H, Lin PH, et al. Adipocyte-derived cytokine resistin causes endothelial dysfunction of porcine coronary arteries. J Vase Surg. 2005; 41(4):691-8.
    34. Shetty GK, Economides PA, Horton ES, et al. Circulating Adiponectin and Resistin Levels in Relation to Metabolic Factors, Inflammatory Markers, and Vascular Reactivity in Diabetic Patients and Subjects at Risk for Diabetes. Diabetes Care. 2004; 27:2450-2457.
    35. Kamigaki M, Sakaue S, Tsujino I, et al. Oxidative stress provokes atherogenic changes in adipokine gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2006;339(2):624-32.
    36. Bo S, Gambino R, Pagani A, et al. Relationships between human serum resistin, inflammatory markers and insulin resistance. Int J Obes Relat Metab Disord. 2005; 29(11):1315-20.
    37. Shin MJ, Lee JH, Jang Y, et al. Insulin resistance, adipokines, and oxidative stress in nondiabetic, hypercholesterolemic patients: leptin as an 8-epi-prostaglandin F2alpha determinant. Metabolism. 2006;55(7):918-22.
    38. Reilly MP, Lehrke M, Wolfe ML, et al. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation. 2005; 111(7):932-9.
    39. Kunnari A, Ukkola O, Paivansalo M, et al. High plasma resistin level is associated with enhanced highly sensitive C-reactive protein and leukocytes. J Clin Endocrinol Metab. 2006; 91(7):2755-60.
    40. Dullaart RP, de Vries R, van Tol A, et al. Lower plasma adiponectin is a marker of increased intima-media thickness associated with type 2 diabetes mellitus and with male gender. Eur J Endocrinol. 2007;156(3):387-94.
    41. Ohmori R, Momiyama Y, Kato R, Taniguchi H et al. Associations Between Serum Resistin Levels and Insulin Resistance, Inflammation, and Coronary Artery Disease. J Am Coil Cardiol. 2005; 46(2):379-80.
    42. Lubos E, Messow CM, Schnabel R, et al. Resistin, acute coronary syndrome and prognosis results from the AtheroGene study. Atherosclerosis. 2006 Jun 27; [Epub ahead of print]
    43. Diez JJ, Iglesias P, Fernandez-Reyes MJ, et al. Serum concentrations of leptin, adiponectin and resistin, and their relationship with cardiovascular disease in patients with end-stage renal disease. Clin Endocrinol Clin Endocrinol (Oxf). 2005; 62:242-9.
    44. Burnett MS, Devaney JM, Adenika RJ, et al. Cross-sectional associations of resistin, coronary heart disease, and insulin resistance. J Clin Endocrinol Metab. 2006; 91 (1):64-8.
    45. Pischon T, Bamberger CM, Kratzsch J, et al. Association of plasma resistin levels with coronary heart disease in women. Obes Res. 2005; 13(10):1764-71.
    46. Lim S, Koo BK, Cho SW, et al. Association of adiponectin and resistin with cardiovascular events in Korean patients with type 2 diabetes. Atherosclerosis. 2006 Dec 16; [Epub ahead of print]
    47. Pilz S, Weihrauch G, Seelhorst U, et al. Implications ofresistin plasma levels in subjects undergoing coronary angiography. Clin Endocrinol (Oxf). 2007; 66(3):380-6.
    48. Hui-Bing H, Migita K, Miyashita T, et al. Relationship between serum resistin concentrations and inflammatory markers in patients with type 2 diabetes mellitus. Metabolism. 2006; 55(12):1670-3.
    49. Silha JV, Krsek M, Skrha JV, et al. Plasma resistin, adiponectin and leptin levels in lean and obese subjects: correlations with insulin resistance. Eur J Endocrinol. 2003, 149:331-335.
    50. Kamin D, Hadigan C, Lehrke M, et al. Resistin levels in human immunodeficiency virus-infected patients with lipoatrophy decrease in response to rosiglitazone. J Clin Endocrinol Metah. 2005,90(6):3423-6
    51. Utzschneider KM, Carr DB, Tong J, et al. Resistin is not associated with insulin sensitivity or the metabolic syndrome in humans. Diabetologia. 2005,48(11):2330-3
    52. Vozarova de Courten B, Degawa-Yamauchi M, et al. High serum resistin is associated with an increase in adiposity but not a worsening of insulin resistance in Pima Indians. Diabetes. 2004,53 (5): 1279-84.
    53. Lee JH, Chan JL, Yiannakouris N ,et al .Circulating resistin levels are not associated with obesity or insulin resistance in human and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin resistant, and diabetic subject. J Clin Endocrinol Metab.2003, 88:4848—4856
    54. Heilbronn LK, Rood J, Janderova L et al (2004) Relationship between serum resistin concentrations and insulin resistance in nonobese, obese, and obese diabetic subjects. J Clin Endocrinol Metab 89:1844—1848
    55. Iqbal N, Seshadri P, Stem L, et al. Serum resistin is not associated with obesity or insulin resistance in humans. Eur Rev Med Pharmacol Sci. 2005; 9:161-165.
    56. Chung SS, Choi HH, Cho YM, et al. Sp1 mediates repression of the resistin gene by PPARgamma agonists in 3T3-L1 adipocytes.Biochem Biophys Res Commun. 2006;348(1):253-8.
    57. Song H, Shojima N, Sakoda H, et al. Resistin is regulated by C/EBPs, PPARs, and signal-transducing molecules. Biochem Biophys Res Commun. 2002;299:291-298.
    58. Fukui Y, Motojima K. Expression of resistin in the adipose tissue is modulated by various factors including peroxisome proliferator-activated receptor α. Diabetes Obes Metab. 2002;4:342-345.
    59. Way JM, Gorgun CZ, Tong Q, et al. Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists. J Biol Chem. 2001;276:25651-25653.
    60. Moore GB, Chapman H, Holder JC, et al. Differential regulation of adipocytokine mRNAs by rosiglitazone in db/db mice.Biochem Biophys Res Commun. 2001;286:735-741.
    61. Samaha FF, Szapary PO, Iqbal N, et al Effects ofrosiglitazone on lipids, adipokines, and inflammatory markers in nondiabetic patients with low high-density lipoprotein cholesterol and metabolic syndrome Arterioscler Thromb Vasc Biol. 2006;26(3):624-30.
    62. Wang TD, Chen WJ, Cheng WC, et al. Relation of improvement in endothelium-dependent flow-mediated vasodilation after rosiglitazone to changes in asymmetric dimethylarginine, endothelin-1, and C-reactive protein in nondiabetic patients with the metabolic syndromeAm J Cardiol. 2006;98(8):1057-6
    63. Dolezalova R, Haluzik M, Bosanska L, et al. Effect of PPAR-gama agonist treatment on markers of endothelial dysfunction in patients with type 2 diabetes mellitus. Physiol Res. 2006 Nov 6; [Epub ahead of print]
    64. Bogacka I, Xie H, Bray GA, et al. The effect ofpioglitazone on peroxisome proliferator-activated receptor-gamma target genes related to lipid storage in vivo. Diabetes Care. 2004;27(7): 1660-7
    65. Haugen F, Jorgensen A, Drevon CA, et al. Inhibition by insulin of resistin gene expression in 3T3-L1 adipocytes. FEBS Lett .2001;507:105-108
    66. Zhong Q, Lin CY, Clarke KJ, et al.. Endothelin-1 inhibits resistin secretion in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2002;296:383-387.
    67. McTernan PG, Fisher FM, Valsamakis G, et al. Resistin and type 2 diabetes: regulation of resistin expression by insulin and rosiglitazone and the effects of recombinant resistin on lipid and glucose metabolism in human differentiated adipocytes. J Clin Endocrinol Metab. 2003;88(12):6098-106.
    68. Rea R, Donnelly R. Effects of metformin and oleic acid on adipocyte expression of resistin. Diabetes Obes Metab. 2006 ;8(1): 105-9.
    69. Jung HS, Youn BS, Cho YM, et al. The effects of rosiglitazone and metformin on the plasma concentrations of resistin in patients with type 2 diabetes mellitus. Metabolism. 2005 ;54(3):314-20
    70. Ichida Y, Hasegawa G, Fukui M,et al. Effect of atorvastatin on in vitro expression of resistin in adipocytes and monocytes/macrophages and effect of atorvastatin treatment on serum resistin levels in patients with type 2 diabetes. Pharmacology. 2006;76(1):34-9
    71. von Eynatten M, Schneider JG, et al. Adipocytokines as a Novel Target for the Anti-inflammatory Effect of Atorvastatin in Patients With Type 2 Diabetes.Diabetes Care. 2005;28(3):754-5.
    72. Shetty,GS, Economides PA, Horton ES, Mantzoros CS, Veves A. Circulating Adiponectin and Resistin Levels in Relation to Metabolic Factors, Inflammatory Markers, and Vascular Reactivity in Diabetic Patients and Subjects at Risk for Diabetes. Diabetes Care 2004; 27:2450-7. [PMID: 15451915]
    73. Chu CS, Lee KT, Lee MY, et al.Effects of atorvastatin and atorvastatin withdrawal on soluble CD40L and adipocytokines in patients with hypercholesterolaemia. Acta Cardiol. 2006;61(3):263-2
    1. Conti CR. Updated pathophysiologic concepts in unstable coronary artery disease. Am Heart J. 2001;141(2 Suppl):S12-4.
    2. Libby,P. Current Concepts of the Pathogenesis of the Acute Coronary Syndromes. Circulation. 2001 ;104:365
    3. Choi YH, Lee WH, Lee Y, Correlation between monocyte and T-lymphocyte activation markers in patients with acute coronary syndrome. Jpn Heart J. 2000;41 (5):605-15
    4. Lee WH, Lee Y, Jeong JO, Activation of CD14 on circulating monocytes in patients with acute coronary syndrome. Int J Cardiol. 2001 ;80(2-3): 135-42.
    5. Zal B, Kaski JC, Arno G,et al. Heat-shock protein 60-reactive CD4+CD28null T cells in patients with acute coronary syndromes. Circulation. 2004; 109(10): 1230-5.
    6. Naruko T, Ueda M, Haze K, et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation. 2002;106(23):2894-900.
    7. Garlichs CD, Eskafi S, Cicha I,et al. Delay ofneutrophil apoptosis in acute coronary syndromes. J Leukoc Biol. 2004;75(5):828-35.
    8. M.B. Pepys and G.M. Hirschfield, C-reactive protein: a critical update, J Clin Invest. 2003; 111:1805-1812.
    9. E.T. Yeh, H.V. Anderson, V. Pasceri and J.T. Willerson, C-Reactive protein: linking inflammation to cardiovascular complications.Circulation .2001 ;104: 974-975.
    10. Liuzzo G, Santamaria M, Biasucci LM,et al. Persistent activation of nuclear factor kappa-B signaling pathway in patients with unstable angina and elevated levels of C-reactive protein evidence for a direct proinflammatory effect of azide and lipopolysaccharide-free C-reactive protein on human monocytes via nuclear factor kappa-B activation. J Am Coll Cardiol. 2007, 49(2):185-94.
    11. Liuzzo G,Biasucci LM,Gallimore JR, et al.The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina.N Engl J Med. 1994;331:417 -424.
    12. Morrow DA, Rifai N, Antman EM ,et al.C-reactive protein is a potent predictor of mortality independently of and in combination with troponin T in acute coronary syndromes: a TIMI 11A substudy. J Am Coil Cardiol, 1998,31:1460-1465.
    13. Arroyo-Espliguero R, Avanzas P, Cosin-Sales J, et al. C-reactive protein elevation and disease activity in patients with coronary artery disease. Eur Heart J. 2004;25(5):401-8
    14. Hillis GS, Terreglno C, Taggart P, et al. Elevated soluble p-selectin levels are associatedwith an increased risk of early adverse events in patients with presumed myocardial ischemia.Am Heart J,2002,143(2):235.41
    15. Mulvihill NT, Foley JB, Murphy R, et al. Evidence of prolonged inflammation in unstable angina and non-Q wave myocardial infarction.J Am Coil Cardiol.2000;36(4):1210-16.
    16. Henn V, Slupsky JR, GrCafe M et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998 ;391:591—4.
    17. Andre P, Nannizzi-Alaimo L, Prasad SK et al. Platelet-derived CD40L.The switch-hitting player of cardiovascular disease. Circulation 2002; 106:896—9.
    18. Peng DQ, Zhao SP, Li YF,et al. Elevated soluble CD40 ligand is related to the endothelial adhesion molecules in patients with acute coronary syndrome. Clin Chim Acta. 2002; 319(1): 19-26.
    19. Heeschen C, Dimmeler S, Harem CW et al. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med 2003;348:1104—11.
    20. Varo N, de Lemos JA, Libby P et al. Soluble CD40L. Risk prediction after acute coronary syndromes. Circulation 2003; 108: 1049—52.
    21. Ridker PM, Rifai N, Stampfer MJ,et al. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation.2000;101 (15): 1767- 72.
    22. Deliargyris EN, Raymond RJ, Theoharides TC,et al. Sites of interleukin-6 release in patients with acute coronary syndromes and in patients with congestive heart failure. Am J Cardiol. 2000;86(9):913-8.
    23. Lindmark E,Diderholm E,Wallentin L,et al. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease:effects of an early invasive or noninv- asive strategy. JAMA,2001,286(17) :2107-13.
    24. Balbay Y, Tikiz H,Baptiste RJ,et al. Circulating interleukin-1 beta, interleukin-6,tumor necrosis factor-alpha, and soluble ICAM-1 in patients with chronic stable angina and myocardial infarction. Angiology,2001,52(2): 109-14.
    25. Romuk E,Skrzep-poloczek B,Wojciechowska C,et al. Selectin-P and interleukin-8 plasma levels in coronary heart disease patients. Eur J Clin Invest,2002,32(9):657-61.
    26. Yamashita H, Shimada K, Seki E,et al. Concentrations of interleukins,interferon and C-reactive protein in stable and unstable angina pectories. Am J Cardiol,2003,91 (2): 133-6.
    27. Mallat Z,Henry P, Fressonnet R, et al. Increased plasma concentrations of interleukin-18 in acute coronary syndromes. Heart,2002,88(5):467-9.
    28. Blankenberg S,Tiret L,Bickel C,et al.Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation,2002,106(1):24-30.
    29. Shah PK, Falk E, Badimon JJ。 et al. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques . Potential role of matrix-degrading metalloproteinases and implications for plaque rupture.Circulation. 1995,92(6): 1565—1569.
    30. Kai H, Ikeda H, Yasukawa H, et al. Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes. J Am Coil Cardiol. 1998 ;32(2):368-72
    31. Brown DL, Hibbs MS, KeameyM, et al .Identification of92-kD gelatinase in human coronary atherosclerotic lesions. Association of active enzyme synthesis with unstable angina.Circulation. 1995,91 (8):2125-2131.
    32. Inokubo Y, Hanada H, Ishizaka H, Fukushi T, Kamada T. Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am Heart J 2001;141:211—7
    33. Blankenberg S, Rupprecht HJ, Poirier O,et al.; AtheroGene Investigators. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 2003; 107:1579—85.
    34. Gait SW,Lindemann S, AIlen L, et al.Outside-in signals delivered by matrix metalloproteinase -1 regulate platelet function.Circ Res,2002;90(10):1093—1099.
    35. Sawicki G, Sanders EJ, Salas E, et al. Localization and translocation of MMP-2 during aggregation of human platelets.Thromb Haemost. 1998,80(5):836-839.
    36. Brennan ML, Penn MS, Van Lente F et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med .2003 ;349:1595—604.
    37. Baldus S, Heeschen C, Meinertz T et al. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation. 2003;108:1440—5.
    38. Bayes-Genis A, Conover CA, Overgaard MT et al. Pregnancyassociated plasma protein A as a marker of acute coronary syndromes. N Engl J Med. 2001 ;345:1022—9.
    39. Lund J, Qin QP, Ilva T et al. Circulating pregnancy-associated plasma protein A predicts outcome in patients with acute coronary syndrome but no troponin I elevation. Circulation 2003; 108:1924—6.
    40. Qin QP, Laitinen P, Majamaa-Voltti K et al. Release patterns of pregnancy associated plasma protein A (PAPP-A) in patients with acute coronary syndromes. Scand Cardiovasc J 2002;36:358—61.
    41. Irfan L, Kailash B, Razzaque A. Interleukin-10: biology, role in inflammation and autoimmunity. Ann Allergy Asthma Immuno 1, 1997, 79: 469-484.
    42. M allat Z,Besnard S,DuriezM, et al. Protective role of interleukin-10 in athero sclerosis. Circ Res, 1999, 85 (8) : 17E-24E
    43. Pindeski-Oslund LJ, Hedrick CC, Olvera T, et al. Interleukin-10 blocks athero sclerosis events in vitro and in vivo. Arterioscler Thromb Vasc Biol, 1999, 19 (12) : 2847-2853.
    44. Lindmark E, Tenno T, Chen J, et al. IL-10 inhibits LPS-induced human monocyte tissue factor expression in whole blood. Br J Haematol. 1998; 102:597-604
    45. Pajkrt D ,Van der poll T. Intereukon-10 inhibits actvation of coagulation and fibrinolysis during human endotoxemia. Blood, 1997, 89(8): 2701-2705.
    46. Smith DA,Irving SD,Sheldon J,et al .Serum levels of the antiinfl ammatory cytokine interleukin-10 are decreased in patients with unstable angina.Circulation.2001, 104(7): 746-749.
    47. Kotajima N,Kimura T,Kanda T,et al. Reciprocal increase of circulating interleukin-10 and interleukin-6 in patients with acute myocardial infarction. Heart, 2001,86(6):704-705.
    48. Waehre T,Halvorsen B,Damas JK,et al. Inflammatory imbalance between 1L-I0 and TNFalpha in unstable angina potential plaque stabilizing effects of IL-10.Eur J Clin Invest, 2002,32(11):803-810。
    49. Heeschen C, Dimmeler S, Hanlln CW , et al. Serum level ofthe antiinflantmatory cytokine interleukin-10 is an important prognostic determinant in patients with acute coronary syndromes.Circulation.2003; 107(16):2109-2114.
    50. Anguera I,Miranda Guardiola F,Bosch X,el al.Elevation of serum levels of the anti-inflammatory cytokine interleukin-10 and decreased risk of coronary events in patients with unstable angina.Am Heart J.2002;144(5):811-817.
    51. Monaco C, Andreakos E ,Kiriakidis S, et al. Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. Proc Natl Acad Sci U S A .2004; 101: 5634—9.
    52. Wilson SH, Best PG ,Edwards WD, et al.Nuclear factor-kappaB immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris. Atherosclerosis.2002, 160:147—53.
    53. Ritchie ME. Nuclear factor-kappa B is selectively and markedly activated in humans with unstable angina pectoris. Circulation. 1998;98: 1707—13.
    54. Cominacini L, Anselmi M, Garbin U, et al. Enhanced plasma levels of oxidized low-density lipoprotein increase circulating nuclear factor-kappa B activation in patients with unstable angina. JAm Coil Cardiol .2005; 46 : 799—806.
    55. Libby P, Ridker PM, Maseri A.Inflammation and atherosclerosis. Circulation,2002; 105(9): 1135—43.
    56. Biasucci LM, Liuzzo G, Ciervo A, et al. Antibody response to chlamydial heat shock protein 60 is strongly associated with acute coronary syndromes. Circulation. 2003; 107(24):3015-7.
    57. Chandra HR, Choudhary N, O'Neill C,et al. Chlamydia pneumoniae exposure and inflammatory markers in acute coronary syndrome (CIMACS). Am J Cardiol. 2001 ;88(3):214-8
    58. Rosenson RS, Tangney CC. Antiatherothrombotic properties of statins: implications for cardiovascular event reduction. JAMA. 1998;279:1643—50.
    59. Schonbeck U, Libby P. Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents? Circulation. 2004,109(21 Suppl 1):II18-26。
    60. Chang LT, Sun CK, Chiang CH, et al. Impact of simvastatin and losartan on antiinflammatory effect: in vitro study. J Cardiovasc Pharmacol. 2007;49(1):20-6.
    61. Kinlay S, Schwartz GG, Olsson AG, et al. High-dose atorvastatin enhances the decline in inflammatory markers in patients with acute coronary syndromes in the MIRACL study. 2003; 108(13): 1560-6.
    62. Heeschen C, Hamm CW, Laufs U, et al.Withdrawal of Statins Increases Event Rates in Patients With Acute Coronary Syndromes. Circulation. 2002; 105 (12): 1446-52
    63. Schieffer B, SchiefferE, Hilfiker-Kleiner D,et al. Expression of Angiotensin Ⅱ and Interleukin 6 in Human Coronary Atherosclerotic Plaques : potential implications for inflammation and plaque instability. Circulation. 2000;101:1372-8。
    64. Bosch J, Lonn E, Pogue J,et al. Long-term effects of ramipril on cardiovascular events and on diabetes: results of the HOPE study extension. Circulation. 2005;112(9): 1339-46.
    65. Ridker PM,Cushrnan M, Stampfer MJ,et al. Inflammation,aspirin, and risks of cardiovascular disease in apparently healthy men.N EnglJ Med, 1997,336:973—979.
    66. Stone AF, Mendall MA, Kaski JC,et al. Effect of treatment for Chlamydia pneumoniae and Helicobacter pylori on markers of inflammation and cardiac events in patients with acute coronary syndromes: South Thames Trial of Antibiotics in Myocardial Infarction and Unstable Angina (STAMINA). Circulation. 2002; 106(10): 1219-23
    67. Cercek B, Shah PK, Noc M,et al. Effect of short-term treatment with azithromycin on recurrent ischaemic events in patients with acute coronary syndrome in the Azithromycin in Acute Coronary Syndrome (AZACS) trial: a randomised controlled trial. Lancet. 2003; 361(9360):809-13
    68. Cannon CP, Braunwald E, McCabe CH,et al. Antibiotic treatment of Chlamydia pneumoniae after acute coronary syndrome. N Engl J Med. 2005 ;352(16): 1646-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700