含环形齐聚倍半硅氧烷聚合物的合成及其结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环形齐聚倍半硅氧烷(macrocyclic oligomeric silsesquioxanes, MOSS)是一类具有立体环状结构的齐聚倍半硅氧烷。其无机性质与多面体齐聚倍半硅氧烷(polyhedral oligomeric silsesquioxanes, POSS)类似,具有倍半硅氧烷骨架。MOSS可以具有不同Si-O单元数,并且具有广泛的可功能化特性。与POSS的合成相比,MOSS的合成具有方法简单,周期短,产率高的特点,并且对溶剂和环境的干燥程度要求较低。过去对这一类型齐聚倍半硅氧烷合成报道并不多见,对其官能化和应用方面的研究更是几无报道。本论文工作,研究了一系列MOSS的合成及官能化,并将它们用于无机/聚合物复合材料的制备。
     1.通过金属诱导自组装成环方法与一氢二甲基一氯硅烷的硅醚化反应合成了可自聚合的大环低聚倍半硅氧烷MOSS单体。在Karstedt催化剂存在下,实现了硅氢化加成聚合,得到了多孔性的聚倍半硅氧烷材料。研究结果表明MOSS环的尺寸极大地影响材料的多孔性。
     2.将含有十二个Si-H键的甲基十二元环MOSS与2-溴代异丁酸烯丙酯或2-氯丙酸烯丙酯进行硅氢化加成反应,成功得到了两种多官能度的原子转移自由基聚合(ATRP)引发剂。采用含十二个2-溴代异丁酸酯基的MOSS引发剂,在CuBr/PMDETA络合物催化下实现了丙烯酸叔丁酯的活性自由基聚合,接着在甲酸中水解,成功制备了两亲性的十二臂的聚丙烯酸“环刷”状聚合物。由于疏水的MOSS大环的存在使得该“环刷”状聚合物具有典型的两亲性,它们在水溶液可以组装成一系列“花”状的纳米结构,并具有不同的pH响应性,取决于每臂聚丙烯酸的链长。采用含十二个2-氯丙酸酯基的MOSS引发剂,在CuCl/Me6Tren催化下成功制备了两亲性的十二臂的聚异丙基丙烯酰胺“环刷”状聚合物。运用动态激光光散射方法研究这一类“环刷”状的聚异丙基丙烯酰胺在水溶液中的自组装行为和温度响应性。研究结果表明体系自组装行为和温度响应性具有极大的分子量依赖性,MOSS环的存在对聚异丙基丙烯酰胺链的构象变换具有阻碍作用。
     3.合成了六乙烯基六苯基的MOSS,并通过巯基-乙烯基(thiol-ene)点击化学反应(click chemistry)合成得到了含六个伯醇羟基的大分子引发剂,在辛酸亚锡催化下聚合己内酯,得到含有六臂聚己内酯的聚合物。将不同分子量的聚合物分别与α-CD络合得到超分子络合物。NMR氢谱表征结果说明当PCL臂长减短的时候,CL:α-CD络合比升高。这是由于MOSS大环存在位阻使靠近环的链段不易发生络合。依据同样方法,我们又合成了十二乙烯基十二三甲基硅基的MOSS,并加成巯基乙醇得到含十二个伯醇羟基的大分子引发剂,在辛酸亚锡催化下聚合己内酯,得到含有十二臂聚己内酯的环刷状聚合物。将不同分子量的聚合物分别与α-CD、γ-CD络合得到超分子络合物。NMR氢谱表征结果说明当PCL臂长减短的时候,CL:CD络合比升高。这是由于MOSS大环存在位阻使靠近环的链段不易发生络合。
     4.合成了带有乙烯基的MOSS分子,利用巯基-乙烯基(thiol-ene)点击化学反应(click chemistry)合成了含十二羟基与十二羧基的MOSS,研究了这两种功能化的MOSS与聚氧化乙烯(PEO)的相容性及分子间特殊相互作用。研究结果表明MOSS与高分子之间的相容性极大地取决于复合体系的分子间特殊相互作用,只有在有利的特殊相互作用存在条件下才能够通过物理混合的方法制备有机/无机纳米复合材料。
     5.利用硅氢化加成方法合成了一系列含环氧基的MOSS,将这些功能化的MOSS成功地引入热固性聚合物体系中,成功地制备了含MOSS的热固性环氧树脂和苯并噁嗪树脂纳米复合材料。运用动态力学分析(DMA)研究了这一类复合材料的所得材料的粘弹性行为,用热重分析(TGA)研究了材料的热稳定性。
Macrocyclic oligomeric silsesquioxanes (MOSS) are a novel class of silsesquioxanes with unique stereo cyclic structures. They have silsesquioxane frameworks and their inorganic properties are similar to POSS (polyhedral oligomeric silsesquioxanes) molecules. MOSSs have different numbers of Si-O repeat unit, and their functionalizations are very rich. Compared to the preparation of POSS, the preparation of MOSS is more convenient, short-term, high-yield and its need for dryness of solvents and environment is low. In the past, there are some literatures concerning the preparation of MOSS; however, there are few reports on functionalization and application of MOSS. In this contribution, a series of MOSS were prepared, functionalized, and then employed to prepare inorganic/polymer composites.
     1. Two self-polymerizable MOSS molecules were prepared via metal directed self-assembly and silylation with hydrodimethylchlorosilane. The hydrosilylative polymerizations were carried out with Karstedt catalyst and afford porous polysilsesquioxane material. It is suggested that the size of MOSS significantly influence the porosity.
     2. 12-membered MOSS containing reactive Si-H groups was modified with allyl 2-bromoisobutyrates and allyl 2-chloroisopropyrates via hydrosilylation reaction to generate two types of ATRP initiators. The former one was employed in ATRP polymerization of tert-butyl acrylates under CuBr/PMDETA catalyst and the obtained MOSS-PtBA hybrid brushes were hydrolyzed to amphiphilic MOSS-poly(acrylic aicd) brushes in formic acid. The MOSS-PAA brushes can assemble into a series of flower-like nanostructures and have different pH responsibilities. The latter one was employed in ATRP polymerization of N-isopropylacrylamide under CuCl/Me6Tren catalyst and generated amphiphilic 12-arm PNIPAM cyclic brushes. The self-assembly and temperature responsibility was investigated using dynamic laser scattering analysis. It is revealed that the self-assembly and temperature responsibility depend on the molecular weight significantly. The presence of MOSS restricts the reverse of conformation of PNIPAM chains.
     3. MOSS molecule containing six vinyl groups were prepared and carried out thiol-ene reaction with 2-mercaptoethanol to generate initiator with six primary hydroxyl groups. The initiator was used in polymerization ofε-caprolactone with Sn(Oct)2 catalyst to generate six-arm poly(ε-caprolactone). The brushes with different molecular weight were threaded intoα-cyclodextrins to generate supramolecular complexes. NMR results indicated that when the arm length decreased, the mole ratio of CL: CD would increase. It is judged that the topology and bulk MOSS cause difficulty on supramolecular complexation of CDs with PCL segments near the MOSS core. In the same way, MOSS molecule containing twelve vinyl groups was prepared and carried out thiol-ene reaction with 2-mercaptoethanol to generate initiator with twelve primary hydroxyl groups. The initiator was used in polymerization ofε-caprolactone with Sn(Oct)2 catalyst to afford 12-arm poly(ε-caprolactone). The brushes with different molecular weight were threaded intoα- orγ-cyclodextrins to generate supramolecular complexes. NMR results indicated that when the arm length decreased, the mole ratio of CL: CD would increase. It is judged that the topology and bulk MOSS cause difficulty on supramolecular complexation of CDs with PCL segments near the MOSS core.
     4. MOSS molecules containing twelve hydroxyl or carboxyl groups were prepared via thiol-ene reaction with 2-mercaptoethanol or 3-mercaptopropylic acid, respectively. The miscibility and the special interaction between these two MOSSs and PEO were investigated. It is suggested that the miscibility significantly depends on the special interaction, and only if enough strong special interaction presents, it will be able to prepare organic-inorganic nanocomposites via physical mixing.
     5. A series of MOSS molecules containing epoxy groups were synthesized by hydrosilylation reaction with allyl glycidyl ether and introduced into epoxy thermosets and polybenzoxazine thermosets, respectively. The viscoelastic behaviors were studied by dynamic mechanic analysis experiments, and the thermal stabilities were investigated by thermogravimetric analysis.
引文
1. Guido, K. Nanocomposite: Inorganic + organic. Chemie in Unserer Zeit 2005, 1, 46.
    2. Ogoshi, T;Chujo, Y. Organic-inorganic polymer hybrids prepared by the sol-gel method, Composite Interfaces 2005, 11, 8.
    3. Silveira, K.; Valeria, I.; Ycshida, P.; Nunes, S. Review on sol-gel derived coatings: process, techniques and optical applications, Journal of Materials Science & Technology 2002, 18, 3.
    4. Novak, B. Hybrid nanocomposite materials between inorganic glass and organic polymers.Advanced Materials 1993, 5, 422.
    5. LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J. Polymer-layered silicate nanocomposites: an overview. Applied Clay Science 1999, 15, 11.
    6. Carrado, K. Synthetic organo- and polymer-clays: preparation, characterization, and materials applications. Applied Clay Science, 2000, 17, 1.
    7. Alexangdre, M.; Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering 2000, 28, 1.
    8. Li, G.; Wang, L.; Ni, H.; Pittman, C. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. Journal of Inorganic and Organometallic Polymers 2001, 3, 123.
    9. Pan, G. R. Polyhedral oligomeric silsesquioxane, a review. Physical Properties of Polymers Handbook.
    10. Scott, D. W. Thermal rearrangement of branched-chain methylpolysiloxanes. Journal of the American Chemical Society 1946, 68, 356.
    11. Barry, A. J.; Daubt, W. H.; Gilkey, J. W. Crystalline organosilsesquioxanes. Journal of the American Chemical Society 1955, 77, 4248.
    12. Sprung, M. M.; Guenther, F. O. The partial hydrolysis of methyltriethoxysilane. Journal of the American Chemical Society 1955, 77, 3990.
    13. Brown, J. F.; Vogt, L. H. The partial hydrolysis of phethyltrimethoxysilane. Journal of the American Chemical Society 1964, 86, 1120.
    14. Brown, J. F.; Vogt, L. H. Crystalline methylsilsesquioxanes. Inorganic Chemistry 1963, 2, 189.
    15. Olsson, K. Improved preparation of octakis (alkylsilsesquioxanes). Arkive Kemie 1958, 13, 367.
    16. Olsson, K. Octa (arylsilsesquioxanes), (ArSi)8O12. I. Phenyl, 4-tolyl, and 1-naphthyl compounds. Arkive Kemie 1961, 17, 529.
    17. Olsson, K.; Gronwall, C. Octakis (arylsilsesquioxanes), (ArSi)8O12. II. Octa- and dodecakis (2-thienylsilsesquioxane) and their perbromo derivatives. Arkive Kemie 1964, 22, 237.
    18. Larsson, K. Crystal structure of octa (methylsilsesquioxane), (CH3SiO1.5)8. Arkive Kemie 1960, 16, 203.
    19. Larsson, K. Crystal structure of substituted octa(silsesquioxanes), (RSiO1.5)8 and (ArSiO1.5)8. Arkive Kemie 1960, 16, 209.
    20. Larsson, K. Crystal structure of (HSiO1.5)8. Arkive Kemie 1960, 16, 215.
    21. Wilberg, E.; Simmler, W. New class of silicones with a urotropine structure. Zeitschrift für anorganische und allgemeine Chemie 1955, 282, 330.
    22. Brown, J. F. The polycondensation of cyclohexylsilanetriol. Journal of the American Chemical Society 1965, 87, 4313.
    23. Brown, J. F. The polycondensation of phenylsilanetriol. Journal of the American Chemical Society 1965, 87, 4317.
    24. Frye, C. L.; Colhns, W. T. Oligomeric silsesquioxanes, (HSiO3/2)n. Journal of the American Chemical Society 1970, 92, 5586.
    25. Agaskar, P. A. New synthetic route to the hydridospherosiloxanes Oh-H8Si8O12 and D5h-H10Si10O15. Inorganic Chemistry 1991, 30, 2707.
    26. Agaskar, P. A.; Klemperer, W. G. A new route to trimethylsilylated spherosilicates. Synthesis and structure of [Si12O18](OSiMe3)12, D3h-[Si14O21](OSiMe3)14, and C2v-[Si14O21](OSiMe3)14. Journal of the American Chemical Society 1987, 109, 5554.
    27. Agaskar, P. A.; Klemperer, W. G. The higher hydridospherosiloxanes: synthesis and structures of HnSinO1.5n (n = 12, 14, 16, 18). Inorganic Chimie Acta 1995, 229, 355.
    28. Agaskar, P. A. Facile, high yield synthesis of functionalized spherosilicates: precursors of novel organolithic macromolecular materials. Inorganic Chemistry 1990, 29, 1603.
    29. Hasegawa, I.; Motojima, D. Dimethylvinylsilylation of Si8O208- silicate anion in methanol solutions of tetramethylammonium silicate. Journal of Organometallic Chemistry 1992, 441, 373.
    30. Hasegawa, I. Treatment of alkyltriethoxysilanes with Amberlyst 15 cation-exchange resin in the presence of hexamethyldisiloxane. Journal of Organometallic Chemistry 1988, 1, 31.
    31. Hasegawa, I. Co-hydrolysis products of tetraethoxysilane and methyltriethoxysilane in the presence of tetramethylammonium ions. Journal of Sol-Gel Science & Technology 1993, 1, 57.
    32. Feher, F. J.; Schwab, J. Phosphine-substituted silsesquioxanes as building blocks for organometallic gels. Organometallics 1995, 14, 4452.
    33. Feher, F. J.; Blanski, R. L. Olefin polymerization by vanadium-containing silsesquioxanes: synthesis of a dialkyl-oxo-vanadium (V) complex that initiates ethylene polymerization. Journal of the American Chemical Society 1992, 114, 5886.
    34. Feher, F. J.; Budzichowski, T. A. Syntheses of highly-functionalized polyhedral oligosilsesquioxanes. Journal of Organometallic Chemistry 1989, 373, 33.
    35. Feher, F. J.; Soulivong, D.; Eklund, A. G.; Wyndham, K. D. Cross-metathesis of alkenes with vinyl-substituted silsesquioxanes and spherosilicates: a new method for synthesizing highly-functionalized Si/O frameworks. Chemical Communications 1997, 1185.
    36. Feher, F. J.; Newman, D. A.; Walzer, J. F. Silsesquioxanes as models for silica surfaces. Journal ofthe American Chemical Society 1989, 111, 1741.
    37. Feher, F. J.; Budzichowski, A. T.; Blanski, R. L.; Weller, K. J.; Ziller, J. W. Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3] and [(c-C7H13)6Si6O7(OH)4]. Organometallics 1991, 10, 2526.
    38. Feher, F. J.; Newman, D. A. Enhanced silylation reactivity of a model for silica surfaces. Journal of the American Chemical Society 1990, 112, 1931.
    39. Feher, F. J.; Budzichowski, A. T. Heterosilsesquioxanes: synthesis and characterization of Group
    15 containing polyhedral oligosilsesquioxanes. Organometallics 1991, 10, 812.
    40. Feher, F. J.; Budzichowski, A. T.; Rahimian, K. Reactions of incompletely-condensed silsesquioxanes with pentamethylantimony: a new synthesis of metallasilsesquioxanes with important implications for the chemistry of silica surfaces. Journal of the American Chemical Society 1992, 114, 3859.
    41. Feher, F. J.; Phillips, S. H.; Ziller, J. W. Synthesis and structural characterization of a remarkably stable, anionic, incompletely condensed silsesquioxane framework. Chemical Communications 1997, 829.
    42. Feher, F. J.; Weller, K. J.; Ziller, J. W. Synthesis and characterization of an aluminosilsesquioxane framework that violates Loewenstein's rule. Journal of the American Chemical Society 1992, 114, 9686.
    43. Feher, F. J.; Blanski, R. L. Olefin polymerization by vanadium-containing silsesquioxanes: synthesis of a dialkyl-oxo-vanadium (V) complex that initiates ethylene polymerization. Journal of the American Chemical Society 1992, 114, 5886.
    44. Feher, F. J.; Budzichowski, A. T.; Ziller, J. W. Synthesis and characterization of gallium-containing silsesquioxanes. Inorganic Chemistry 1997, 36, 4082.
    45. Feher, F. J.; Walzer, J. F. Synthesis and characterization of vanadium-containing silsesquioxanes. Inorganic Chemistry 1991, 30, 1689.
    46. Laine, R. M.; Choi, J.; Harcup, J. Organic/inorganic hybrid composites from cubic silsesquioxanes. Journal of the American Chemical Society 2001, 123, 11420.
    47. Laine, R. M.; Tamaki, R.; Tanaka, Y. Octa(aminophenyl)silsesquioxane as a nanoconstruction site. Journal of the American Chemical Society 2001,123, 12416.
    48. Laine, R. M.; Zhang, C. Silsesquioxanes as synthetic platforms. II. Epoxy-functionalized inorganic-organic hybrid species. Journal of Organometallic Chemistry 1996, 521, 199.
    49. Laine, R. M.; Zhang, C.; Babonneau, F.; Bonhomme, C.; Soles, C.; Hristov, H. A.; Yee, A. F. Highly porous polyhedral silsesquioxane polymers. Synthesis and characterization. Journal of theAmerican Chemical Society 1998, 120, 8380.
    50. Laine, R. M.; Zhang, C.; Gravel, M. C. Octa(3-chloroammoniumpropyl) octasilsesquioxane. Applied Organometallic Chemistry 1998, 13, 329.
    51. Fukuda, T.; Koh, K.; Sugiyama, S.; Morinaga, T.; Ohno, K.; Tsujii, Y. Living radical polymerization by polyhedral oligomeric silsesquioxane-holding initiators: Precision synthesis of tadpole-shaped organic/inorganic hybrid polymers. Macromolecules 2004, 37, 8517.
    52. Fukuda, T.; Koh, K.; Sugiyama, S.; Morinaga, T.; Ohno, K.; Tsujii, Y.; Yamahiro, M. Precision synthesis of a fluorinated polyhedral oligomeric silsesquioxane-terminated polymer and surface characterization of its blend film with poly(methyl methacrylate). Macromolecules 2005, 38, 1264.
    53. www. Hybrid Plastics. com
    54. Molodtsova, Y. A.; Pozdnyakova, Y. A.; Blagodatskikh, I. V.; Peregudov, A. S.; Shchegolikhina, O. I. Hydrolytic condensation of trialkoxysilanes in the presence of alkali metal and copper (II) ions. Influence of the reaction conditions on the structure of Cu/M organosiloxanes. Russian Chemical Bulletin, International Edition 2003, 52, 2722.
    55. Shchegolikhina, O. I.; Igonin, V. A.; Molodtsova, Y. A.; Pozdnyakova, Y. A.; Zhdanov, A. A.; Strelkova, T. V.; Lindeman, S. V. Synthesis and characterization of large stereoregular organosiloxane cycles. Journal of Organometallic Chemistry 1998, 562, 141.
    56. Sergienko, N. V.; Trankina, E. S.; Pavlov, V. I.; Zhdanov, A. A.; Lyssenko, K. A.; Antipin, M. Y.; Akhmet’eva, E. I. Reactions of cage-like copper/sodium organosiloxanes with CuCl2. Russian Chemical Bulletin, International Edition 2004, 53, 351.
    57. Molodtsova, Y. A.; Pozdnyakova, Y. A.; Lyssenko, K. A.; Blagodatskikh, I. V.; Katsoulis, D. E.; Shchegolikhina, O. I. A new approach to the synthesis of cage-like metallasiloxanes. Journal of Organometallic Chemistry 1998, 571, 31.
    58. Shchegolikhina, O. I.; Pozdnyakova, Y. A.; Molodtsova, Y. A.; Korkin, S. D.; Bukalov, S. S.; Leites, L. A.; Lyssenko, K. A.; Peregudov, A. S.; Auner, N.; Katsoulis, D. E. Synthesis and properties of stereoregular cyclic polysilanols: cis-[PhSi(O)OH]4, cis-[PhSi(O)OH]6, and Tris-cis-tris-trans-[PhSi(O)OH]12. Inorganic Chemistry 2002, 41, 6892.
    59. Pozdnyakova, Y. A.; Lyssenko, K. A.; Blagodatskikh, I. V.; Auner, N.; Katsoulis, D. E.; Shchegolikhina, O. I. Alkali-metal-directed hydrolytic condensation of trifunctional phenylalkoxysilanes. European Journal of Inorganic Chemistry 2004, 1253.
    60. Shchegolikhina, O.; Pozdnyakova, Y.; Antipin, M.; Katsoulis, D.; Auner, N.; Herrschaft, B. Synthesis and structure of sodium phenylsiloxanolate. Organometallics 2000, 19, 1077.
    61. Mortalo, C.; Caneschi, A.; Cornia, A.; Diana, E.; Faranda, S.; Marvaud, V.; Pizzotti, M.; Shchegolikhina, O. I.; Zucchi, C.; Paly, G. New cyclosiloxanolate cluster complexes of transition metals. Journal of Cluster Science 2007, 1, 217.
    62. Cornia, A.; Fabretti, A. C.; Gavion, G.; Zucchi, C.; Pizzotti, M.; Vizi-Orosz, A.; Shchegolikhina, O. I.; Palyi, G.; Pozdnyakova, Y. A. Heterobimetallic cyclosiloxanolate sandwich clusters. Journal of Cluster Science 1998, 3, 295.
    63. Pashchenko, V.; Brendel, B.; Wolf, B.; Lang, M.; Lyssenko, K. A.; Shchegolikhina, O. I.; Molodtsova, Y. A.; Zherlitsyna, L.; Auner, N. Synthesis, structure and magnetic properties of a novel linear CuII-trimer complex. European Journal of Inorganic Chemistry 2005, 4617.
    64. Abbati, G. L.; Caneschi, A.; Cornia, A.; Fabretti, A.; Pozdniakova, Y.; Shchegolikhina, O. I. Towards stepwise cluster assembly: a decacopper (II) complex obtained by controlled expansion of a metallasiloxane cage. Angewandte Chemie, International Edition 2002, 23, 4517.
    65. Pozdnyakova, Y. A.; Lyssenko, K. A.; Korlyukov, A.; Blagodatskikh, I.; Auner, N.; Katsoulis, D.; Shchegolikhina, O. I. Alkali-metal-directed hydrolytic condensation of trifunctional phenylalkoxysilanes. European Journal of Inorganic Chemistry 2004, 1253.
    66. Cornia, A.; Fabretti, A.; Gatteschi, D.; Palyi, G.; Rentschler, E.; Shchegolikhina, O. I.; Zhdanov, A. Molecule-based magnets: ferro- and antiferromagnetic interactions in Nickel (II) cyclohexasiloxanolate sandwich complexes. Inorganic Chemistry 1995, 34, 5383.
    67. Lascialfari, A.; Gatteschi, D.; Cornia, A. Nuclear-spin relaxation in magnetic rings. Physical Review B 1998, 2, 1115.
    68. Rentschler, E.; Gatteschi, D.; Cornia, A.; Fabretti, A.; Shchegolikhina, O. I.; Zhdanov, A. Molecule-based magnets: ferro- and antiferromagnetic interactions in Copper (II)- polyorganosiloxanolate clusters. Inorganic Chemistry 1996, 35, 4427.
    69. Pachchenko, V.; Lang, M.; Wolf, B.; Zherlitsyna, L.; Auner, N.; Shchegolikhina, O. I.; Pozdnyakova, Y. A.; Schutz, F.; Kopietz, P.; Kollar, Structural and magnetic investigations on new molecular quantum rings. M. C. R. Chimie 2007, 10, 89.
    70. Polyhedral Oligosilsesquioxanes and Heterosilsesquioxanes. http://www.gelest.com/Library/
    71. Makarova, N. N.; Volkova, L. M.; Chizhova, N. V.; Matukhina, E. V.; Kaznacheev, A. V.; Petrovskii, P. V. New stereoregular liquid-crystalline phenylcyclosiloxanes. Russian Chemical Bulletin, International Edition 2003, 52, 2397.
    72. Laine, R. M.; Choi, J.; Lee, I. Organic-inorganic nanocomposites with completely defined interfacial interactions. Advanced Materials 2001, 13, 800.
    73. Choi, J.; Kim, S. G.; Laine, R. M. Organic/inorganic hybrid epoxy nanocomposites from aminophenylsilsesquioxanes. Macromolecules 2004, 37, 99.
    74. Liu, H.; Zheng, S.; Nie, K. Morphology and thermomechanical properties of organic-inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane. Macromolecules 2005, 38, 5088.
    75. Ni, Y.; Zheng, S.; Nie, K. Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer 2004, 45, 5557.
    76. Chen, W. Y.; Wang, Y. Z.; Kuo, S. W.; Huang, C. F.; Tung, P. H.; Chang, F. C. Thermal and dielectric properties and curing kinetics of nanomaterials formed from POSS-epoxy and meta-phenylenediamine. Polymer 2004, 45, 6897.
    77. Lee, L. H.; Chen, W. C. Organic-inorganic hybrid materials from a new octa (2, 3-epoxypropyl) silsesquioxane with diamines. Polymer 2005, 46, 2163.
    78. Abad, M. J.; Barral, L.; Fasce, D. P.; Williams, R. J. Epoxy networks containing large mass fractions of a monofunctional polyhedral oligomeric silsesquioxane (POSS). Macromolecules 2003, 36, 3128.
    79. Pellice, S.; Fasce, D.; Williams R. Properties of epoxy networks derived from the reaction of diglycidyl ether of bisphenol A with polyhedral oligomeric silsesquioxanes bearing OH-functionalized organic substituents. Journal of Polymer Science, Part B: Polymer Physics 2003, 41, 1451.
    80. Strachota, A.; Whelan, P.; Kriz, J.; Brus, J.; Urbanova, M.; Slouf, M.; Matejka, L. Formation of nanostructured epoxy networks containing polyhedral oligomeric silsesquioxane (POSS) blocks. Polymer 2007, 48, 3041.
    81. Fu, B.; Namani, M.; Lee, A. Influence of phenyltrisilanol polyhedral silsesquioxane on properties of epoxy network glasses. Polymer 2003, 44, 7739.
    82. Lu, T.; Chen, T.; Liang, G. Synthesis, thermal properties, and flame retardance of the epoxy-silsesquioxane hybrid resins. Polymer Engneering and Science 2007, 47, 225.
    83. Choi, J.; Lee, I.; Yee, A. F.; Laine, R. M. Organic/inorganic hybrid composites from cubic silsesquioxanes. Epoxy resins of octa (dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules 2003, 36, 5666.
    84. Zhang, Z. P.; Liang, G. Z.; Ren, P. G. Thermodegradation kinetics of epoxy/DDS/POSS system. Polymer Composites 2007, 28, 755.
    85. Zhang, Z. P.; Liang, G. Z.; Wang, X. L. The effect of POSS on the thermal properties of epoxy. Polymer Bulletin 2007, 58, 1013.
    86. Kim, G. M.; Qin, H.; Fang, X.; Sun, F. C.; Mather, P. T. Hybrid epoxy-based thermosets based on polyhedral oligosilsesquioxane: cure behavior and toughening mechanisms. Journal of Polymer Science, Part B: Polymer Physics 2003, 41, 3299.
    87. Sulaiman, S.; Brick, C. M.; De Sana, C. M.; Katzenstein, J. M.; Laine, R. M.; Basheer R. A. Tailoring the global properties of nanocomposites. Epoxy resins with very low coefficients of thermal expansion. Macromolecules 2006, 39, 5167.
    88. Xiao, F.; Sun, Y. Y.; Xiu, Y. H.; Wong, C. P. Blended hybrids based on silsesquioxane-OH and epoxy resins. Journalof Applied Polymer Science 2007, 104, 2133.
    89. Lee, L. H.; Pellice, W. C. Organic-inorganic hybrid materials from a new octa (2, 3-epoxypropyl) silsesquioxane with diamines. Polymer 2005, 46, 2163.
    90. Barral, L.; Diez, F. J.; Garcia-Garabal, S.; Lopez, J.; Montero, B. Thermodegradation kinetics of a hybrid inorganic-organic epoxy system. European Polymer Journal 2005, 41, 1662.
    91. Lu, T. L.; Liang, G. Z.; Peng, Y. L.; Chen T. Blended hybrids based on silsesquioxane-OH and epoxy resins. Journalof Applied Polymer Science 2007,106, 4117.
    92. Zhang, Z. P.; Gu, A. J.; Liang, G. Z. ; Ren, P. G. Thermo-oxygen degradation mechanisms of POSS/epoxy nanocomposites. Polymer Degradation and Stability 2007, 92, 1986.
    93. Lin, H. C.; Kuo, S. W.; Huang, C. F.; Chang, F. C. Thermal and surface properties of phenolic nanocomposites containing octaphenol polyhedral oligomeric silsesquioxane. Macromolecular Rapid Communications 2006, 27, 537.
    94. Kuo, S. W.; Lin, H. C.; Huang, W. J.; Huang, C. F.; Chang, F. C. Hydrogen bonding interactions and miscibility between phenolic resin and octa(acetoxystyryl) polyhedral oligomeric silsesquioxane (AS-POSS) nanocomposites. Journal of Polymer Science, Part B: Polymer Physics 2006, 46, 673.
    95. Lee, Y. J.; Kuo, S. W.; Huang, W. J.; Lee, H. Y.; Chang, F. C. Miscibility, specific interactions, and self-assembly behavior of phenolic/polyhedral oligomeric silsesquioxane hybrids. Journal of Polymer Science, Part B: Polymer Physics 2004, 42, 1127.
    96. Liu, Y. H.; Zheng, S. X. Organic-inorganic hybrid nanocomposites involving novolac resin and polyhedral oligomeric silsesquioxane. Reactive & Functional Polymers 2007, 67, 627.
    97. Zhang, Y.; Lee, S. H.; Yoonessi, M.; Liang, K. W.; Pittman, C. U. Phenolic resin-trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: Structure and properties. Polymer 2006, 47, 2984.
    98. Li, W. W.; Liu, F.; Wei, L. H.; Zhao, T. Allylated novolak/4, 4'-bismaleimidodiphenylmethane resin containing polyhedral oligomeric silsesquioxane: preparation, morphology and thermal stability.Journal of Applied Polymer Science 2007, 104, 3903.
    99. Zhang, Y. D.; Lee, S.; Yoonessi, M.; Toghiani, H.; Pittman, C. Phenolic resin–trisilanolphenyl polyhedral oligomeric silsesquioxane(POSS) hybrid nanocomposites: Structure and properties. Polymer 2006, 47, 2984.
    100. Lee, Y. J.; Kuo, S. W.; Su, Y. C.; Chen, J. K.; Tu, C. W. ; Chang, F. C. Comparing emulsion polymerization of methacrylate-monomers with different hydrophilicity. Polymer 2005, 46, 1017.
    101. Lee, Y. J.; Kuo, S. W.; Huang, J. M.; Chen, J. K.; Chang, F. C. Synthesis and characterizations of a vinyl-terminated benzoxazine monomer and its blending with polyhedral oligomeric silsesquioxane (POSS). Polymer 2005, 46, 2320.
    102. Chen, Q.; Xu, R. W.; Zhang, J.; Yu, D. S. Polyhedral oligomeric silsesquioxane (POSS) nanoscale reinforcement of thermosetting resin from benzoxazine and bisoxazoline. Macromolecular Rapid Communications 2005, 26, 1878.
    103. Xu, R. W.; Zhang, J.; Yu, D. S. A novel poly-benzoxazinyl functionalized polyhedral oligomeric silsesquioxane and its nanocomposite with polybenzoxazine. European Polymer Journal 2007, 43, 743
    104. Liu, Y.; Zheng, S. Inorganic-organic nanocomposites of polybenzoxazine with octa (propylglycidyl ether) polyhedral oligomeric silsesquioxane. Journal of Polymer Science, Part A: Polymer Chemistry 2006, 44, 1168.
    105. Li, G. Z.; Wang, L.; Toghiani, H.; Daulton, T. L.; Pittman, C. U. Viscoelastic and mechanical properties of vinyl ester (VE)/multifunctional polyhedral oligomeric silsesquioxane (POSS) nanocomposites and multifunctional POSS-styrene copolymers. Polymer 2002, 43, 4167.
    106. Zhang, X. Z.; Song, Y. J.; Huang, Y. D. Properties of silsesquioxane coating modified carbon fiber/polyarylacetylene composites. Composites Science and Technology 2007, 67, 3014.
    107. Oaten, M.; Choudhury, N. R. Silsesquioxane-urethane hybrid for thin film applications. Macromolecules 2005, 38, 6392.
    108. Nanda, A. K.; Wicks, D. A.; Madbouly, S. A.; Otaigbe, J. U. Nanostructured polyurethane/POSS hybrid aqueous dispersions prepared by homogeneous solution polymerization. Macromolecules 2006, 39, 7037.
    109. Liu, H. Z.; Zheng, S. X. Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane. Macromolecular Rapid Communications 2005, 26, 196.
    110. Fu, B.X.; Hsiao, B.S.; Pagola, S.; Stephens, P.; White, H. Structural development during deformation of polyurethane containing polyhedral oligomeric silsesquioxanes (POSS) molecules. Polymer 2001, 42, 599.
    111. Zhang, S.L.; Zou, Q. Z.; Wu, L. M. Preparation and characterization of polyurethane hybrids from reactive polyhedral oligomeric silsesquioxanes. Macromolecular Materials and Engineering 2006, 291, 895.
    112. Efrat, T.; Dodiuk, H.; Kenig, S.; McCarthy, S. Nanotailoring of polyurethane adhesive by polyhedral oligomeric silsesquioxane (POSS). Journal of Adhesion Science and Technology 2006, 12, 1413.
    113. Kannan, R. Y.; Salacinski, H.J.; Odlyha, M.; Butler, P.E.; Seifalian, A. M. The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes: an in vitro study. Biomaterials 2006, 27, 1971.
    114. Leu, C. M.; Chang, Y. T.; Wei, K. H. Synthesis and dielectric properties of polyimide-tethered polyhedral oligomeric silsesquioxane (POSS) nanocomposites via POSS-diamine. Macromolecules 2003, 36, 9122.
    115. Leu, C. M.; Reddy, G. M.; Shu, C. F.; Wei, K. H. Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites. Chemistry of Materials 2003, 15, 2261.
    116. Leu, C. M.; Chang, Y. T.; Wei, K. H. Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chemistry of Materials 2003, 15, 3721.
    117. Chen, W. Y.; Ho, K. S.; Hsieh, T. H.; Chang, F. C.; Wang, Y. Z. Simultaneous preparation of PI/POSS semi-IPN nanocomposites. Macromolecular Rapid Communications 2006, 27, 452.
    118. Ye, Y. S.; Chen, W. Y.; Wang, Y. Z. Synthesis and properties of low-dielectric-constant polyimides with introduced reactive fluorine polyhedral oligomeric silsesquioxanes. Journal of Polymer Science, Part A: Polymer Chemistry 2006, 44, 5391.
    119. Lee, Y. J.; Huang, J. M.; Wei, K. H.; Lu, J. S.; Chang, F. C. Low-dielectric, nanoporous polyimide films prepared from PEO-POSS nanoparticles. Polymer 2005, 46, 10056.
    120. Lee, Y. J.; Huang, J. M.; Wei, K. H.; Lu, J. S.; Chang, F. C. Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications. Polymer 2005, 46, 173.
    121. Huang, J. C.; Xiao, Y.; Mya, K. Y.; Liu, X. M.; He, C. B. Thermomechanical properties of polyimide-epoxy nanocomposites from cubic silsesquioxane epoxides. Journal of Materials Chemistry, 2004, 14, 2858.
    122. Huang, J. C.; He, C. B.; Liu, X. M.; Xu, J. W.; Tay, C.; Chow, S. Y. Organic-inorganic nanocomposites from cubic silsesquioxane epoxides: direct characterization of interphase, andthermomechanical properties. Polymer 2005, 46, 7018.
    123. Huang, J. C.; Lim, P. C.; Shen, L.; Kumari, P.; He, C. B. Cubic silsesquioxane-polyimide nanocomposites with improved thermomechanical and dielectric properties. Acta Materialia 2005, 53, 2395.
    124. Zheng, L.; Farris, R. J.; Coughlin, E. B. Novel polyolefin nanocomposites: synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules 2001, 34, 8034.
    125. Zheng, L.; Waddon, A. J.; Farris, R. J.; Coughlin, E. B. X-ray characterizations of polyethylene polyhedral oligomeric silsesquioxane copolymers. Macromolecules 2002, 35, 2375.
    126. Joshi, M.; Butola, B. S.; Simon, G.; Kukaleva, N. Rheological and viscoelastic behavior of HDPE/Octamethyl-POSS nanocomposites. Macromolecules 2006, 39, 1839.
    127. Joshi, M.; Butola, B. S. Isothermal crystallization of HDPE/octamethyl polyhedral oligomeric silsesquioxane nanocomposites: role of POSS as a nanofiller. Journal of Applied Polymer Science 2007, 105, 978.
    128. Joshi, M.; Butola, B. S. Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer 2004, 45, 4953.
    129. Fu, B.; Gelfer, M.; Hsiao, B.; Phillips, S.; Viers, B.; Blanski, R.; Ruth, P. Physical gelation in ethylene-propylene copolymer melts induced by polyhedral oligomeric silsesquioxane (POSS) molecules. Polymer 2003, 44, 1499.
    130. Fu, B.; Yang, L.; Somani, R.; Zong, S.; Gelfer, M.; Hsiao, B.; Phillips, S.; Blanski, R.; Ruth, P. Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. Journal of Polymer Science, Part B: Polymer Physics 2001, 39, 2727.
    131. Chen, J.; Yao, B.; Su, W.; Yang, Y. Isothermal crystallization behavior of isotactic polypropylene blended with small loading of polyhedral oligomeric silsesquioxane. Polymer 2007, 48, 1756.
    132. Pracella, M.; Chionna, D.; Fina, A.; Tabuani, D. Polypropylene-POSS nanocomposites: morphology and crystallization behaviour. Macromolocular Symposium 2006, 234, 59.
    133. Fina, A.; Tabuani, D.; Frache, A.; Camino, G. Polypropylene-polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer 2005, 46, 7855.
    134. Baldi, F.; Bignotti, F.; Fina, A.; Tabuani, D.; Theonis, R. Mechanical characterization of polyhedral oligomeric silsesquioxane/polypropylene blends. Journal of Applied Polymer Science 2007,105, 935.
    135. Misra, R.; Fu, B.; Morgan, S. Surface energetics, dispersion, and nanotribomechanical behavior ofPOSS/PP hybrid nanocomposites. Journal of Polymer Science, Part B: Polymer Physics 2007, 45, 2441.
    136. Fina, A.; Tabuani, D.; Abbenhuis, H.; Camino, G. Metal functionalized POSS as fire retardants in polypropylene. Polymer Degradation and Stability 2006, 91, 2275.
    137. Fina, A.; Tabuani, D.; Frache, A.; Camino, G. Polypropylene metal functionalized POSS nanocomposites: A study by thermogravimetric analysis. Polymer Degradation and Stability 2006, 91, 1064.
    138. Fina, A.; Carniato, F.; Tabuani, D.; Boccaleri, E.; Camino, G. Synthesis and characterisation of metal isobutylsilsesquioxanes and their role as inorganic-organic nanoadditives for enhancing polymer thermal stability. European Journal of Inorganic Chemistry 2007, 585.
    139. Soong, S. Y.; Cohen, R. E.; Boyce, M. C.; Mulliken, A. D. Rate-dependent deformation behavior of POSS-filled and plasticized poly(vinyl chloride). Macromolecules 2006, 8, 2900.
    140. Soong, S. Y.; Cohen, R. E.; Boyce, M. C. Polyhedral oligomeric silsesquioxane as a novel plasticizer for poly (vinyl chloride). Polymer 2007, 48, 1410.
    141. Haddad, T. S.; Lichtenhan, J. D. Hybrid organic-inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules 1996, 22, 7302.
    142. Haddad, T. S.; Phillips, S. Polyhedral oligomeric silsesquioxane (POSS)-styrene macromers. Journal of Inorganic and Organometallic Polymers 2002, 3, 155.
    143. Uribe, A. R.; Mather, P. T.; Haddad, T. S.; Lichtenhan, J. D. Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers. Journal of Polymer Science, Part B: Polymer Physics 1998, 36, 1857.
    144. Xu, H.; Yang, B. H.; Wang, J. F.; Guang, S. Y.; Li, C. Preparation, Thermal Properties, and Tg Increase mechanism of poly(acetoxystyrene-co-octavinyl-polyhedral oligomeric silsesquioxane) hybrid nanocomposites. Macromolecules 2005, 25, 10455.
    145. Hao, N.; Bhning, M.; Schonhals, A. Dielectric properties of nanocomposites based on polystyrene and polyhedral oligomeric phenethyl-silsesquioxanes. Macromolecules 2007, 26, 9672.
    146. Song, X. Y.; Geng, H. P.; Li, Q. F. The synthesis and characterization of polystyrene/magnetic polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer 2006, 47, 3049.
    147. Hosaka, N.; Torikai, N.; Otsuka, H.; Takahara, A. Structure and dewetting behavior of polyhedral oligomeric silsesquioxane-filled polystyrene thin films. Langmuir 2007, 2, 902.
    148. Drazkowski, D. B.; Lee, A.; Haddad, T. S.; Cookson, D. J. Chemical substituent effects on morphological transitions in styrene-butadiene-styrene triblock copolymer grafted with polyhedral oligomeric silsesquioxanes. Macromolecules 2006, 39, 1854.
    149. Gao, F.; Tong, Y. H.; Schricher, S. R.; Culbertson, B. M. Evaluation of neat resins based on methacrylates modified with methacryl-POSS, as potential organic-inorganic hybrids for formulating dental restoratives. Polymers for Advanced Technologies 2001, 12, 355.
    150. Amir, N.; Levina, A.; Silverstein, M. S. Nanocomposites through copolymerization of a polyhedral oligomeric silsesquioxane and methyl methacrylate. Journal of Polymer Science, Part A: Polymer Chemistry 2007, 45, 4264.
    151. Kopesky, E.; Haddad, T.; Cohen, R.; Mckinley, G. Thermomechanical properties of poly (methyl methacrylate)s containing tethered and untethered polyhedral oligomeric silsesquioxanes. Macromolecules 2004, 37, 8992.
    152. Kopesky, E. T.; Cohen, R. E.; Mckinley, G. H. oughened poly (methyl methacrylate) nanocomposites by incorporating polyhedral oligomeric silsesquioxanes. Polymer 2006, 47, 299.
    153. Kopesky, E.; Haddad, T.; Cohen, R.; Mckinley, G. Miscibility and viscoelastic properties of acrylic polyhedral oligomeric silsesquioxane-poly (methyl methacrylate) blends. Polymer 2005, 46, 4743.
    154. Fong, H.; Dickens, S. H.; Flaim, G. M. Evaluation of dental restorative composites containing polyhedral oligomeric silsesquioxane methacrylate. Dental Materials 2005, 21, 520.
    155. Wheeler, P. A.; Fu, B. X.; Lichtenhan, J. D.; Jia, W. T. Mathias, L. J. Incorporation of metallic POSS, POSS copolymers, and new functionalized POSS compounds into commercial dental resins. Journal of Applied Polymer Science 2006, 102, 2856.
    156. Liu, Y. H.; Yang, X. T.; Zhang, W. A.; Zheng, S. X. Star-shaped poly (ε-caprolactone) with polyhedral oligomeric silsesquioxane core. Polymer 2006, 47, 6814.
    157. Ni, Y.; Zheng, S. X. Supramolecular inclusion complexation of polyhedral oligomeric silsesquioxane capped poly (ε-caprolactone) withα-cyclodextrin. Journal of Polymer Science, Part A: Polymer Chemistry 2007, 45, 1247.
    158. Goffina, A.; Duquesne, E.; Moins, S.; Alexandre, M.; Dubois, P. New organic-inorganic nanohybrids via ring opening polymerization of (di) lactones initiated by functionalized polyhedral oligomeric silsesquioxane. European Polymer Journal 2007, 43, 4103.
    159. Zhang, Y. Q.; Schiraldi, D. A. Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer 2005, 46, 11640.
    160. Song, L.; He, Q. L.; Hu, Y.; Chen, H.; Liu, L. Study on thermal degradation and combustion behaviors of PC/POSS hybrids. Polymer Degradation and Stability 2008, 93, 627.
    161. Ning, H.; Bohning, M.; Goering, H.; Schonhals, A. Nanocomposites of polyhedral oligomeric phenethylsilsesquioxanes and poly (bisphenol carbonate) as investigated by dielectric spectroscopy.Macromolecules 2007, 40, 2955.
    162. Zeng, L; Kumar, S.; Schiraldi, D. A.; Gonzalez, R. I. Reinforcement of poly (ethylene terephthalate) fibers with polyhedral oligomeric silsesquioxanes (POSS). High Performance Polymers 2005, 17, 403.
    163. Yoon, K.; Polk, M.; Park, J.; Min, B.; Schiraldi, D. Properties of poly (ethylene terephthalate) containing epoxy-functionalized polyhedral oligomeric silsesquioxane. Polymer International 2005, 54, 47.
    164. Zhou, Z.; Yin, N.; Zhang, Y.; Zhang, Y. Properties of poly (butylene terephthalate) chain-extended by epoxycyclohexyl polyhedral oligomeric silsesquioxane. Journal of Applied Polymer Science 2008, 107, 825.
    165. Calin, F.; Ciolacu, L.; Choudhury, N.; Dutta, N.; Hosior, E. Molecular level stabilization of poly (ethylene terephthalate) with nanostructured open cage trisilanolisobutyl-POSS. Macromolecules 2007, 40, 265.
    166. Ricco, L.; Russo, S.; Monticelli, O.; Bordo, A.; Federica, B. Caprolactam polymerization in presence of polyhedral oligomeric silsesquioxanes (POSS). Polymer 2005, 46, 6810.
    167. Baldi, F.; Bignotti, F.; Ricco, L.; Monticelli, O.; Ricco, T. Mechanical and structural characterization of POSS-modified polyamide 6. Journal of Applied Polymer Science 2006, 100, 3409.
    168. Ramasundaram, S. P.; Kim, K. J. Reversible addition fragmentation chain transfer mediated dispersion polymerization of styrene. Macromolecular Symposium 2007, 249.
    169. Liu, L.; Tian, M.; Zhang, W.; Zhang, L. Q.; Mark, J. E. Crystallization and morphology study of polyhedral oligomeric silsesquioxane (POSS)/polysiloxane elastomer composites prepared by melt blending. Polymer 2007, 48, 3201.
    170. Liu, Y.R.; Huang, Y.D.; Liu, L. Thermal stability of POSS/methylsilicone nanocomposites. Composites Science and Technology 2007, 67, 2864.
    171. Liu, Y.R.; Huang, Y.D.; Liu, L. Effects of trisilanolisobutyl-POSS on thermal stability of methylsilicone resin. Polymer Degradation and Stability 2006, 91, 2731.
    172.杜作栋.有机硅化学.北京:高等教育出版社1990
    173.李光亮.有机硅高分子化学.北京:科学出版社1998
    174. Neumann, D.; Fisher, M.; Tran, L.; Matisons, J. G. Synthesis and characterization of an isocyanate functionalized polyhedral oligosilsesquioxane and the subsequent formation of an organic-inorganic hybrid polyurethane. Journal of the American Chemical Society 2002, 124, 13998.
    175. Griesbaum, K. Problems and possibilities of the free-radical addition of thiols to unsaturated compounds. Angewandte Chemie, International Edition 1970, 9, 273.
    176. Killops, K. L.; Campos, L. M.; Hawker, C. J. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene“Click”chemistry. Journal of the American Chemical Society 2008, 130, 5062.
    177. Triola, G.; Brunsveld, L.; Waldmann, H. Racemization-free synthesis of S-alkylated cysteines via thiol-ene reaction. Journal of Organic Chemistry 2008, 73, 3646.
    178. Rissing, C.; Son, D. Y. Thiol-ene reaction for the synthesis of multifunctional branched organosilanes. Organometallics 2008, 27, 5394.
    1. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.; Chmelka, B.; Stucky, G. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548.
    2. Yang, P.;Zhao, D.; Margolese, D. J.; Chmelka, B. F.; Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998, 396, 152.
    3. Soler-Illia, G. J.; de, A. A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical Reviews 2002, 102, 4093.
    4. Kageyama, K.; Tamazawa, J.; Aida, T. Extrusion polymerization: catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica. Science 1999, 285, 2113.
    5. Newalkar, B. L.; Choudary, N. V.; Turaga, U. T.; Vijayalakshmi, R. P.; Kumar, P.; Komarneni, S.; Bhat, T. S. G. Potential adsorbent for light hydrocarbon separation: role of SBA-15 framework porosity. Chemistry of Materials 2003, 15, 1474.
    6. Han, Y. J.; Watson, J. T.; Stucky, G. D.; Butler, A. Catalytic activity of mesoporoussilicate-immobilized chloroperoxidase. Journal of Molecular Catalysis B: Enzymatic 2002, 17, 1.
    7. Fan, J.; Yu, C.; Gao, T.; Lei, J.; Tian, B.; Wang, L.; Luo, Q.; Tu, B.; Zhou, W.; Zhao, D. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angewandte Chemie, International Edition 2003, 42, 3146.
    8. Breck, D. W. Zeolite Molecular Sieves; Wiley: New York, 1974.
    9. Choi, M.; Kleitz, F.; Liu, D. N.; Lee, H. Y.; Ahn, W. S.; Ryoo, R. Controlled polymerization in mesoporous silica toward the design of organic-inorganic composite nanoporous materials. Journal of the American Chemical Society 2005, 127, 1924.
    10. Scott, B. J.; Wirnsberger, G.; Stucky, G. D. Mesoporous and mesostructured materials for optical applications. Chemistry of Materials 2001, 13, 3140.
    11. Mastai, Y.; Polarz, S.; Antonietti, M. Silica-carbon nanocomposites-a new concept for the design of solar absorbers. Advanced Functional Materials 2002, 12, 197.
    12. Hsuie, G. H.; Lee, R. H.; Jeng, R. J. A new class of organic-inorganic sol-gel materials for second-order nonlinear optics. Chemistry of Materials 1997, 9, 883.
    13. Shea, K. J.; Loy, D. A.; Webster, O. Arylsilsesquioxane gels and related materials. New hybrids of organic and inorganic networks. Journal of the American Chemical Society 1992, 114, 6700.
    14. Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T. Synthesis and characterization of chiral mesoporous silica. Nature 2004, 429, 281.
    15. Boury, B.; Corriu, R. Adjusting the porosity of a silica-based hybrid material. Advanced Materials 2000, 12, 989.
    16. Jiang, Y.; Xomeritakis, G.; Chen, Z.; Dunphy, D.; Kissel, D.; Cecchi, J.; Brinker, C. Sub-10nm thick microporous membranes made by plasma-defined atomic layer deposition of a bridged silsesquioxane precursor. Journal of the American Chemical Society 2007, 129, 15446.
    17. Matos, J.; Kruk, M.; Mercuri, L.; Jaroniec, M.; Zhao, L.; Kamiyama, T.; Terasaki, O.; Pinnavaia, T.; Liu, Y. Ordered mesoporous silica with large cage-like pores: structural identification and pore connectivity design by controlling the synthesis temperature and time. Journal of the American Chemical Society 2003, 125, 821.
    18. Halasyamani, P. S.; Walker, S. M.; O’Hare, D. The first open framework actinide material (C4N2H12)U2O4F6 (MUF-1). Journal of the American Chemical Society 1999, 121, 7415.
    19. Doran, M.; Walker, S.; O’Hare, D. Synthesis and characterisation of (C4N2H12)(UO2)2(PO3H)2 (PO2(OH)H)2: a three dimensionally connected actinide framework. Chemical Communications 2001, 1988.
    20. Kim, J.-M.; Norquist, A. J.; O’Hare, D. (Th2F5)(NC7H5O4)2(H2O)][NO3]: an actinide-organic open framework. Journal of the American Chemical Society 2003, 125, 12688.
    21. Mackenzie, J. D. In Sol-Gel Science and Technology; Pope, E. J. A., Sakka, S., Klein, L. C., Eds.; American Ceramic Society: Westerville, OH, 1997; pp 25-32.
    22. Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.;Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak,Y. Z.; Cooper, A. I. Conjugated microporous poly(aryleneethynylene) networks. Angewandte Chemie, International Edition 2007, 46, 8574.
    23. Weder, C. Hole control in microporous polymers. Angewandte Chemie, International Edition 2008, 47, 448.
    24. McKeown, N. B.; Ghanem, B.;Msayib, K. J.; Budd, P. M.; Tattershall, C. E.; Mahmood, K.; Tan, S.;Book, D.; Langmi, H. W.; Walton, A. Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. Angewandte Chemie, International Edition 2006, 45, 1804.
    25. McKeown, N. B.; Budd, P. M.; Book, D. Microporous polymers as potential hydrogen storage materials. Macromolecular Rapid Communications 2007, 28, 995.
    26. Zhang, C.; Babonneau, F.; Bonhomme, C.; Laine, R. M. Highly porous polyhedral silsesquioxane polymers. Synthesis and characterization. Journal of the American Chemical Society 1998, 120, 8380.
    27. Molodtsova, Y. A.; Pozdnyakova, Y. A.; Blagodatskikh, I. V.;Peregudov, A. S.; Shchegolikhina, O. I. Hydrolytic condensation of trialkoxysilanes in the presence of alkali metal and copper(II) ions. Influence of the reaction conditions on the structure of Cu/M organosiloxanes. Russian Chemical Bulletin 2003, 52, 2722.
    28. Shchegolikhina, O. I.; Igonin, V. A.; Molodtsova, Y. A.; Pozdnyakova, Y. A.; Zhdanov, A. A.; Strelkova, T. V.; Lindeman, S. V. Synthesis and characterization of large stereoregular organosiloxane cycles. Journal of Organometallic Chemistry 1998, 562, 141.
    29. Sergienko, N. V.; Trankina, E. S.; Pavlov, V. I.; Zhdanov, A. A.; Lyssenko, K. A.; Antipin, M. Y.; Akhmet’eva, E. I. Reactions of cage-like copper/sodium organosiloxanes with CuCl2. Russian Chemical Bulletin 2004, 53, 351.
    30 Molodtsova, Y. A.; Pozdnyakova, Y. A.; Lyssenko, K. A.; Blagodatskikh, I. V.; Katsoulis, D. E.; Shchegolikhina, O. I. A new approach to the synthesis of cage-like metallasiloxanes. Journal of Organometallic Chemistry 1998, 571, 31.
    31. Shchegolikhina, O. I.; Pozdnyakova, Y. A.; Molodtsova, Y. A.; Korkin, S. D.; Bukalov, S. S.; Leites, L. A.; Lyssenko, K. A.; Peregudov, A. S.; Auner, N.; Katsoulis, D. E. Synthesis and properties ofstereoregular cyclic polysilanols: cis-[PhSi(O)OH]4, cis-[PhSi(O)OH]6, and tris-cis-tris-trans- [PhSi(O)OH]12. Inorganic Chemistry 2002, 41, 6892.
    32. Pozdnyakova, Y. A.; Lyssenko, K. A.; Blagodatskikh, I. V.; Auner, N.; Katsoulis, D. E.; Shchegolikhina, O. I. Alkali-metal-directed hydrolytic condensation of trifunctional phenylalkoxysilanes. European Journal of Inorganic Chemistry 2004, 1253.
    33. Shchegolikhina, O. I.; Pozdnyakova, Y. A.; Antipin, M. Y.; Katsoulis, D. E.; Auner, N.; Herrschaft, B. Synthesis and structure of sodium phenylsiloxanolate. Organometallics 2000, 19, 1077.
    1. Kiyoshi, E. Synthesis and properties of cyclic polymers. Advances in Polymer Science 2008, 217, 121.
    2. Yasuyuki, T.; Hideaki, O. Topological polymer chemistry. Progress in Polymer Science 2002, 27, 1069.
    3. Nikos, H.; Marinos, T.; Stergios, P; Hermis, I. Polymers with complex architecture by living anionic polymerization. Chemical Reviews 2001, 101, 3747.
    4. Hadjichristidis, N. Synthesis of miktoarm star (m-star) polymers. Journal of Polymer Science, Part A: Polymer Chemistry 1999, 37, 857.
    5. Sheiko, S.; Sumerlin, B.; Matyjaszewski, K. Cylindrical molecular brushes: Synthesis, characterization, and properties. Progress in Polymer Science 2008, 33, 759.
    6. Schappacher, M.; Deffieux, A. Synthesis of macrocyclic copolymer brushes and their self-assembly into supramolecular tubes. Science 2006, 319, 1512.
    7. Li, H.; Jerome, R.; Lecomte, P. Amphiphilic sun-shaped polymers by grafting macrocyclic copolyesters with PEO. Macromolecules 2008, 41, 650.
    8. Senyurt, A.; Wei, H.; Hoyle, C.; Piland, S.; Gould, T. Ternary thiol-ene/acrylate photopolymers: effect of acrylate structure on mechanical properties. Macromolecules 2007, 40, 4901.
    9. Reddy, S.; Cramer, N.; Cross, T.; Bowman, C. Polymer-derived ceramic materials from thiol-ene photopolymerizations. Chemistry of Materials 2003, 15, 4257.
    10. Mao, G.; Castner, D.; Grainger, D. Polymer immobilization to alkylchlorosilane organic monolayer films using sequential derivatization reactions. Chemistry of Materials 1997, 9, 1741.
    11. Gress, A.; Volkel, A.; Schlaad, H. Thiol-click modification of poly [2-(3-butenyl)-2-oxazoline]. Macromolecules 2007, 40, 7928.
    12. Killops, K.; Campos, L.; Hawker, C. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene“Click”chemistry. Journal of the American Chemical Society 2008, 130, 5062.
    13. Hagberg, E.; Malkoch, M.; Ling, Y.; Hawker, C.; Carter, K. Effects of modulus and surface chemistry of thiol-ene photopolymers in nanoimprinting. Nano Letters 2007, 2, 233.
    14. Goldmann, A.; Walther, A.; Nebhani, L.; Joso, R.; Ernst, D.; Loos, K.; Kowollik, C.; Barner, L.; Muller, A. Surface modification of poly (divinylbenzene) microspheres via thiol-ene chemistry andalkyne azide click reactions. Macromolecules 2009, 42, 3707.
    15. Lodge, T. A virtual issue of macromolecules:“click chemistry in macromolecular science”. Macromolecules 2009, 42, 3827.
    16. Rissing, C.; Son, D. Thiol-ene reaction for the synthesis of multifunctional branched organosilanes. Organometallics 2008, 27, 5394.
    17. Rissing, C.; Son, D. Application of thiol-ene chemistry to the preparation of carbosilane thioether dendrimers. Organometallics, 2009, 28, 3167.
    18. Parent, J.; Sengupta, S. Terminal functionalization of polypropylene by radical-mediated thiol-ene addition. Macromolecules 2005, 38, 5538.
    19. Nepogodiev, A.; Stoddart, J. Cyclodextrin-based catenanes and rotaxanes. Chemical Reviews 1998, 98, 1959.
    20. Harada, A.; Hashidzume, A.; Takashima, Y. Cyclodextrin-based supramolecular polymers. Advance in Polymer Science 2006, 201, 1.
    21. Wenz, G.; Han, H.; Mueller, A. Cyclodextrin rotaxanes and polyrotaxanes. Chemical Reviews 2006, 106, 782.
    22. Araki, J.; Ito, K. Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials. Soft Matter 2007, 3, 1456.
    23. Harada, A.; Li, J.; Kamachi, M. Complex formation between poly (ethylene glycol) andα-cyclodextrin. Macromolecules 1990, 23, 2821.
    24. Harada, A.; Kamachi, M. Complex formation between poly (ethylene glycol) andα-cyclodextrin. Macromolecules 1990, 23, 2821.
    25. Harada, A.; Li, J.; Kamachi, M. The molecular necklace: a rotaxane containing many threadedα-cyclodextrins. Nature 1992, 356, 325.
    26. Harada, A.; Li, J.; Nakamiitsu, T.; Kamachi, M. Preparation and characterization of polyrotaxanes containing many threadedα-cyclodextrins. Journal of Organic Chemistry 1993, 58, 7524.
    27. Harada, A.; Li, J.; Kamachi, M. Preparation and characterization of a polyrotaxane consisting of monodisperse poly (ethylene glycol) and cyclodextrins. Journal of the American Chemical Society 1994, 116, 3192.
    28. Deng, W.; Yamaguchi, H.; Takashima, Y.; Harada, A. A chemical-responsive supramolecular hydrogel from modifiedα-cyclodextrins. Angewandte Chemie, International Edition 2007, 46, 5144.
    29. Li, J.; Li, X.; Toh, K.; Ni, X.; Zhou, Z.; Leong, K. Inclusion complexation and formation of polypseudorotaxanes between poly [(ethylene oxide)-ran-(propylene oxide)] and cyclodextrins.Macromolecules 2001, 34, 8829.
    30. Li, J.; Ni, X.; Zhou, Z.; Leong, K. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly (propylene oxide)-poly (ethylene oxide)-poly (propylene oxide) triblock copolymers andα-cyclodextrin. Journal of the American Chemical Society 2003, 125, 1788.
    31. Li, J.; Ni, X.; Leong, K. Block-selected molecular recognition and formation of polypseudorotaxanes between poly (propylene oxide)-poly (ethylene oxide)-poly (propylene oxide) triblock copolymers and cyclodextrin. Angewandte Chemie, International Edition 2003, 42, 69.
    32. Li, X.; Li, J.; Leong, K. Preparation and characterization of inclusion complexes of biodegradable amphiphilic poly (ethylene oxide)-poly [(R)-3-hydroxybutyrate]-poly (ethylene oxide) triblock copolymers with cyclodextrins. Macromolecules 2003, 38, 1209.
    33. Chan, S.; Kuo, S.; Chang, F. Synthesis of the organic/inorganic hybrid star polymers and their inclusion complexes with cyclodextrins. Macromolecules 2005, 38, 3099.
    34. Huh, K.; Ooya, T.; Lee, W.; Sasaki, S.; Kwon, I.; Jeong, S.; Yui, N. Supramolecular structured hydrogels showing a reversible phase transition by inclusion complexation between poly (ethylene glycol) grafted dextran and cyclodextrin. Macromolecules 2001, 34, 8657.
    35. Li, J.; Li, X.; Toh, K.; Ni, X.; Zhou, Z.; Leong, K. Complexation and formation of polypseudorotaxanes between poly [(ethylene oxide)-ran-(propylene oxide)] and cyclodextrins. Macromolecules 2001, 34, 8829.
    36. Li, J.; Ni, X.; Leong, K. Block-selected molecular recognition and formation of polypseudorotaxanes between poly (propylene oxide)-poly (ethylene oxide)-poly (propylene oxide) triblock copolymers and cyclodextrin. Angewandte Chemie, International Edition 2003, 42, 69.
    37. Li, X.; Li, J.; Leong, K. Preparation and characterization of inclusion complexes of biodegradable amphiphilic poly (ethylene oxide)-poly [(R)-3-hydroxybutyrate]-poly (ethylene oxide) triblock copolymers with cyclodextrins. Macromolecules 2003, 38, 1209.
    38. Jiao, H.; Goh, S.; Valiyaveettil, S. Inclusion complexes of multiarm poly (ethylene glycol) with cyclodextrins. Macromolecules 2002, 35, 1980.
    39. Sabadini, E.; Cosgrove, T. Inclusion complex formed between star-poly (ethylene glycol) and cyclodextrins. Langmuir 2003, 19, 9680.
    40. He, L.; Huang, J.; Chen, Y.; Xu, X.; Liu, L. Inclusion interaction of highly densely PEO grafted polymer brush and cyclodextrin. Macromolecules 2005, 38, 3845.
    41. Zhu, X.; Chen, L.; Yan, D.; Chen, Q.; Yao, Y.; Xiao, Y.; Hou, J.; Li, J. Supramolecular self-assembly of inclusion complexes of a multiarm hyperbranched polyether with cyclodextrins. Langmuir 2004, 20, 484.
    42. Agaskar, P. Functionalized spherosilicates: soluble precursors of inorganic/organic hybrid materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1992, 63, 131.
    43. Abbenhuis, H.; Herwijnen, H.; Santen, R. Macromolecular materials in heterogeneous catalysis: an aluminum silsesquioxane gel as active catalyst in Diels-Alder reactions of enones. Chemical Communications 1996, 1941.
    44. Zhang, C.; Babonneau, F.; Bonhomme, C.; Laine, R. Highly porous polyhedral silsesquioxane polymers. Synthesis and characterization. Journal of the American Chemical Society 1998, 120, 8380.
    45. Han, J.; Zheng, S. Highly porous polysilsesquioxane networks via hydrosilylative polymerization of macrocyclic oligomeric silsesquioxanes. Macromolecules 2008, 41, 4561.
    46. Hoebbel, D.; Pitsch, I.; Reiher, T.; Hiller, W.; Jancke, H.; Muller, D. Synthesis, constitution and properties of cage-like vinyl- and allylsilylated silicic acids. Zeitschrift Für Anorganische und Allgemeine Chemie 1989, 576, 160.
    47. Hoebbel, D.; Pitsch, I.; Heidemann, D.; Jancke, H.; Hiller, W. On the reaction of the cage-like vinylsilylated double four-ring silicic acid [(CH2=CH)(CH3)2Si]8Si8O20 with HSi containing compounds and the preparation of a new polymer. Zeitschrift Für Anorganische und Allgemeine Chemie 1990, 583, 133.
    48. Haddad, T.; Lichtenhan, J. The incorporation of transition metals into polyhedral oligosilsesquioxane polymers. Journal of Inorganic and Organometallic Polymer 1995, 5, 237.
    49. Sellinger, A.; Laine, R. Silsesquioxanes as synthetic platforms. 3. Photocurable, liquid epoxides as inorganic/organic hybrid precursors. Chemistry of Materials 1996, 8, 1592.
    50. Li, G.; Wang, L.; Ni, H.; Pittman, C. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review. Journal of Inorganic and Organometallic Polymer 2001, 11, 123.
    51. Voronkov, M.; Lavrent’ev, V. Polyhedral oligosilsesquioxanes and their homo derivatives. Topics in Current Chemistry 1982, 102, 199.
    52. Feher, F.; Newman, D.; Walzer, J. Silsesquioxanes as models for silica surfaces. Journal of the American Chemical Society 1989, 111, 1741.
    53. Said, M.; Roesky, H.; Rennekamp, C.; Andruh, M.; Schmidt, H.; Noltemeyer, M. A functionalized heterocubane with extensive intermolecular hydrogen bonds. Angewandte Chemie, International Edition 1999, 38, 661.
    54. Molodtsova, Y.; Pozdnyakova, Y.; Blagodatskikh, I.; Peregudov, A.; Shchegolikhina, O. Hydrolyticcondensation of trialkoxysilanes in the presence of alkali metal and copper (II) ions. Influence of the reaction conditions on the structure of Cu/M organosiloxanes. Russian Chemical Bulletin, International Edition 2003, 52, 2722.
    55. Chan, S.; Kuo, S.; Chang, F. Synthesis of the organic/inorganic hybrid star polymers and their inclusion complexes with cyclodextrins. Macromolecules 2005, 38, 3099.
    56. Huang, J.; Li, X.; Lin, T.; He, C.; Mya, Y.; Xiao, Y.; Li, J. Inclusion complex formation between cyclodextrins and organic-inorganic star-shaped poly (ethylene glycol) from an octafunctional silsesquioxane core. Journal of Polymer Science, Part B: Polymer Physics 2004, 42, 1173.
    57. Ni, Y.; Zheng, S. Supramolecular inclusion complexation of polyhedral oligomeric silsesquioxane capped poly (ε-caprolactone) with cyclodextrin. Journal of Polymer Science, Part A: Polymer Chemistry 2007, 45, 1247.
    58. Zeng, K.; Zheng, S. Synthesis and characterization of organic/inorganic polyrotaxanes from polyhedral oligomeric silsesquioxane and poly (ethylene oxide)/cyclodextrin polypseudorotaxanes via click chemistry. Macromolecular Chemistry and Physics 2009, 210, 783.
    59. Shchegolikhina, O.; Igonin, V.; Molodtsova, Y.; Pozdnyakova, Y.; Zhdanov, A.; Strelkova, T.; Lindeman, S. Synthesis and characterization of large stereoregular organosiloxane cycles. Journal of Organometallic Chemistry 1998, 562, 141.
    60. Sergienko, N.; Trankina, E.; Pavlov, V.; Zhdanov, A.; Lyssenko, K.; Antipin, M.; Akhmet’eva, E. Reactions of cage-like copper/sodium organosiloxanes with CuCl2. Russian Chemical Bulletin, International Edition 2004, 53, 351.
    61. Molodtsova, Y.; Pozdnyakova, Y.; Lyssenko, K.; Blagodatskikh, I.; Katsoulis, D.; Shchegolikhina, O. A new approach to the synthesis of cage-like metallasiloxanes. Journal of Organometallic Chemistry 1998, 571, 31.
    62. Shchegolikhina, O.; Pozdnyakova, Y.; Molodtsova, Y.; Korkin, S.; Bukalov, S.; Leites, L.; Lyssenko, K.; Peregudov, A.; Auner, N.; Katsoulis, D. Synthesis and properties of stereoregular cyclic polysilanols: cis-[PhSi(O)OH]4, cis-[PhSi(O)OH]6, and tris-cis-tris-trans-[PhSi(O)OH]12. Inorganic Chemistry 2002, 41, 6892.
    63. Pozdnyakova, Y.; Lyssenko, K.; Blagodatskikh, I.; Auner, N.; Katsoulis, D.; Shchegolikhina, O. Alkali-metal-directed hydrolytic condensation of trifunctional phenylalkoxysilanes. European Journal of Inorganic Chemistry 2004, 1253.
    64. Shchegolikhina, O.; Pozdnyakova, Y.; Antipin, M.; Katsoulis, D.; Auner, N.; Herrschaft, B. Synthesis and structure of sodium phenylsiloxanolate. Organometallics 2000, 19, 1077.
    65. Fulton, D.; Stoddart, J. An efficient synthesis of cyclodextrin-based carbohydrate cluster compounds. Organic Letters 2000, 2, 1113.
    66. Hu, H.; Dorset, D. Crystal structure of poly (caprolactone). Macromolecules 1990, 23, 4604.
    67. Nojima, S.; Hashizume, K.; Rohadi, A.; Sasaki, S. Crystallization of caprolactone blocks within a crosslinked microdomain structure of poly (caprolactone)-block-polybutadiene. Polymer 1997, 38, 2711
    68. Harada, A.; Suzuki, S.; Okada, M.; Kamachi, M. Preparation and characterization of inclusion complexes of polyisobutylene with cyclodextrins. Macromolecules 1996, 29, 5611.
    69. Rusa, C.; Tonelli, A. Polymer/polymer inclusion compounds as a novel approach to obtaining a PLLA/PCL intimately compatible blend. Macromolecules 2000, 33, 5321.
    70. Harada, A.; Kawaguchi, Y.; Nishiyama, T.; Kamachi, M. Complex formation of poly (ε-caprolactone) with cyclodextrin. Macromolecular Rapid Communications 1997, 18, 535.
    71. Huang, L.; Allen, E.; Tonelli, A. Study of the inclusion compounds formed betweenα-cyclodextrin and high molecular weight poly(ethylene oxide) and poly(caprolactone). Polymer 1998, 39, 4857.
    72. Kawaguchi, Y.; Nishiyama, T.; Okada, M.; Kamachi, M.; Harada, A. Complex formation of poly (ε-caprolactone) with cyclodextrins. Macromolecules 2000, 33, 4472.
    73. Huang, L.; Tonelli, A. Study of the inclusion compounds formed between cyclodextrin and high molecular weight poly(ethylene oxide) and poly(caprolactone). Polymer 1998, 39, 4857.
    74. Jiao, H.; Goh, S.; Valiyaveettil, S. Inclusion complexes of single-C60-end-capped poly (ethylene oxide) with cyclodextrins. Macromolecules 2002, 35, 1399.
    75. He, L.; Huang, J.; Chen, Y.; Liu, L. Inclusion complexation between comblike PEO grafted polymers and cyclodextrin. Macromolecules 2005, 38, 3351.
    76. Coleman, M.; Painter, P. Hydrogen bonded polymer blends. Progress in Polymer Science 1995, 1.
    77. Harada, A. Preparation and structures of supramolecules between cyclodextrins and polymers. Coordination Chemical Review 1996, 148, 115.
    78. Harada, A.; Suzuki, S.; Okada, M.; Kamachi, M. Preparation and characterization of inclusion complexes of polyisobutylene with cyclodextrins. Macromolecules 1996, 29, 5611.
    79. http://alpha.chem.umb.edu/chemistry/ch118/documents/HexamminenickelChlorideSynthesis.pdf
    1. Kiyoshi, E. Synthesis and properties of cyclic polymers. Advances in Polymer Science 2008, 217, 121.
    2. Yasuyuki, T.; Hideaki, O. Topological polymer chemistry. Progress in Polymer Science 2002, 27, 1069.
    3. Nikos, H.; Marinos, T.; Stergios, P; Hermis, I. Polymers with complex architecture by living anionic polymerization. Chemical Reviews 2001, 101, 3747.
    4. Hadjichristidis, N. Synthesis of miktoarm star (m-star) polymers. Journal of Polymer Science, Part A: Polymer Chemistry 1999, 37, 857.
    5. Sheiko, S.; Sumerlin, B.; Matyjaszewski, K. Cylindrical molecular brushes: Synthesis, characterization, and properties. Progress in Polymer Science 2008, 33, 759.
    6. Schappacher, M.; Deffieux, A. Synthesis of macrocyclic copolymer brushes and their self-assembly into supramolecular tubes. Science 2006, 319, 1512.
    7. Li, H.; Jerome, R.; Lecomte, P. Amphiphilic sun-shaped polymers by grafting macrocyclic copolyesters with PEO. Macromolecules 2008, 41, 650.
    8. Senyurt, A.; Wei, H.; Hoyle, C.; Piland, S.; Gould, T. Ternary thiol-ene/acrylate photopolymers: effect of acrylate structure on mechanical properties. Macromolecules 2007, 40, 4901.
    9. Reddy, S.; Cramer, N.; Cross, T.; Bowman, C. Polymer-derived ceramic materials from thiol-ene photopolymerizations. Chemistry of Materials 2003, 15, 4257.
    10. Mao, G.; Castner, D.; Grainger, D. Polymer immobilization to alkylchlorosilane organic monolayer films using sequential derivatization reactions. Chemistry of Materials 1997, 9, 1741.
    11. Gress, A.; Volkel, A.; Schlaad, H. Thiol-click modification of poly [2-(3-butenyl)-2-oxazoline]. Macromolecules 2007, 40, 7928.
    12. Killops, K.; Campos, L.; Hawker, C. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene“Click”chemistry. Journal of the American Chemical Society 2008, 130, 5062.
    13. Hagberg, E.; Malkoch, M.; Ling, Y.; Hawker, C.; Carter, K. Effects of modulus and surfacechemistry of thiol-ene photopolymers in nanoimprinting. Nano Letters 2007, 2, 233.
    14. Goldmann, A.; Walther, A.; Nebhani, L.; Joso, R.; Ernst, D.; Loos, K.; Kowollik, C.; Barner, L.; Muller, A. Surface modification of poly (divinylbenzene) microspheres via thiol-ene chemistry and alkyne azide click reactions. Macromolecules 2009, 42, 3707.
    15. Lodge, T. A virtual issue of macromolecules:“click chemistry in macromolecular science”. Macromolecules 2009, 42, 3827.
    16. Rissing, C.; Son, D. Thiol-ene reaction for the synthesis of multifunctional branched organosilanes. Organometallics 2008, 27, 5394.
    17. Rissing, C.; Son, D. Application of thiol-ene chemistry to the preparation of carbosilane thioether dendrimers. Organometallics, 2009, 28, 3167.
    18. Parent, J.; Sengupta, S. Terminal functionalization of polypropylene by radical-mediated thiol-ene addition. Macromolecules 2005, 38, 5538.
    19. Nepogodiev, A.; Stoddart, J. Cyclodextrin-based catenanes and rotaxanes. Chemical Reviews 1998, 98, 1959.
    20. Harada, A.; Hashidzume, A.; Takashima, Y. Cyclodextrin-based supramolecular polymers. Advances in Polymer Science 2006, 201, 1.
    21. Wenz, G.; Han, H.; Mueller, A. Cyclodextrin rotaxanes and polyrotaxanes. Chemical Reviews 2006, 106, 782.
    22. Araki, J.; Ito, K. Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials. Soft Matter 2007, 3, 1456.
    23. Harada, A.; Li, J.; Kamachi, M. Complex formation between poly (ethylene glycol) andα-cyclodextrin. Macromolecules 1990, 23, 2821.
    24. Harada, A.; Kamachi, M. Complex formation between poly (ethylene glycol) andα-cyclodextrin. Macromolecules 1990, 23, 2821.
    25. Harada, A.; Li, J.; Kamachi, M. The molecular necklace: a rotaxane containing many threadedα-cyclodextrins. Nature 1992, 356, 325.
    26. Harada, A.; Li, J.; Nakamiitsu, T.; Kamachi, M. Preparation and characterization of polyrotaxanes containing many threadedα-cyclodextrins. Journal of Organic Chemistry 1993, 58, 7524.
    27. Harada, A.; Li, J.; Kamachi, M. Preparation and characterization of a polyrotaxane consisting of monodisperse poly (ethylene glycol) andα-cyclodextrins. Journal of the American Chemical Society 1994, 116, 3192.
    28. Deng, W.; Yamaguchi, H.; Takashima, Y.; Harada, A. A chemical-responsive supramolecularhydrogel from modified cyclodextrins. Angewandte Chemie, International Edition 2007, 46, 5144.
    29. Li, J.; Li, X.; Toh, K.; Ni, X.; Zhou, Z.; Leong, K. Inclusion complexation and formation of polypseudorotaxanes between poly[(ethylene oxide)-ran-(propylene oxide)] andα-cyclodextrins. Macromolecules 2001, 34, 8829.
    30. Li, J.; Ni, X.; Zhou, Z.; Leong, K. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly (propylene oxide)-poly (ethylene oxide)-poly (propylene oxide) triblock copolymers andα-cyclodextrin. Journal of the American Chemical Society 2003, 125, 1788.
    31. Li, J.; Ni, X.; Leong, K. Block-selected molecular recognition and formation of polypseudorotaxanes between poly (propylene oxide)-poly (ethylene oxide)-poly (propylene oxide) triblock copolymers andα-cyclodextrin. Angewandte Chemie, International Edition 2003, 42, 69.
    32. Li, X.; Li, J.; Leong, K. Preparation and characterization of inclusion complexes of biodegradable amphiphilic poly (ethylene oxide)-poly [(R)-3-hydroxybutyrate]-poly (ethylene oxide) triblock copolymers with cyclodextrins. Macromolecules 2003, 38, 1209.
    33. Chan, S.; Kuo, S.; Chang, F. Synthesis of the organic/inorganic hybrid star polymers and their inclusion complexes with cyclodextrins. Macromolecules 2005, 38, 3099.
    34. Huh, K.; Ooya, T.; Lee, W.; Sasaki, S.; Kwon, I.; Jeong, S.; Yui, N. Supramolecular structured hydrogels showing a reversible phase transition by inclusion complexation between poly (ethylene glycol) grafted dextran andα-cyclodextrin. Macromolecules 2001, 34, 8657.
    35. Li, J.; Li, X.; Toh, K.; Ni, X.; Zhou, Z.; Leong, K. Complexation and formation of polypseudorotaxanes between poly [(ethylene oxide)-ran-(propylene oxide)] andα-cyclodextrins. Macromolecules 2001, 34, 8829.
    36. Li, J.; Ni, X.; Leong, K. Block-selected molecular recognition and formation of polypseudorotaxanes between poly (propylene oxide)-poly (ethylene oxide)-poly (propylene oxide) triblock copolymers and cyclodextrin. Angewandte Chemie, International Edition 2003, 42, 69.
    37. Li, X.; Li, J.; Leong, K. Preparation and characterization of inclusion complexes of biodegradable amphiphilic poly (ethylene oxide)-poly [(R)-3-hydroxybutyrate]-poly (ethylene oxide) triblock copolymers with cyclodextrins. Macromolecules 2003, 38, 1209.
    38. Jiao, H.; Goh, S.; Valiyaveettil, S. Inclusion complexes of multiarm poly (ethylene glycol) with cyclodextrins. Macromolecules 2002, 35, 1980.
    39. Sabadini, E.; Cosgrove, T. Inclusion complex formed between star-poly (ethylene glycol) and cyclodextrins. Langmuir 2003, 19, 9680.
    40. He, L.; Huang, J.; Chen, Y.; Xu, X.; Liu, L. Inclusion interaction of highly densely PEO grafted polymer brush and cyclodextrin. Macromolecules 2005, 38, 3845.
    41. Zhu, X.; Chen, L.; Yan, D.; Chen, Q.; Yao, Y.; Xiao, Y.; Hou, J.; Li, J. Supramolecular self -assembly of inclusion complexes of a multiarm hyperbranched polyether with cyclodextrins. Langmuir 2004, 20, 484.
    42. Agaskar, P. Functionalized spherosilicates: soluble precursors of inorganic/organic hybrid materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1992, 63, 131.
    43. Abbenhuis, H.; Herwijnen, H.; Santen, R. Macromolecular materials in heterogeneous catalysis: an aluminum silsesquioxane gel as active catalyst in Diels-Alder reactions of enones. Chemical Communications 1996, 1941.
    44. Zhang, C.; Babonneau, F.; Bonhomme, C.; Laine, R. Highly porous polyhedral silsesquioxane polymers. Synthesis and characterization. Journal of the American Chemical Society 1998, 120, 8380.
    45. Han, J.; Zheng, S. Highly porous polysilsesquioxane networks via hydrosilylative polymerization of macrocyclic oligomeric silsesquioxanes. Macromolecules 2008, 41, 4561.
    46. Hoebbel, D.; Pitsch, I.; Reiher, T.; Hiller, W.; Jancke, H.; Muller, D. Synthesis, constitution and properties of cage-like vinyl- and allylsilylated silicic acids. Zeitschrift Für Anorganische und Allgemeine Chemie 1989, 576, 160.
    47. Hoebbel, D.; Pitsch, I.; Heidemann, D.; Jancke, H.; Hiller, W. On the reaction of the cage-like vinylsilylated double four-ring silicic acid [(CH2=CH)(CH3)2Si]8Si8O20 with HSi containing compounds and the preparation of a new polymer. Zeitschrift Für Anorganische und Allgemeine Chemie 1990, 583, 133.
    48. Haddad, T.; Lichtenhan, J. The incorporation of transition metals into polyhedral oligosilsesquioxane polymers. Journal of Inorganic and Organometallic Polymer 1995, 5, 237.
    49. Sellinger, A.; Laine, R. Silsesquioxanes as synthetic platforms. 3. Photocurable, liquid epoxides as inorganic/organic hybrid precursors. Chemistry of Materials 1996, 8, 1592.
    50. Li, G.; Wang, L.; Ni, H.; Pittman, C. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review. Journal of Inorganic and Organometallic Polymer 2001, 11, 123.
    51. Voronkov, M.; Lavrent’ev, V. Polyhedral oligosilsesquioxanes and their homo derivatives. Topics in Current Chemistry 1982, 102, 199.
    52. Feher, F.; Newman, D.; Walzer, J. Silsesquioxanes as models for silica surfaces. Journal of the American Chemical Society 1989, 111, 1741.
    53. Said, M.; Roesky, H.; Rennekamp, C.; Andruh, M.; Schmidt, H.; Noltemeyer, M. A functionalizedheterocubane with extensive intermolecular hydrogen bonds. Angewandte Chemie, International Edition 1999, 38, 661.
    54. Molodtsova, Y.; Pozdnyakova, Y.; Blagodatskikh, I.; Peregudov, A.; Shchegolikhina, O. Hydrolytic condensation of trialkoxysilanes in the presence of alkali metal and copper (II) ions. Influence of the reaction conditions on the structure of Cu/M organosiloxanes. Russian Chemical Bulletin, International Edition 2003, 52, 2722.
    55. Chan, S.; Kuo, S.; Chang, F. Synthesis of the organic/inorganic hybrid star polymers and their inclusion complexes with cyclodextrins. Macromolecules 2005, 38, 3099.
    56. Huang, J.; Li, X.; Lin, T.; He, C.; Mya, Y.; Xiao, Y.; Li, J. Inclusion complex formation between cyclodextrins and organic-inorganic star-shaped poly (ethylene glycol) from an octafunctional silsesquioxane core. Journal of Polymer Science, Part B: Polymer Physics 2004, 42, 1173.
    57. Ni, Y.; Zheng, S. Supramolecular inclusion complexation of polyhedral oligomeric silsesquioxane capped poly (ε-caprolactone) with cyclodextrin. Journal of Polymer Science, Part A: Polymer Chemistry 2007, 45, 1247.
    58. Zeng, K.; Zheng, S. Synthesis and characterization of organic/inorganic polyrotaxanes from polyhedral oligomeric silsesquioxane and poly (ethylene oxide)/cyclodextrin polypseudorotaxanes via click chemistry. Macromolecular Chemistry and Physics 2009, 210, 783.
    59. Shchegolikhina, O.; Igonin, V.; Molodtsova, Y.; Pozdnyakova, Y.; Zhdanov, A.; Strelkova, T.; Lindeman, S. Synthesis and characterization of large stereoregular organosiloxane cycles. Journal of Organometallic Chemistry 1998, 562, 141.
    60. Sergienko, N.; Trankina, E.; Pavlov, V.; Zhdanov, A.; Lyssenko, K.; Antipin, M.; Akhmet’eva, E. Reactions of cage-like copper/sodium organosiloxanes with CuCl2. Russian Chemical Bulletin, International Edition 2004, 53, 351.
    61. Molodtsova, Y.; Pozdnyakova, Y.; Lyssenko, K.; Blagodatskikh, I.; Katsoulis, D.; Shchegolikhina, O. A new approach to the synthesis of cage-like metallasiloxanes. Journal of Organometallic Chemistry 1998, 571, 31.
    62. Shchegolikhina, O.; Pozdnyakova, Y.; Molodtsova, Y.; Korkin, S.; Bukalov, S.; Leites, L.; Lyssenko, K.; Peregudov, A.; Auner, N.; Katsoulis, D. Synthesis and properties of stereoregular cyclic polysilanols: cis-[PhSi(O)OH]4, cis-[PhSi(O)OH]6, and tris-cis-tris-trans-[PhSi(O)OH]12. Inorganic Chemistry 2002, 41, 6892.
    63. Pozdnyakova, Y.; Lyssenko, K.; Blagodatskikh, I.; Auner, N.; Katsoulis, D.; Shchegolikhina, O. Alkali-metal-directed hydrolytic condensation of trifunctional phenylalkoxysilanes. European Journalof Inorganic Chemistry 2004, 1253.
    64. Shchegolikhina, O.; Pozdnyakova, Y.; Antipin, M.; Katsoulis, D.; Auner, N.; Herrschaft, B. Synthesis and structure of sodium phenylsiloxanolate. Organometallics 2000, 19, 1077.
    65. Fulton, D.; Stoddart, J. An efficient synthesis of cyclodextrin-based carbohydrate cluster compounds. Organic Letters 2000, 2, 1113.
    66. Hu, H.; Dorset, D. Crystal structure of poly (ε-caprolactone). Macromolecules 1990, 23, 4604.
    67. Nojima, S.; Hashizume, K.; Rohadi, A.; Sasaki, S. Crystallization of caprolactone blocks within a crosslinked microdomain structure of poly(ε-caprolactone)-block-polybutadiene. Polymer 1997, 38, 2711.
    68. Harada, A.; Suzuki, S.; Okada, M.; Kamachi, M. Preparation and characterization of inclusion complexes of polyisobutylene with cyclodextrins. Macromolecules 1996, 29, 5611.
    69. Rusa, C.; Tonelli, A. Polymer/polymer inclusion compounds as a novel approach to obtaining a PLLA/PCL intimately compatible blend. Macromolecules 2000, 33, 5321.
    70. Harada, A.; Kawaguchi, Y.; Nishiyama, T.; Kamachi, M. Complex formation of poly (ε-caprolactone) with cyclodextrin. Macromolecular Rapid Communications 1997, 18, 535.
    71. Huang, L.; Allen, E.; Tonelli, A. Study of the inclusion compounds formed betweenα-cyclodextrin and high molecular weight poly(ethylene oxide) and poly(ε-caprolactone). Polymer 1998, 39, 4857.
    72. Kawaguchi, Y.; Nishiyama, T.; Okada, M.; Kamachi, M.; Harada, A. Complex formation of poly (ε-caprolactone) with cyclodextrins. Macromolecules 2000, 33, 4472.
    73. Huang, L.; Tonelli, A. Study of the inclusion compounds formed between cyclodextrin and high molecular weight poly(ethylene oxide) and poly(ε-caprolactone). Polymer 1998, 39, 4857.
    74. Jiao, H.; Goh, S.; Valiyaveettil, S. Inclusion complexes of single-C60-end-capped poly (ethylene oxide) with cyclodextrins. Macromolecules 2002, 35, 1399.
    75. He, L.; Huang, J.; Chen, Y.; Liu, L. Inclusion complexation between comblike PEO grafted polymers and cyclodextrin. Macromolecules 2005, 38, 3351.
    76. Coleman, M.; Painter, P. Hydrogen bonded polymer blends. Progress in Polymer Science 1995, 1.
    77. Harada, A. Preparation and structures of supramolecules between cyclodextrins and polymers. Coordination Chemical Review 1996, 148, 115.
    78. Harada, A.; Suzuki, S.; Okada, M.; Kamachi, M. Preparation and characterization of inclusion complexes of polyisobutylene with cyclodextrins. Macromolecules 1996, 29, 5611.
    79. http://alpha.chem.umb.edu/chemistry/ch118/documents/HexamminenickelChlorideSynthesis.pdf
    1. Kickelbick, G. Hybrid materials. Synthesis, characterization and applications. Weinheim: Wiley-VCH; 2007.
    2. Rodriguez, J.; Gnanou, Y.; Lecommandoux, S. Toward smart nano-objects by self-assembly of block copolymers in solution. Progress in Polymer Science 2005, 30, 691.
    3. Riess, G. Micellization of block copolymers. Progress in Polymer Science 2003, 28, 1107.
    4. Garnier, S.; Laschewsky, A.; Storsberg, J. Polymeric surfactants: novel agents with exceptional properties. Tenside, Surfactants, Detergents 2003, 43, 88.
    5. Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M. Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie, International Edition 2006, 45, 3216.
    6. Zhao, C.; Yang, X.; Wu, X.; Liu, X.; Wang, X.; Lu, L. Preparation and characterization of poly (methyl methacrylate) nanocomposites containing octavinyl polyhedral oligomeric silsesquioxane. Polymer Bulletin 2008, 60, 495.
    7. Han, J.; Xu, X.; Cho, K. Diverse access to artificial superhydrophobic surfaces using block copolymers. Langmuir 2005, 21, 6662.
    8. Wang, Y.; Yen, C.; Chen, W. Photosensitive polyimide/silica hybrid optical materials: synthesis, properties, and patterning. Polymer 2005, 46, 6959.
    9. Sanchez, C.; Julian, B.; Belleville, P.; Popall, M. Applications of hybrid organic-inorganic nanocomposites. Journal of Material Chemistry 2005, 15, 3559.
    10. Sanchez, C.; Ribot, F.; Lalot, T.; Mayer, C.; Cabuil, V. Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chemistry of Materials 2001, 13, 3061.
    11. Liu, Y.; Lee, H. Preparation and properties of polyhedral oligosilsequioxane tethered aromatic polyamide nanocomposites through Michael addition between maleimide-containing polyamides and an amino-functionalized polyhedral oligosilsesquioxane. Journal of Polymer Science, Part A: Polymer Chemistry 2006, 44, 4632.
    12. Schmid, A.; Fujii, S.; Armes, S.; Leite, C.; Galembeck, F.; Minami, H. Polystyrene-silica colloidal nanocomposite particles prepared by alcoholic dispersion polymerization. Chemistry of Materials 2007, 19, 2435.
    13. Vaia, R.; Maguire, J. Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chemistry of Materials 2007, 19, 2736.
    14. Stelzig, S.; Klapper, M.; Mullen, K. A simple and efficient route to transparent nanocomposites. Advanced Materials 2008, 20, 929.
    15. Saito, R. Synthesis and properties of organic-silica nanocomposites with perhydro- polysilazane. Journal of Polymer Science, Part A: Polymer Chemistry 2006, 44, 5174.
    16. Du, J.; Chen, Y. Organic-inorganic hybrid nanoparticles with a complex hollow structure. Angewandte Chemie, International Edition 2004, 116, 5194.
    17. Liu, Y.; Zheng, S. Inorganic-organic nanocomposites of polybenzoxazine with octa (propylglycidyl ether) polyhedral oligomeric silsesquioxane. Journal of Polymer Science, Part A: Polymer Chemistry 2006, 44, 1168.
    18. Alauzun, J.; Besson, E.; Mehdi, A.; Reye, C.; Corriu, R. Reversible covalent chemistry of CO2: an opportunity for nano-structured hybrid organic-inorganic materials. Chemistry of Materials 2008, 20, 503.
    19. Zhou, J.; Wang, L.; Dong, X.; Yang, Q.; Wang, J.; Yu, H. Preparation of organic/inorganic hybrid nanomaterials using aggregates of poly (stearyl methacrylate)-b-poly (3-(trimethoxysilyl) propyl methacrylate) as precursor. European Polymer Journal 2007, 43, 1736.
    20. Watanab, M.; Tamai, T. Acrylic polymer/silica organic-inorganic hybrid emulsions for coating materials: role of the silane coupling agent. Journal of Polymer Science, Part A: Polymer Chemistry 2006, 44, 4736.
    21. Neouze, M.; Malenovska, M.; Schubert, U.; Kotlyar, V.; Kuperschmidt, E.; Peled, A. Silica nanoparticles with a hybrid organic-inorganic shell. Journal of Material Chemistry 2008, 18, 121.
    22. Yuan, J.; Xu, Y.; Walther, A.; Bolisetty, S.; Schumacher, M.; Schmalz, H. Water-soluble organo-silica hybrid nanowires. Nature Materials 2008, 7, 718.
    23. Ogoshi, T.; Chujo, Y. Synthesis of amorphous and nanostructured cationic polyacetylene/silica hybrids by using ionic interactions. Macromolecules 2005, 38, 9110.
    24. Mori, H.; Muller, A.; Klee, J. Intelligent colloidal hybrids via reversible pH-induced complexation of polyelectrolyte and silica nanoparticles. Journal of the American Chemical Society 2003, 125, 3712.
    25. Mori, H.; Lanzendorfer, M.; Muller, A.; Klee, J. Organic-inorganic nanoassembly based on complexation of cationic silica nanoparticles and weak anionic polyelectrolytes in aqueous and alcohol media. Langmuir 2004, 20, 1934.
    26. Schumacher, M.; Ruppel, M.; Yuan, J.; Schmalz, H.; Colombani, O.; Drechsler, M. Smart organic-inorganic nanohybrids based on amphiphilic block copolymer micelles and functional silsesquioxane nanoparticles. Langmuir 2009, 25, 3407.
    27. Retsch, M.; Walther, A.; Loos, K.; Muller, A. Synthesis of dense poly (acrylic acid) brushes and their interaction with amine-functional silsesquioxane nanoparticles. Langmuir 2008, 24, 9421.
    28. Lim, K.; Webber S.; Johnston, P. Synthesis and characterization of poly (dimethylsiloxane)–poly [alkyl(meth)acrylic acid] block copolymers. Macromolecules 1999, 9, 32.
    29. Cao, L.; Chen, L.; Cui, P.; Wang, J. Synthesis of PNIPA/PDMS-g-PAA core-shell composites in supercritical carbon dioxide. Journal of Applied Polymer Science 2008, 108, 3843.
    30. Psathas, P.; Rocha, S.; Lee, C.; Johnston, K.; Lim, T. Water-in-carbon dioxide emulsions with poly (dimethylsiloxane)-based block copolymer ionomers. Industrial & Engineering Chemistry Research 2000, 39, 2655.
    31. Ganapathy, H.; Hwan, H.; Jeong, Y.; Lee, W.; Lim, K. Ring-opening polymerization of L-lactide in supercritical carbon dioxide using PDMS based stabilizers. European Polymer Journal 2007, 43, 119.
    32. Tiller, J.; Sprich, C.; Hartmann, L. Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. Journal of Controlled Release 2005, 103, 355.
    33. Wang, Y.; Lai, H.; Bachman, M.; Christopher, E.; Li, G.; Allbritton, N. Covalent micropatterning of poly (dimethylsiloxane) by photografting through a mask. Analytic Chemistry 2005, 77, 7539.
    34. Patrito, N.; McCague, C.; Chiang, S.; Norton, P.; Petersen, N. Photolithographically patterned surface modification of poly (dimethylsiloxane) via UV-Initiated graft polymerization of acrylates. Langmuir 2006, 22, 3453.
    35. Zhang, W.; Fang, B.; Walther, A.; Muller, A. Synthesis via RAFT polymerization of tadpole-shaped organic/inorganic hybrid poly (acrylic acid) containing polyhedral oligomeric silsesquioxane (POSS) and their self-assembly in water. Macromolecules 2009, 42, 2563.
    36. Schumacher, M.; Ruppel, M.; Kohlbrecher, J.; Burkhardt, M.; Plamper, F.; Drechsler, M.; Muller, A. Smart organic–inorganic nanohybrid stars based on star-shaped poly (acrylic acid) and functional silsesquioxane nanoparticles. Polymer 2009, 50, 1908.
    37. Schumacher, M.; Ruppel, M.; Kohlbrecher, J.; Burkhardt, M.; Plamper, F.; Drechsler, M.; Muller, A. Smart organic-Inorganic nanohybrids based on amphiphilic block copolymer micelles and functional silsesquioxane nanoparticles. Langmuir 2009, 25, 3407.
    38. Schappacher, M.; Deffieux, A. Synthesis of macrocyclic copolymer brushes and their self-assembly into supramolecular tubes. Science 2006, 319, 1512
    39. Li, H.; Jerome, R.; Lecomte, P. Amphiphilic sun-shaped polymers by grafting macrocyclic copolyesters with PEO. Macromolecules 2008, 41, 650.
    40. Sheiko, S.; Sumerlin, B.; Matyjaszewski, K. Cylindrical molecular brushes: Synthesis, characterization, and properties. Progress in Polymer Science 2008, 33, 759.
    41.李光亮.有机硅高分子化学.北京:科学出版社1998
    42. Miller, P.; Matyjaszewski, K. Atom transfer radical polymerization of methacrylates from poly (dimethylsiloxane) macroinitiators. Macromolecules 1999, 32, 8760.
    43. Holzinger, D.; Kickelbick, G. Modified cubic spherosilicates as macroinitiators for the synthesis of inorganic–organic starlike polymers. Journal of Polymer Science, Part A: Polymer Chemistry 2002, 40, 3858.
    44. Li, G.; Shi, L.; An, Y.; Zhang, W.; Ma, R. Double-responsive core–shell–corona micelles from self-assembly of diblock copolymer of poly (t-butyl acrylate-co-acrylic acid)-b-poly (N-isopropyl acrylamide). Polymer 2006, 47, 4581.
    45. Jiang, S.; Gpfert, A.; Abetz, V. Novel morphologies of block copolymer blends via hydrogen bonding. Macromolecules 2003, 36, 6171.
    46. Connal, L.; Li, Q.; Quinn, J.; Tjipto, E.; Caruso, F.; Qiao, G. pH-Responsive poly (acrylic acid) core cross-linked star polymers: morphology transitions in solution and multilayer thin films Macromolecules 2008, 41, 2620.
    47. Kubo, M.; Padias, A.; Hall, H.; Calvert, P. Synthesis of o-phosphorylserine-terminated poly (tert-butyl acrylate) and poly (acrylic acid). Macromolecules 1996, 29, 4442.
    48. Kubo, M.; Matsuura, T.; Morimoto, H.; Uno, T.; Itoh, T. Preparation and polymerization of a water-soluble nonbonding crosslinking agent for a mechanicallycrosslinked hydrogel. Journal of Polymer Science, Part A: Polymer Chemistry 2005, 43, 5032.
    49. Zhang, L.; Eisenberg, A. Multiple morphologies of "crew-cut" aggregates of polystyrene-b-poly (acrylic acid) block copolymers. Science 1995, 268, 1728.
    50. Zhang, L.; Eisenberg, A. Multiple morphologies and characteristics of“Crew-cut”micelle-like aggregates of polystyrene-b-poly (acrylic acid) diblock copolymers in aqueous solutions. Journal of the American Chemical Society 1996, 118, 3168.
    51. Zhang, L. F.; Eisenberg, A. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly (acrylic acid) block copolymers in solutions. Macromolecules 1996, 29, 8805.
    52. Burkhardt, M.; Martinez-Castro, N.; Tea, S.; Drechsler, M.; Babin, I.; Grishagin, I.; Schweins, R.; Pergushov, D.; Gradzielski, M.; Zezin, A.; Muller, A. Polyisobutylene-block-poly (methacrylic acid) diblock copolymers: self-assembly in aqueous media. Langmuir 2007, 23, 12864.
    53. Mizutani, M.; Satoh, K.; Kamigaito, M. Metal-catalyzed radical polyaddition for aliphatic polyesters via evolution of atom transfer radical addition into step-growth polymerization. Macromolecules 2009, 42, 472.
    1. Heskins, M.; Guillet, J. E. Solution properties of poly (N-isopropylacrylamide). Journal of Macromolecular Science, Chemistry 1968, A2, 1441.
    2. Schild, H. G. Poly (N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science 1992, 17, 163.
    3. Chen, G.; Hoffman, A. S. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 1995, 373, 49.
    4. Kubota, K.; Fujishige, S.; Ando, I. Single-chain transition of poly (N-isopropylacrylamide) in water. Journal of Physical Chemistry 1990, 94, 5154.
    5. Wang, X.; Qiu, X.; Wu, C. Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly (N-isopropylacrylamide) homopolymer chain in water. Macromolecules 1998, 31, 2972.
    6. Tiktopulo, E. I.; Uversky, V. N.; Lushchik, V. B.; Klenin, S. I.;Bychkova, V. E.; Ptitsyn, O. B. "Domain" coil-globule transition in homopolymers. Macromolecules 1995, 28, 7519.
    7. Fujishige, S.; Kubota, K.; Ando, I. Phase transition of aqueous solutions of poly (N-isopropylacryl -amide) and poly (N-isopropylmethacrylamide). Journal of Physical Chemistry 1989, 93, 3311.
    8. Schild, H. G.; Tirrell, D. A. Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. Journal of Physical Chemistry 1990, 94, 4352.
    9. Cho, E. C.; Lee, J.; Cho, K. Role of bound water and hydrophobic interaction in phase transition of poly (N-isopropylacrylamide) aqueous solution. Macromolecules 2003, 36, 9929.
    10. Stayton, P. S.; Shimoboji, T.; Long, C.; Chilkoti, A.; Chen, G.; Harris, J. M.; Hoffman, A. S. Control of protein-ligand recognition using a stimuli-responsive polymer. Nature 1995, 378, 472.
    11. Umeno, D.; Mori, T.; Maeda, M. Single stranded DNA-poly (N-isopropylacrylamide) conjugate for affinity precipitation separation of oligonucleotides. Chemical Communications 1998, 1433.
    12. Pennadam, S. S.; Lavigne, M. D.; Dutta, C. F.; Firman, K.; Mernagh, D.; Gorecki, D.; Alexander, C. Control of a multisubunit DNA motor by a thermoresponsive polymer switch. Journal of the American Chemical Society 2004, 126, 13208.
    13. Li, C.; Gunari, N.; Fischer, K.; Janshoff, A.; Schmidt, M. New perspectives for the design of molecular actuators: thermally induced collapse of single macromolecules from cylindrical brushes to spheres. Angewandte Chemie, International Edition 2004, 43, 1101.
    14. Zhu, M.; Wang, L.; Exarhos, G. J.; Li, A. D. Q. Thermosensitive gold nanoparticles. Journal of the American Chemical Society 2004, 126, 2656.
    15. Ito, T.; Hioki, T.; Yamaguchi, T.; Shinbo, T.; Nakao, S.; Kimura, S. Development of a molecular recognition ion gating membrane and estimation of its pore size control. Journal of the American Chemical Society 2002, 124, 7840.
    16. Sun, T.; Liu, H.; Song, W.; Wang, X.; Jiang, L.; Li, L.; Zhu, D. Responsive aligned carbon nanotubes. Angewandte Chemie, International Edition 2004, 43, 4663.
    17. Kessler, D.; Theato, P. Temperature-responsive surface coatings based on poly (methyl -silsesquioxane)-hybrid polymers. Macromolecular Symposium 2007, 249/250, 424.
    18. Mu, J.; Zheng, S. Poly (N-isopropylacrylamide) nanocrosslinked by polyhedral oligomeric silsesquioxane: temperature-responsive behavior of hydrogels. Journal of Colloid and Interface Science 2007, 307, 377.
    19. You, Y.; Kalebaila, K.; Brock, S.; Oupicky, D. Temperature-controlled uptake and release in PNIPAM -modified porous silica nanoparticles. Chemistry of Materials 2008, 20, 3354.
    20. Zhang, W.; Liu, L.; Zhuang, X.; Chen, Y. Synthesis and self-assembly of tadpole-shaped organic/inorganic hybrid poly (N-isopropylacrylamide) containing polyhedral oligomeric silsesquioxane via RAFT polymerization. Journal of Polymer Science, Part A: Polymer Chemistry 2008, 46, 7049.
    21. Zeng, K.; Fang, Y.; Zheng, S. Organic-inorganic hybrid hydrogels involving poly (N-isopropyl-acrylamide) and polyhedral oligomeric silsesquioxane: preparation and rapid thermoresponsive properties. Journal of Polymer Science, Part B: Polymer Physics 2009, 47, 504.
    22. Hawker, C. J. "Living" free radical polymerization: a unique technique for the preparation of controlled macromolecular architectures. Accounts of Chemical Research 1997, 30, 373.
    23. Hawker, C: J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chemical Reviews 2001, 101, 3661.
    24. Harth, E.; Bosman, A.; Benoit, D.; Helms, B.; Frechet, J. M. J.; Hawker, C. J. A practical approach to the living polymerization of functionalized monomers: application to block copolymers and 3-dimensional macromolecular architectures. Macromolecular Symposium 2001, 174, 85.
    25. Benoit, D.; Chaplinski, V.; Braslau, R.; Hawker, C. J. Development of a universal alkoxyamine for "living" free radical polymerizations. Journal of the American Chemical Society 1999, 121, 3904.
    26. Choi, C.; Chae, S.; Nah, J. Thermosensitive poly (N-isopropyl acrylamide)-b-poly (ε-caprolactone) nanoparticles for efficient drug delivery system. Polymer 2006, 47, 4571.
    27. Kujawa, P.; Watanabe, H.; Tanaka, F.; Winnik, F. M. Amphiphilic telechelic poly (N-isopropyl -acrylamide) in water: from micelles to gels. European Physical Journal E - Soft Matter 2005, 17, 129.
    28. Shan, J.; Markus, N.; Jiang, H.; Esko, K.; Heikki, T. Preparation of poly (N-isopropyl -acrylamide)-monolayer-protected gold clusters: synthesis methods, core size, and thickness of monolayer. Macromolecules 2003, 36, 4526.
    29. Steven, C.; Barry, H.; Stephen, R. Highly branched poly (N-isopropylacrylamide)s with imidazole end groups prepared by radical polymerization in the presence of a styryl monomer containing a dithioester group. Macromolecules 2005, 38, 4595.
    30. Ge, Z.; Luo, S.; Liu, S. Syntheses and self-assembly of poly (benzylether)-b-poly (N-isopropyl -acrylamide) dendritic-linear diblock copolymers. Journal of Polymer Science, Part A: Polymer Chemistry 2006, 44, 1357.
    31. Liu, Q.; Zhang, P.; Qing, A.; Lan, Y.; Lu, M. Poly (N-isopropylacrylamide) hydrogels with improved shrinking kinetics by RAFT polymerization. Polymer 2006, 47, 2330.
    32. Masci, G.; Giacomelli, L.; Crescenzi, V. Atom transfer radical polymerization of N-isopropyl- acrylamide. Macromolecular Rapid Communications 2004, 25, 559.
    33. Patrizi, M.; Diociaiut, M.; Capitani, D.; Masci, G. Synthesis and association properties of thermoresponsive and permanently cationic charged block copolymers. Polymer 2009, 50, 467.
    34. Teodorescu, M.; Matyjaszewski, K. Controlled polymerization of (meth) acrylamides by atom transfer radical polymerization. Macromolecular Rapid Communications 2000, 21, 190.
    35. Xia, Y.; Yin, X.; Burke, N.; Stover, H. Thermal response of narrow-disperse poly (N- isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 2005, 38, 5937.
    36. Xia, Y.; Burke, N.; Stover, H. End group effect on the thermal response of narrow-disperse poly (N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 2006, 39, 2275.
    37. Ye, J.; Narain, R. Water-assisted atom transfer radical polymerization of N-isopropylacrylamide : nature of solvent and temperature. Journal of Physical Chemistry, B 2009, 113, 676.
    38. Li, G.; Shi, L.; An, Y.; Zhang, W.; Ma, R. Double-responsive core–shell–corona micelles from self-assemblyof diblock copolymer of poly (t-butyl acrylate-co-acrylicacid)-b-poly (N-isopropyl -acrylamide). Polymer 2006, 47, 4581.
    39. Teodorescu, M.; Matyjaszewski, K. Atom transfer radical polymerization of methacrylamides. Macromolecules 1999, 32, 4826.
    40. Rademacher, J.; Baum, M.; Pallack, M.; Brittain, W.; Simonsick, W. Atom transfer radical polymerization of N, N-dimethylacrylamide. Macromolecules 2000, 33, 284.
    41. Teodorescu, M.; Matyjaszewski, K. Controlled polymerization of (meth) acrylamides by atom transfer radical polymerization. Macromolecular Rapid Communications 2000, 21, 190.
    42. Neugebauer, D.; Matyjaszewski, K. Copolymerization of N, N-dimethylacrylamide with n-butyl acrylate via atom transfer radical polymerization. Macromolecules 2003, 36, 2598.
    43. Ciampolini, M.; Nardi, N. Five-coordinated high-spin complexes of bivalent cobalt, nickel, and copper with tris (2-dimethylaminoethyl)amine. Inorganic Chemistry, 1966, 5, 41.
    44. Feng, L.; Hu, J.; Liu Z.; Zhao, F.; Liu, G. Preparation and properties of optically active poly (N-methacryloyl L-leucine methyl ester). Polymer 2007, 48, 3616.
    45. Mizutani, M.; Satoh, K.; Kamigaito, M. Metal-catalyzed radical polyaddition for aliphatic polyesters via evolution of atom transfer radical addition into step-growth polymerization. Macromolecules 2009, 42, 472.
    46. Plummer, R.; Hill, D.; Whittaker, A. Solution properties of star and linear poly (N-isopropyl acrylamide). Macromolecules 2006, 39, 8379.
    47. Wu, C. A comparision between the“coil-to-globlue”transition of linear chains and the“volume phase transition”of spherical microgels. Polymer 1998, 19, 4609.
    48. Walter, R.; Ricka, J.; Quellet, C. Coil-globule transition of poly (N-isopropylacrylamide): a study of polymer-surfactant association. Macromolecules 1996, 11, 4019.
    1. Pinnavaia, T.; Beal, G.; Polymer Clay Nanocomposites; John Wiley & Sons: New York, 2001.
    2. Giannelis, E. Polymer layered silicate nanocomposites. Advanced Materials 1996, 8, 29.
    3. Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O. Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with caprolactam. Journal of Polymer Science, Part A: Polymer Chemistry 1993, 31, 983.
    4. Sellinger, A.; Weiss, P. M.; Nguyen, A.; Lu, Y. F.; Assink, R. A.; Gong, W. L.; Brinker, C. J. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature 1998, 394, 256.
    5. Lichtenhan, J. D. In Polymeric Materials Encyclopedia; Salamone, J. C., Ed.; CRC Press: Boca Raton, FL, 1996; 7768.
    6. Schwab, J. J.; Lichtenhan, J. D. Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Applied Organometallic Chemistry 1998, 12, 707.
    7.http://www.gelest.com/Library/ Polyhedral Oligosilsesquioxanes and Heterosilsesquioxanes.
    8.Laine, R. M.; Choi, J.; Lee, I. Organic-inorganic nanocomposites with completely defined interfacial interactions. Advanced Materials 2001, 13, 800.
    9.Choi, J.; Kim, S. G.; Laine, R. M. Organic/inorganic hybrid epoxy nanocomposites from aminophenylsilsesquioxanes. Macromolecules 2004, 37, 99.
    10.Lin, H. C.; Kuo, S. W.; Huang, C. F.; Chang, F. C. Thermal and surface properties of phenolic nanocomposites containing octaphenol polyhedral oligomeric silsesquioxane. Macromolecular Rapid Communications 2006, 27, 537.
    11 . Liu, Y. H.; Zheng, S. X. Inorganic/organic nanocomposites of polybenzoxazine with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Journal of Polymer Science, Part A: Polymer Chemistry 2006, 44, 1168.
    12.Nanda, A. K.; Wicks, D. A.; Madbouly, S. A.; Otaigbe, J. U. Nanostructured polyurethane/POSS hybrid aqueous dispersions prepared by homogeneous solution polymerization. Macromolecules 2006, 39, 7037.
    13. Liu, H. Z.; Zheng, S. X. Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane. Macromolecular Rapid Communications 2005, 26, 196.
    14. Leu, C. M.; Chang, Y. T.; Wei, K. H. Synthesis and dielectric properties of polyimide-tetheredpolyhedral oligomeric silsesquioxane (POSS) nanocomposites via POSS-diamine. Macromolecules 2003, 36, 9122.
    15. Zheng, L.; Farris, R. J.; Coughlin, E. B. Novel polyolefin nanocomposites: synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules 2001, 34, 8034.
    16. Joshi, M.; Butola, B. S.; Simon, G.; Kukaleva, N. Rheological and viscoelastic behavior of HDPE/Octamethyl-POSS nanocomposites. Macromolecules 2006, 39, 1839.
    17. Joshi, M.; Butola, B. S. Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer 2004, 45, 4953.
    18. Pracella, M.; Chionna, D.; Fina, A.; Tabuani, D. Polypropylene-POSS nanocomposites: morphology and crystallization behaviour. Macromolocular Symposium 2006, 234, 59.
    19. Fu, B. X.; Yang, L.; Somani, R. H.; Zong, S. X.; Gelfer, M. Y.; Hsiao, B. S.; Phillips, S.; Blanski, R.; Ruth, P. Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. Journal of Polymer Science, Part B: Polymer Physics 2001, 39, 2727.
    20. Soong, S. Y.; Cohen, R. E.; Boyce, M. C.; Mulliken, A. D. Rate-dependent deformation behavior of POSS-filled and plasticized poly (vinyl chloride). Macromolecules 2006, 8, 2900.
    21. Haddad, T. S.; Lichtenhan, J. D. Hybrid organic-inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules 1996, 22, 7302.
    22. Kopesky, E. T.; Haddad, T. S.; Cohen, R. E.; Mckinley, G. H. Thermomechanical properties of poly (methyl methacrylate)s containing tethered and untethered polyhedral oligomeric silsesquioxanes. Macromolecules 2004, 37, 8992.
    23. Gao, F.; Tong, Y. H.; Schricher, S. R.; Culbertson, B. M. Evaluation of neat resins based on methacrylates modified with methacryl-POSS, as potential organic/inorganic hybrids for formulating dental restoratives. Polymers for Advanced Technologies 2001, 12, 355.
    24. Kopesky, E. T.; Haddad, T. S.; Cohen, R. E.; Mckinley, G. H. Miscibility and viscoelastic properties of acrylic polyhedral oligomeric silsesquioxane-poly (methyl methacrylate) blends. Polymer 2005, 46, 4743.
    25. Liu, Y. H.; Yang, X. T.; Zhang, W. A.; Zheng, S. X. Star-shaped poly (ε-caprolactone) with polyhedral oligomeric silsesquioxane core. Polymer 2006, 47, 6814.
    26. Paul, D.; Newman, S. Polymer Blends, Vols. 1 and 2, Academic Press, New York, 1978.
    27. Utracki, L. Polymer Alloys and Blends: Thermodynamics and Rheology, Hanser, 1989.
    28. Olabisi, O.; Robeson, L.; Shaw, M. Polymer-Polymer Miscibility, Academic Press, New York, 1979.
    29. Coleman, M.; Graf, J.; Painter, P. Specific Interaction and the Miscibility and Polymer Blends, Technomic Publishing, Lancaster, PA 1991.
    30. Coleman, M.; Painter, P. Hydrogen bonded polymer blends. Progress in Polymer Science 1995, 10, 1.
    1. Sanchez, C.; Lebeau, B. Design and properties of hybrid organic-inorganic nanocomposites for photonics. MRS Bulletin 2000, 26, 377.
    2. Seraji, S.; Wu, Y.; Forbes, M.; Limmer, S. J.; Chou, T.; Cao, G. Sol-gel-derived mesoporous silica films with low dielectric constants. Advanced Materials 2000, 12, 1695.
    3. Rajeshwar, K.; de Tacconi, N. R.; Chenthamarakshan, C. R. Semiconductor-based composite materials: preparation, properties, and performance. Chemistry of Materials 2001, 13, 2765.
    4. Scott, B. J.; Wirnsberger, G.; Stucky, G. D. Mesoporous and mesostructured materials for optical applications. Chemistry of Materials 2001, 13, 3140.
    5. Kojima, Y.; Usuki, A.; Kawasumi, M. Mechanical properties of nylon 6-clay hybrid. Journal ofMaterial Research 1993, 8, 1185.
    6. Corriu, R. J. A new trend in metal-alkoxide chemistry: the elaboration of monophasic organic/inorganic hybrid materials. Polyhedron 1998, 17, 925.
    7. Sanchez, C.; Soler-Illia, G. J. de A. A.; Ribot, F.; Lalot, T.; Mayer, C. R.; Cabuil, V. Designed hybrid organic/inorganic nanocomposites from functional nanobuilding blocks. Chemistry of Materials 2001, 13, 3061.
    8. Vaia, R. A.; Giannelis, E. P. Bridged polysilsesquioxanes. Molecular-engineered hybrid organic-inorganic materials. Chemistry of Materials 2001, 13, 3306.
    9. Matthews, F. L.; Rawlings, R. D. Composites materials: Engineering and science; Chapman & Hall: London, U.K., 1994; p 14.
    10. Jackson, G. V.; Orton, M. L. In Particulate-filled polymer composites; Rothon, R., Ed.; Longman Scientific & Technical: Essex, U.K., 1995; p 317.
    11. Demjen, Z.; Pukanszky, B.; Nagy, J. Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites. Composites Part A 1998, 29, 323.
    12. Chiu, H.; Wang, J. Dynamic mechanical properties of the chemical oxidation on UHMWPE fibers for improved adhesion to epoxy resin matrix. Journal of Applied Polymer Science 1998, 68, 1387.
    13. Delong, J.; Hook, K. J.; Rich, M. J.; Drzal, L. T. In Composite Materials; Ishida, H., Ed.; Elsevier Press: New York, 1990; p 87.
    14. LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J. Polymer-layered silicate nanocomposites: an overview. Applied Clay Science 1999, 15, 11.
    15. Carrado, K. Synthetic organo- and polymer-clays: preparation, characterization, and materials applications. Applied Clay Science 2000, 17, 1.
    16. Alexangdre, M.; Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Material Science and Engineering 2000, 28, 1.
    17. Laine, R. M.; Choi, J.; Lee, I. Organic-inorganic nanocomposites with completely defined interfacial interactions. Advanced Materials 2001, 13, 800.
    18. Choi, J.; Kim, S.G.; Laine, R. M. Organic/inorganic hybrid epoxy nanocomposites from aminophenylsilsesquioxanes. Macromolecules 2004, 37, 99.
    19. Liu, H.; Zheng, S.; Nie, K. Morphology and thermomechanical properties of organic-inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane. Macromolecules 2005, 38, 5088.
    20. Ni, Y.; Zheng, S.; Nie, K. Morphology and thermal properties of inorganic/organic hybrids involvingepoxy resin and polyhedral oligomeric silsesquioxanes. Polymer 2004, 45, 5557.
    21. Chen, W. Y.; Wang, Y.Z.; Kuo, S. W.; Huang, C. F.; Tung, P. H.; Chang, F. C. Thermal and dielectric properties and curing kinetics of nanomaterials formed from POSS-epoxy and meta-phenylenediamine. Polymer 2004, 45, 6897.
    22. Lee, L. H.; Chen, W. C. Organic/inorganic hybrid materials from a new octa (2, 3-epoxypropyl) silsesquioxane with diamines. Polymer 2005, 46, 2163.
    23. Abad, M. J.; Barral, L.; Fasce, D. P.; Williams, R. J. Epoxy networks containing large mass fractions of a monofunctional polyhedral oligomeric silsesquioxane (POSS). Macromolecules 2003, 36, 3128.
    24. Pellice, S. A.; Fasce, D. P.; Williams R. J. Properties of epoxy networks derived from the reaction of diglycidyl ether of bisphenol A with polyhedral oligomeric silsesquioxanes bearing OH-functionalized organic substituents. Journal of Polymer Science, Part B: Polymer Physics 2003, 41, 1451.
    25. Strachota, A.; Whelan, P.; Kriz, J.; Brus, J.; Urbanova, M.; Slouf, M.; Matejka, L. Formation of nanostructured epoxy networks containing polyhedral oligomeric silsesquioxane (POSS) blocks. Polymer 2007, 48, 3041.
    26. Fu, B.; Namani, M.; Lee, A. Influence of phenyltrisilanol polyhedral silsesquioxane on properties of epoxy network glasses. Polymer 2003, 44, 7739.
    27. Lu, T.; Chen, T.; Liang, G. Synthesis, thermal properties, and flame retardance of the epoxy-silsesquioxane hybrid resins. Polymer Engneering and Science 2007, 47, 225.
    28. Choi, J.; Lee, I.; Yee, A. F.; Laine, R. M. Organic/inorganic hybrid composites from cubic silsesquioxanes. Epoxy resins of octa (dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules 2003, 36, 5666.
    29. Lin, H. C.; Kuo, S. W.; Huang, C. F.; Chang, F. C. Thermal and surface properties of phenolic nanocomposites containing octaphenol polyhedral oligomeric silsesquioxane. Macromolecular Rapid Communications 2006, 27, 537.
    30. Kuo, S. W.; Lin, H. C.; Huang, W. J.; Huang, C. F.; Chang, F. C. Hydrogen bonding interactions and miscibility between phenolic resin and octa (acetoxystyryl) polyhedral oligomeric silsesquioxane (AS-POSS) nanocomposites. Journal of Polymer Science, Part B: Polymer Physics 2006, 46, 673.
    31. Lee, Y. J.; Kuo, S. W.; Huang, W. J.; Lee, H. Y.; Chang, F. C. Miscibility, specific interactions, and self-assembly behavior of phenolic/polyhedral oligomeric silsesquioxane hybrids. Journal of Polymer Science, Part B: Polymer Physics 2004, 42, 1127.
    32. Liu, Y. H.; Zheng, S. X. Organic/inorganic hybrid nanocomposites involving novolac resin and polyhedral oligomeric silsesquioxane. Reactive & Functional Polymers 2007, 67, 627.
    33. Lee, Y. J.; Kuo, S. W.; Su, Y. C.; Chen, J. K.; Tu, C. W. ; Chang, F. C. Comparing emulsion polymerization of methacrylate-monomers with different hydrophilicity. Polymer 2005, 46, 1017
    34. Chen, Q.; Xu, R. W.; Zhang, J.; Yu, D. S. Polyhedral oligomeric silsesquioxane (POSS) nanoscale reinforcement of thermosetting resin from benzoxazine and bisoxazoline. Macromolecular Rapid Communications 2005, 26, 1878.
    35. Li, G. Z.; Wang, L.; Toghiani, H.; Daulton, T. L.; Pittman, C. U. Viscoelastic and mechanical properties of vinyl ester (VE)/multifunctional polyhedral oligomeric silsesquioxane (POSS) nanocomposites and multifunctional POSS-styrene copolymers. Polymer 2002, 43, 4167.
    36. Liu, Y. R.; Huang, Y. D.; Liu, L. Thermal stability of POSS/methylsilicone nanocomposites. Composites Science and Technology 2007, 67, 2864.
    37. Liu, Y. R.; Huang, Y. D.; Liu, L. Effects of Trisilanolisobutyl-POSS on thermal stability of methylsilicone resin. Polymer Degradation and Stability 2006, 91, 2731.
    38. Shchegolikhina, O. I.; Pozdnyakova, Y. A.; Molodtsova, Y. A.; Korkin, S. D.; Bukalov, S. S.; Leites, L. A.; Lyssenko, K. A.; Peregudov, A. S.; Auner, N.; Katsoulis, D. E. Synthesis and properties of stereoregular cyclic polysilanols: cis-[PhSi(O)OH]4, cis-[PhSi(O)OH]6, and Tris-cis-tris-trans- [PhSi(O)OH]12. Inorganic Chemistry 2002, 41, 6892.
    39. Shchegolikhina, O. I.; Igonin, V. A.; Molodtsova, Y. A.; Pozdnyakova, Y. A.; Zhdanov, A. A.; Strelkova, T. V.; Lindeman, S. V. Synthesis and characterization of large stereoregular organosiloxane cycles. Journal of Organometallic Chemistry 1998, 562, 141.
    40. Molodtsova, Y. A.; Shchegolikhina, O. I.; Lyssenko, K. A.; Blagodatskikh, I.; Katsoulis, D. E. Copper/sodium-directed hydrolytic condensation of methyltriethoxysilane: self-assembly of polyhedral Cu/Na-methylsiloxane. Synthesis and properties of new stereoregular macrocyclosiloxane. Journal of Organometallic Chemistry 2008, 693, 1797.
    1. Sanchez, C.; Lebeau, B. Design and properties of hybrid organic/inorganic nanocomposites for photonics. MRS Bulletin 2000, 26, 377.
    2. Seraji, S.; Wu, Y.; Forbes, M.; Limmer, S. J.; Chou, T.; Cao, G. Sol-gel-derived mesoporous silica films with low dielectric constants. Advanced Materials 2000, 12, 1695.
    3. Rajeshwar, K.; de Tacconi, N. R.; Chenthamarakshan, C. R. Semiconductor-based composite materials: preparation, properties, and performance. Chemistry of Materials 2001, 13, 2765.
    4. Scott, B. J.; Wirnsberger, G.; Stucky, G. D. Mesoporous and mesostructured materials for optical applications. Chemistry of Materials 2001, 13, 3140.
    5. Kojima, Y.; Usuki, A.; Kawasumi, M. Mechanical properties of nylon 6-clay hybrid. Journal of Material Research 1993, 8, 1185.
    6. Corriu, R. J. A new trend in metal-alkoxide chemistry: the elaboration of monophasic organic-inorganic hybrid materials. Polyhedron 1998, 17, 925.
    7. Sanchez, C.; Soler-Illia, G.; Ribot, F.; Lalot, T.; Mayer, C. R.; Cabuil, V. Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chemistry of Materials 2001, 13, 3061.
    8. Vaia, R. A.; Giannelis, E. P. Bridged polysilsesquioxanes. Molecular-engineered hybrid organic-inorganic materials. Chemistry of Materials 2001, 13, 3306.
    9. Matthews, F. L.; Rawlings, R. D. Composites materials: Engineering and science; Chapman & Hall: London, U.K., 1994; p 14.
    10. Jackson, G. V.; Orton, M. L. In Particulate-filled polymer composites; Rothon, R., Ed.; Longman Scientific & Technical: Essex, U.K., 1995; p 317.
    11. Demjen, Z.; Pukanszky, B.; Nagy, J. Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites. Composites Part A 1998, 29, 323.
    12. Chiu, H.; Wang, J. Dynamic mechanical properties of the chemical oxidation on UHMWPE fibers for improved adhesion to epoxy resin matrix. Journal of Applied Polymer Science 1998, 68, 1387.
    13. Delong, J.; Hook, K. J.; Rich, M. J.; Drzal, L. T. In Composite Materials; Ishida, H., Ed.; Elsevier Press: New York, 1990; p 87.
    14. LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J. Polymer-layered silicate nanocomposites: an overview. Applied Clay Science 1999, 15, 11.
    15. Carrado, K. Synthetic organo- and polymer-clays: preparation, characterization, and materials applications. Applied Clay Science 2000, 17, 1.
    16. Alexangdre, M.; Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Material Science and Engineering 2000, 28, 1.
    17. Laine, R. M.; Choi, J.; Lee, I. Organic-inorganic nanocomposites with completely defined interfacial interactions. Advanced Materials 2001, 13, 800.
    18. Choi, J.; Kim, S. G.; Laine, R. M. Organic/inorganic hybrid epoxy nanocomposites from aminophenylsilsesquioxanes. Macromolecules 2004, 37, 99.
    19. Liu, H.; Zheng, S.; Nie, K. Morphology and thermomechanical properties of organic-inorganichybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane. Macromolecules 2005, 38, 5088.
    20. Ni, Y.; Zheng, S.; Nie, K. Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer 2004, 45, 5557.
    21. Chen, W. Y.; Wang, Y. Z.; Kuo, S. W.; Huang, C. F.; Tung, P. H.; Chang, F. C. Thermal and dielectric properties and curing kinetics of nanomaterials formed from POSS-epoxy and meta-phenylenediamine. Polymer 2004, 45, 6897.
    22. Lee, L. H.; Chen, W. C. Organic-inorganic hybrid materials from a new octa (2, 3-epoxypropyl) silsesquioxane with diamines. Polymer 2005, 46, 2163.
    23. Abad, M. J.; Barral, L.; Fasce, D. P.; Williams, R. J. Epoxy networks containing large mass fractions of a monofunctional polyhedral oligomeric silsesquioxane (POSS). Macromolecules 2003, 36, 3128.
    24. Pellice, S. A.; Fasce, D. P.; Williams R. J. Properties of epoxy networks derived from the reaction of diglycidyl ether of bisphenol A with polyhedral oligomeric silsesquioxanes bearing OH-functionalized organic substituents. Journal of Polymer Science, Part B: Polymer Physics 2003, 41, 1451.
    25. Strachota, A.; Whelan, P.; Kriz, J.; Brus, J.; Urbanova, M.; Slouf, M.; Matejka, L. Formation of nanostructured epoxy networks containing polyhedral oligomeric silsesquioxane (POSS) blocks. Polymer 2007, 48, 3041.
    26. Fu, B.; Namani, M.; Lee, A. Influence of phenyltrisilanol polyhedral silsesquioxane on properties of epoxy network glasses. Polymer 2003, 44, 7739.
    27. Lu, T.; Chen, T.; Liang, G. Synthesis, thermal properties, and flame retardance of the epoxy-silsesquioxane hybrid resins. Polymer Engineering and Science 2007, 47, 225.
    28. Choi, J.; Lee, I.; Yee, A. F.; Laine, R. M. Organic/inorganic hybrid composites from cubic silsesquioxanes. Epoxy resins of octa (dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules 2003, 36, 5666.
    29. Lin, H. C.; Kuo, S. W.; Huang, C. F.; Chang, F. C. Thermal and surface properties of phenolic nanocomposites containing octaphenol polyhedral oligomeric silsesquioxane. Macromolecular Rapid Communications 2006, 27, 537.
    30. Kuo, S. W.; Lin, H. C.; Huang, W. J.; Huang, C. F.; Chang, F. C. Hydrogen bonding interactions and miscibility between phenolic resin and octa (acetoxystyryl) polyhedral oligomeric silsesquioxane (AS-POSS) nanocomposites. Journal of Polymer Science, Part B: Polymer Physics 2006, 46, 673.
    31. Lee, Y. J.; Kuo, S. W.; Huang, W. J.; Lee, H. Y.; Chang, F. C. Miscibility, specific interactions, and self-assembly behavior of phenolic/polyhedral oligomeric silsesquioxane hybrids. Journal of PolymerScience, Part B: Polymer Physics 2004, 42, 1127.
    32. Lee, Y. J.; Kuo, S. W.; Su, Y. C.; Chen, J. K.; Tu, C. W. ; Chang, F. C. Comparing emulsion polymerization of methacrylate-monomers with different hydrophilicity. Polymer 2005, 46, 1017.
    33. Lee, Y. J.; Kuo, S. W.; Huang, J. M.; Chen, J. K.; Chang, F. C. Synthesis and characterizations of a vinyl-terminated benzoxazine monomer and its blending with polyhedral oligomeric silsesquioxane (POSS). Polymer 2005, 46, 2320.
    34. Chen, Q.; Xu, R. W.; Zhang, J.; Yu, D. S. Polyhedral oligomeric silsesquioxane (POSS) nanoscale reinforcement of thermosetting resin from benzoxazine and bisoxazoline. Macromolecular Rapid Communications 2005, 26, 1878.
    35. Xu, R. W.; Zhang, J.; Yu, D. S. A novel poly-benzoxazinyl functionalized polyhedral oligomeric silsesquioxane and its nanocomposite with polybenzoxazine. European Polymer Journal 2007, 43, 743.
    36. Liu, Y. H.; Zheng, S. X. Organic-inorganic hybrid nanocomposites involving novolac resin and polyhedral oligomeric silsesquioxane. Reactive & Functional Polymers 2007, 67, 627.
    37. Li, G. Z.; Wang, L.; Toghiani, H.; Daulton, T. L.; Pittman, C. U. Viscoelastic and mechanical properties of vinyl ester (VE)/multifunctional polyhedral oligomeric silsesquioxane (POSS) nanocomposites and multifunctional POSS-styrene copolymers. Polymer 2002, 43, 4167.
    38. Liu, Y. R.; Huang, Y. D.; Liu, L. Thermal stability of POSS/methylsilicone nanocomposites. Composite Science and Technology 2007, 67, 2864.
    39. Liu, Y. R.; Huang, Y. D.; Liu, L. Effects of trisilanolisobutyl-POSS on thermal stability of methylsilicone resin. Polymer Degradation and Stability 2006, 91, 2731.
    40. Ishida, H.; Allen, D. J. Physical and mechanical characterization of near-zero shrinkage polybenzoxazines. Journal of Polymer Science, Part B: Polymer Physics 1996, 34, 1019.
    41. Shen, S.; Ishida, H. Synthesis and characterization of polyfunctional naphthoxazines and related polymers. Journal of Applied Polymer Science 1996, 61, 1595.
    42. Ishida, H.; Krus, C. M. Synthesis and characterization of structurally uniform model oligomers of polybenzoxazine. Macromolecules 1998, 31, 2409.
    43. Ishida, H.; Sanders, D. P. Regioselectivity and network structure of difunctional alkyl-substituted aromatic amine-based polybenzoxazines. Macromolecules 2000, 33, 8149.
    44. Agag, T.; Takeichi, T. Novel benzoxazine monomers containing p-phenyl propargyl ether: polymerization of monomers and properties of polybenzoxazines. Macromolecules 2001, 34, 7257.
    45. Shen, S. B.; Ishida, H. Dynamic mechanical and thermal characterization of high-performance polybenzoxazines. Journal of Polymer Science, Part B: Polymer Physics 1999, 37, 3257.
    46. Agag, T.; Takeichi, T. Synthesis and characterization of novel benzoxazine monomers containing p-allyl groups and their high performance thermosets. Macromolecules 2003, 36, 6010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700