碱式硫酸镁晶须和氢氧化镁晶须的改性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱式硫酸镁晶须和氢氧化镁晶须是无机增韧阻燃材料,可用于塑料、陶瓷、涂料、金属、化工、航空航天等领域,在世界范围内得到越来越广泛的应用。然而在我国此类产品却仍然处于研究与开发阶段,与美日等发达国家相比有较大差距。针对这种情况,本文在前人研究的基础上,系统的研究了碱式硫酸镁晶须和氢氧化镁晶须的制备、改性及应用。
     以菱镁矿为原料,在700℃下煅烧3h,将煅烧后的活性氧化镁配制为4.0%的料浆,利用水热法,控制反应温度为200℃,反应时间4h,搅拌速度为400r/min,制备出碱式硫酸镁晶须。以氢氧化钠和碱式硫酸镁晶须为原料,采用水热法,控制碱式硫酸镁晶须的料浆浓度为4.0%,反应温度为180℃,反应时间4h,搅拌速度为100r/min,氢氧化钠与碱式硫酸镁晶须的摩尔比为1.4:1时,制备出氢氧化镁晶须。
     采用单因素条件试验方法,利用脂肪酸、钛酸酯、硅烷、铝酸酯等表面改性剂对碱式硫酸镁晶须和氢氧化镁晶须进行湿法表面改性。试验结果表明,对碱式硫酸镁晶须和氢氧化镁晶须改性效果较好的改性剂分别为硬脂酸钠和硬脂酸锌。改性后碱式硫酸镁晶须和氢氧化镁晶须的接触角、活化指数和吸油量分别能达到111.85°、99.28%、186ml/100g和126.38°、99.05%、354ml/100g,晶须的分散性和流动性也明显提高,晶须表面与硬脂酸盐之间除有物理吸附外,还形成了牢固的化学吸附。
     将改性后的碱式硫酸镁晶须和氢氧化镁晶须添加到聚丙烯树脂中,随着晶须添加量的增加,碱式硫酸镁晶须/聚丙烯复合材料和氢氧化镁晶须/聚丙烯复合材料的冲击强度和氧指数上升,拉伸强度和断裂伸长率下降。聚丙烯的冲击强度、拉伸强度、断裂伸长率和氧指数分别为62J/m、25.8MPa、83.5%和19.2%,当晶须的添加量为50%时,碱式硫酸镁晶须/聚丙烯复合材料的冲击强度、拉伸强度、断裂伸长率和氧指数分别为79.67J/m、20.6 MPa、9.7%和25.1%,氢氧化镁晶须/聚丙烯复合材料的冲击强度、拉伸强度、断裂伸长率和氧指数分别为75J/m、21MPa、7.2%、26.0%,复合材料的综合力学性能和阻燃性能得到提高。
     研究了碱式硫酸镁晶须和氢氧化镁晶须增韧阻燃聚丙烯的作用机理,结果表明,晶须与树脂接触及浸润,然后与树脂间形成新的塑性界面层,在应力作用下,塑性界面层能发生形变以缓解应力集中,使得复合材料能吸收较大能量,从而使复合材料的韧性得以增强。碱式硫酸镁晶须和氢氧化镁晶须的最终分解产物为氧化镁和水,水蒸气的产生可吸收大量的热量和冲淡氧气的浓度,其分解产物氧化镁是优质耐火材料,可覆盖于聚合物表面阻止氧气和热量的进入,故能起到阻燃作用。
     本项研究成果对于碱式硫酸镁晶须和氢氧化镁晶须的规模化生产及应用具有一定的指导意义。
As important inorganic materials with reinforcement and fire-retardant effects,basic magnesium sulfate and magnesium hydrate whiskers were widely applied in various fields such as plastics,chinaware,dope,metal,chemical,aviation spaceflight and so on.However,such products were still in the stage of research and development in China.Compared to the United States and Japanand other developed nations,our country had a large gap.In view of this situation,this paper researched the preparation,modification and application of both basic magnesium sulfate and magnesium hydrate whiskers on the base of previous studies.
     Took magnesite as row material and calcinated it for 3 hours at 700℃,basic magnesium sulfate whiskers were prepared by hydrothermal synthesis method with the activity magnesia for 4.0% of slurry,the reaction temperature of 200℃,the reaction time of 4 hours,and the stirring speed of 400r/min.Took sodium hydroxide and basic magnesium sulfate whiskers as raw materials,magnesium hydrate whiskers were prepared by hydrothermal synthesis method with the basic magnesium sulfate whiskers for the 4.0% of slurry,the reaction temperature of 180℃,the reaction time of 4 hours,the stirring speed of 100r/min,and equivalent weight ratio of sodium hydroxide to magnesium sulfate whiskers for 1.4:1.
     By means of single factor tests,basic magnesium sulfate and magnesium hydrate whiskers were modified by surface modification agents such as fatty acid,titanate,silane, aluminum esters and so on.The experimental results indicated that sodium stearate and zinc stearate were the most excellent modifiers for basic magnesium sulfate whiskers and magnesium hydrate whiskers individually.The contact angle,the activate index and the oil-adsorbed value of modified basic magnesium sulfate and magnesium hydrate whiskers were 111.85°,99.28%,186ml/100g and 126.38°,99.05%,354ml/100g respectively. The dispersion and fluidity of whiskers had evident improvement.Apart from the physical absorption,there were firmly chemical adsorption between the surface of whiskers and stestic acid salts.
     Added the modified basic magnesium sulfate and magnesium hydrate whiskers to polypropylene,the impact strength and the oxygen index increased and the tensile strength and the elongation at break decreased of both MOS/PP and MH/PP composite materials with addition of whiskers.The impact strength,the tensile strength, the elongation at break and the oxygen index of PP were 62J/m,25.8MPa,83.5% and 19.2%.When the increasing amount is 50%,these indicators of MOS/PP composite were 79.67J/m,20.6 MPa,9.7% and31.5%,and these indicators of MH/PP composite were 75J/m,21MPa,7.2% and 32.8%.Integration mechanics property and fire-retardant property of composite increased.
     In this paper,basic magnesium sulfate and magnesium hydrate whiskers toughness and flame retardant action mechanism for polypropylene were researched.The results indicated that the surface of whiskers and resin formed a new plastic interface layer after contacting and infiltrating,when the stress did its work,the plastic interface layer could deform to alleviate stress concentration and make composite system absorb more energy,so that the toughness of composite material can be enhanced.The final decomposition products of them were magnesia and water. The water could absorb a large amount of calories and dilute the concentration of oxygen.The magnesia was a nicer fireproof material which can cover the surface of polymer so as to prevent the entry of oxygen and heat,so it could serve the purpose of fire retardant.
     Achievements in this paper had a certain guiding significance for the large-scale production and application of basic magnesium sulfate and magnesium hydrate whiskers.
引文
1.赵敏.高分子材料火灾烟气的危害及控制[J],塑料工业,2004,32(6):53-55.
    2.黄汉生.日本塑料阻燃剂发展动向[J],现代化工,1998,(4):38-41.
    3. Hornsby P R, Watson C L. Interfacial modification of polypropylene composites filled with magnesium hydroxide[J], Journal of Materials Science,1995,30:5347-5355.
    4.李佐邦,张留城,吴培熙.塑料用填料及增强剂手册[M],北京:化学工业出版社,1987,10-12.
    5. E.V.Koverzanova, S.V.Usachev, N.G.Shilkina, etc. Specific features of thermal degradation of polypropylene in the presence of magnesium hydroxide[J], Macromolecular Chemistry And Polymeric Materials,2004,77 (33):452-455.
    6.张克惠.塑料材料学[M],西安:西北工业东西出版社,1999,18-20.
    7.李巧玲,欧育湘,王亚昆.无卤阻燃剂的研究进展[J],化工进展,1998(5):24-27.
    8.欧育湘,陈宇.无卤阻燃剂的最新进展[J],现代化工,1996,16(1):15-18.
    9.刘立华.环保型无机阻燃剂的应用现状及发展前景[J].化工科技市场,2005,(7):8-11.
    10.Cook M, Harper J F. Influence of magnesium hydroxide morphology on the crystallinity and properties of filled polypropylene[J], Adv Polym Technol,1998,17 (1):53-62.
    11.H.S.卡茨.塑料用填料及增强剂手册[M],李佐邦等译,北京:化学工业出版社,1985,403-421.
    12.刘春林,姚汝奇.镁盐晶须/聚丙烯复合材料的研究[J],塑料工业,2003,31(8):18-21.
    13.钱海燕,叶旭初,张少明.非金属矿粉体改性及其效果评价[J],非金属矿,2001,24(2):10-12.
    14.潘志东,李竟先.超细粉体的制备与表征[J],中国粉体技术,2000,(6):126-127.
    15.郑水林,钱伯太,卢寿慈.非金属矿物填料表面改性研究进展[J],粉体技术,1999,4(2)24-34.
    16.卢寿慈.粉体加工技术[M],北京:中国轻工业出版社,1999,226-227
    17.杜仕国.填料的改性及其表征[J],塑料工业,1994,(2):48-49..
    18.郑水林,卢寿慈.表面活性非金属矿物填料在塑料制品中的应用现状与发展前景[J],中国非金属矿工业导刊,1999,(1):7-13.
    19.丁浩,卢寿慈等.矿物表面改性研究的现状与前景展望(Ⅳ)—非金属矿物的改性实践[J],矿产保护与利用,1997,(2):31-38.
    20.丁浩.矿物表面改性研究的现状与前景展望(Ⅱ)[J],矿产保护与利用,1996,,8(4):26-29.
    21.何益艳,杜世国.无机填料的改性及其在复合材料中的应用[J],化工新型材料,2001,29(21):14-17.
    22.郑水林.2000-2001年中国粉体表面改性技术研究进展[J],非金属矿,2002,25(增刊):3-7.
    23.黄洪周.中国表面活性剂总览[M],北京:化学工业出版社,2003,700-702.
    24.谷元.粉粒体表面改性技术及其应用[J],化工进展,1994(1):33-40.
    25.吴崇浩,王世敏.纳米微粒表面修饰的研究进展[J],化工新型材料,2002,30(7):1-8.
    26.刘卫平,周建萍等.氧化锌晶须表面改性及表征[J],塑料工业,2004,32(5):48-50.
    27.钱柏太,郑水林等.非金属矿物表面改性技术的新进展[J],中国非金属矿工业导刊,1993,(3):7-13.
    28.田金星.非金属矿物的表面偶联技术[J],表面技术,1996,25(1):32-36.
    29.Hokkaid, Technolo. Surface Modification, Powdergy Handbook,1990, p453-458.
    30.林海松,全元.矿物表面改性研究的现状与发展[J],矿产综合利用,1997,5(1):29-31.
    31.杜高翔,郑水林,李杨.阻燃用氢氧化镁及水镁石粉体的表面改性研究现状[J],非金属矿,2002,25(9):10-13.
    32.E.P.普鲁特曼,梁发思,谢世杰等.硅烷和钛酸酯偶联剂[M],上海:中国上海科学技术文献出版社,1987,40-45.
    33.蒋文贤.特种表面活性剂[M],北京:中国轻工业出版社,1995,125-130.
    34.Rosen.M.J, Hua.X.Y. Surface concentrations and molecluar interactions in binary mixtures of surfactants[J], Colloid & Inter,1982,86:164-172.
    35.Carcia.R.A, Cotoruelo.L.M, Rodriguez.J.J. Equilibrium study of single-solute adsorption of anionic surfactants with polymeric XAD resins[J], Separation Science and Technology,1992,27(7):975-987.
    36.杜志平,王万绪.阴离子表面活性剂与阳离子表面活性剂的相互作用(Ⅳ)—应用性能[J],日用化学工业,2006,36(6):388-391.
    37.欧育湘,陈宇,王梅.阻燃高分子材料[M],北京:国防工业出版社,2001,10.
    38.武德珍,白宗武.稀土偶联剂处理CaCO3填充PVC复合材料及其性能的研究[J],现代塑料加工应用,1996,8(1):10-13.
    39.陈汉佳,祝亚非,张艺,等.PP大分子表面改性剂PP-g-PMMA的制备及应用[J],高分子材料科学与工程,2007,23(3):80-83.
    40.E.P.普鲁特曼,梁发思,谢世杰,等.硅烷和钛酸酯偶联剂[M],上海:中国上海科学技术文献出版社,1987,35-40.
    41.王正洲,瞿保钧.表面处理剂在氢氧化镁阻燃聚乙烯体系中的应用[J],功能高分子学报,2001,14(1):45-48.
    42.Jannasch.P. Surface structure and dynamics of block and graft copolymers having fluorinated poly(ethylene oxide) chain ends[J], Macromolecules,1998,31:1341-1347.
    43.Chan C M. Polymer surface modification and charac-terization[M], New York:Hanser Publishers, 1995,43-45.
    44.周婉秋,李皓.表面活性剂在农药中的应用[J],沈阳师范学院学报(自然科学版),1999,(1):42-46.
    45.曾云朋,张华山,陈震华.现代化学试剂手册:第四分册[M],北京:化学工业出版社,1989,25-29.
    46.Treiner C. The thermodynamics of micellar solubilization of neutral solutes in aqueous binary surfactant systems[J], Chemical SocietyReviews,1994,349-356.
    47.Hua.X.Y. Calculation of the coefficient in the gibbs equation for the adsorption of ionic surfactants from aqueous binary mixtures with nonionic surfactants[J], Colloid & Inter,1982,87:469-477.
    48.Yang.Y.M, Chang.C.H. Cosolvent effects on the stability of catanionic vesicles formed from ion-pair amphiphiles[J], Langmuir,2005,21:6179-6184..
    49.李学刚,宋丽,张光先,等.阴阳离子混合表面活性剂的表面活性[J],日用化学工业,1997(3):12-19.
    50.樊芷芸,叶淑君.阴阳离子混合表面活性剂的应用[J],天津纺织工学院学报,1997,5(16):53-56.
    51.魏钟晴,马培华.水合碱式硫酸镁晶须材料的水热合成[J],盐湖研究,1997,5(3-4):16-23.
    52.魏钟晴,马培华.水合碱式硫酸镁晶须的物理化学性能表征[J],盐湖研究,1998,6(2-3):1-10.
    53.乃学瑛,叶秀深.无机晶须研究进展Ⅲ:碱式硫酸镁晶须的制备及应用[J],盐湖研究,2005,13(13):22-28.
    54.弥勇,陈建铭,宋云华.制备条件对生成碱式硫酸镁晶须的影响[J],IM&P化工矿物与加工,2007,4:14-16.
    55.董殿权,王军.碱式硫酸镁晶须的研制[J],功能材料,1999,30(5): 559-561.
    56.姜玉芝,韩跃新,印万忠.碱式硫酸镁晶须的制备研究[J],金属矿山,2006,(7):46-48.
    57.吴强华,唐龙祥,瞿保钧.碱式硫酸镁晶须阻燃乙烯-醋酸乙烯酯共聚物的研究[J],功能高分子学报,2005,18(2):255-259.
    58.张近,王志奎,任跃辉,等.纳米氧化镁的合成[J],陕西师范大学学报(自然科学版),1999,27(1):82-85.
    59.O.I.Tuzhikov, M.P.Lyabin, T.V.Khokhova. Kinetics of reaction between magnesium hydroxide and dimethyl phosphite[J], Applied Chemistry,2003,77 (8):1211-1213.
    60.吴会军,向兰,朱冬生.高纯微细氢氧化镁的水热法制备[J],华南理工大学学报(自然科学版),2003,31(6):88-70.
    61.高善民.市场前景广阔的无机阻燃剂—氢氧化镁[J],化工进展,2001,(8):56-59.
    62.邹燕.应用前景广阔的氢氧化镁[J],化工技术经济,2002,20(6):16-19.
    63.向兰.阻燃型氢氧化镁制备技术评述[J],海湖盐与化工,2001,30(5):1-4.
    64.刘立华,宋云华,陈建铭,等.纳米氢氧化镁表面改性研究[J],化工进展,2004,23(1):76-80.
    65.郭如新.氢氧化镁应用近期进展[J],海盐湖与化工,30(4):25-28.
    66.雷文.碱式硫酸镁晶须填充不饱和聚酯树脂体系的研究[J],工程塑料应用,2005,33(8):16-18.
    67.Zhu Li-xia. Hydrothermal synthesis and the effect of reaction time on morphology of MgSO4·5Mg(OH)2·3H2O[J], Inorganic Chemistry Communixati-ons,2003,19 (1):99-102.
    68.吴小王,钟辉,胡克伟.镁盐晶须增强材料的研究与应用[J],化工新型材料,2005,(12):13-16.
    69.吕通建,于洋,范平,等.碱式硫酸镁晶须增强阻燃聚丙烯的研究[J],中国塑料,2001,15(9):66-68.
    70.戴焰林.氢氧化镁阻燃剂在聚合物材料中的应用[J],应用化工,2003,32(4):1-4.
    71.何倡进.氢氧化镁在环保领域中的应用[J],化学工程师,2003,12(6):49-51.
    72.罗明标,刘淑娟,余亨华.氢氧化镁处理含铀放射性废水的研究[J],水处理技术,2002,28(5):274-278.
    73.姜述芹,周保学.氢氧化镁处理含镉废水的研究[J],环境化学,2003,22(6):601-605.
    74.魏炳举,张万峰.一种极具发展前景的镁系产品—氢氧化镁[J],海盐湖与化工,32(1):26-33.
    75.郭如新.氢氧化镁在工业废水处理中的应用[J],工业水处理,2000,20(2):1-4.
    76.郭如新.氧化镁、氢氧化镁在环保领域中的应用[J],江苏化工,2004,32(2):1-4.
    77.胡庆轩,郑怀玉,林文娟.有机粉体流动性的测定[J],中国粉体技术,1999,5(5):11-14.
    78.盛涤伦.用安息角定量测定起爆药的流散性[J],火工品,1996,2:47-48.
    79.沈德言.红外光谱法在高分子研究中的应用[M],北京:科学出版社,1982,1-2.
    80.周盾白,黄险波,贾德民.阻燃材料测试与表征方法简述[J],上海塑料,2006,6(2):12-15.
    81.徐奉林,方旋,等.矿物填料与高聚物的界面结构研究[J],浙江地质,1998,14(2):74-84.
    82.朱国亮.纳米粉体/PP复合材料的制备及力学性能研究[D],杭州:浙江大学,2002.
    83.陶国良,龚方红,丁永红.镁盐晶须填充改性聚丙烯材料研究[J],中国塑料,2003,17(12):45-48.
    84.孟季茹,赵磊,梁国正,等.无机晶须在聚合物中的应用[J],化工新型材料,2001,29(12):1-6.
    85.陈尔凡,田雅娟,周本廉.晶须增强体及其复合材料研究进展[J],高分子材料科学与工程,2002,(7)1-5.
    86.任俊,沈健,卢寿慈.颗粒分散科学与技术[M],北京:化学工业出版社,2005:78-80
    87.S.Hoshino, H.Tanaka, T. Kimura. Fibrous magnesium oxysulfate as a new reinforcementfor plastics [J], Proceedings of the annual technical conference of society of plastics engineers, Tokyo,1983,320.
    88.Tai C.M, Robert K.Y. Studies on the fracture behavior of flame retardant polymeric material[J], Materials & Design 2001, (22):15-19.
    89.D.Matthew, Walter, D.James Innes. Magshield Magnesium Hydroxide, an Economic Alternative to Other Flame Retardants, Fire Retardant Chemicals Association Spring Conference[M], March,12~15th, 2000, Washington, DC,51-54.
    90.Longzhen Qiu, Rongcai Xie, Peng Ding, etal. Preparation and characterization of Mg(OH)2 nanoparticals and flame-retardant property of its nanocomposites with EVA [J], Composite Structures, 2003, (62):391-395.
    91.范文春,邬润德.p成核剂和镁盐晶须复合改性聚丙烯研究[J],化工新型材,2004,32(5):36-38.
    92.隗学礼,赵宽放.晶须及其增强塑料复合材料[J],现代塑料加工应用,13(6):52-56.
    93.沈惠玲,辛华.塑料填充体系界面粘结微观形态结构的SEM研究[J],电子显微学报,2002,21(1):90-93.
    94.P.R.Homsby, C.L.Watson. Magnesium hydroxide a combine flame retardant and smoke suppressant filler for thermoplastics[J], Plast Rubb Process APPL,1986, (6):169-156.
    95. Weber M E, Kamal M R. Mechanical and Microscopic Investigation of Whisker—Reinforced Silicone Rubber[J], Polymer Composites,1992,13 (2):133-135.
    96.胡海青,赵尧森.晶须改性聚丙烯[J],塑料工业,2001,29(2):46-47.
    97.R.N.Rothon, P.R.Hornsby. Flame Retardant Effects of Magnesium Hydroxide[J], Polymer Degradation and Stability,1996, (54):383-385.
    98.傅丽玲,范宏,卜志扬.镁盐晶须、聚烯烃弹性体增强增韧PP研究[J],中国塑料,2004,(9):34-37.
    99.廖明义,隗学礼.镁盐晶须增强PP力学性能研究[J],工程塑料应用,2000,28(1):12-14.
    100.商德发.阻燃PP复合材料的制备及性能研究[D],哈尔滨:哈尔滨理工大学,2006.
    101.温晓灵,包建军,刘艳.聚合物的热传导与阻燃[J],塑料工业,2006,3(增刊):252-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700