用户名: 密码: 验证码:
纳米材料改性、填充聚氨酯树脂的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物纳米复合材料早在80年代初就已提出来,之后很快便成为人们研究的焦点。聚合物纳米复合材料要实现工业化,可以采用原位聚合的方法,即将纳米粒子或改性纳米粒子添加到聚合物原料中,然后原位聚合合成聚合物纳米复合材料。该法能较好地解决纳米粒子团聚及其与高聚物基体中的相容性与分散问题,制得的纳米复合材料性能优异,并且操作简单。
     本文中分别将未经表面处理的纳米粉体和用自行设计合成的大分子表面改性剂处理后的纳米粉体加入聚氨酯原料中,应用原位聚合的方法合成了不同的纳米粉体/聚氨酯复合树脂。研究结果表明,纳米Si02粉体在聚氨酯基体内可达到纳米尺度的分散;分别应用不同纳米粉体如纳米Si02、纳米CaCO3,对提高聚氨酯性能或降低其成本均有较为显著的作用。本文具体分为以下三个部分:
     第一章是绪论。通过文献调研,主要介绍了常用的无机纳米粒子及其表面改性方法,以及纳米粒子在聚氨酯改性中应用的研究现状等,最后提出了本课题的设计思路。
     第二章是介绍了应用纳米Si02粉体,通过原位聚合的方法合成纳米Si02/聚氨酯复合树脂。首先将一定比例的聚四氢呋喃醚二元醇(PTMEG)、己二酸—乙二醇—丁二醇三元共聚酯二元醇(TPEG)、乙二醇(EG)、N,N-二甲基甲酰胺(DMF)和纳米二氧化硅混合,并用溶剂DMF调节到合适粘度后,用高速剪切机剪切10min左右,再经高压剪切分散机处理,然后置于反应瓶内升温至90℃搅拌,并按比例加入4,4’-二苯基甲烷二异氰酸酯(MDI),后视粘度补加少量MDI。合成的复合树脂用FTIR、GPC、TGA、SEM等进行了表征。结果表明,纳米Si02的加入对聚氨酯分子量的影响不大,MDI和硅羟基发生了化学反应,Si02均匀分散在聚氨酯基体中,经改性后的聚氨酯在力学性能上有较为明显的提高。
     第三章是大分子改性剂(BA)m-(MMA)n-COOH的合成及应用,即用合成的大分子改性剂再改性纳米碳酸钙,进而填充改性聚氨酯。首先选取甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA)为单体,巯基乙酸(Mercaptoacetic acid)为链转移剂,偶氮二异丁腈(AIBN)为引发剂,合成大分子改性剂。实验中将上述药品按一定的配比加入到恒压漏斗中,在2.5h内滴加到盛有适量甲苯的三口烧瓶中,在110℃下保温反应4h。然后改装置为蒸馏装置,最后升温到170℃,除去溶剂与未反应的单体,得到合成产物。应用FTIR. 1H NMR、13C NMR、DSC、TGA和GPC对产物进行了表征,结果表明,合成的产物为数均分子量Mn在3500左右、一端带-COOH的丙烯酸酯类聚合物,其主要的失重在300-400℃,且只有一个Tg。然后用合成的大分子改性剂(BA)m-(MMA)n-COOH包覆纳米CaCO3粉体。FTIR、TGA、粒径分析、接触角及沉降实验等分析表明,纳米CaCO3粒子与大分子改性剂发生了化学键和,改性后的纳米粒子亲水性降低、亲油性增加,在溶剂中团聚也明显减弱。最后将改性纳米CaCO3粒子添加到聚氨酯原料中,采用原位聚合的方法合成了复合树脂。SEM显示,改性纳米CaCO3在聚氨酯基体中分散均匀,拉伸测试表明少量纳米CaCO3的加入能提高聚氨酯的拉伸强度;TGA数据可以看出,纳米CaCO3对树脂的热稳定性影响不大。
The concept of polymer nanocomposites was advanced in the early 80s, and soon it become to be the focus of the research. The in-situ polymerization method can be used to achieve the industrialization of polymer nanocomposites. Firstly, nano-particles or modified nano-particles were dispersed into polymer raw materials, and then polymer nanocomposites were prepared via in-situ polymerization. The nanocomposites obtained via in-situ polymerization perform well because of the homogeneous dispersion and good compatibility of nano-particles. Besides, the in-situ polymerization method is effective and simple.
     In this paper, crude nano-particles and nano-particles modified by macromolecular surface modifier which we designed and synthesized were dispersed by high pressure shearing homogenizer (HPSH) into polymer diols, and then polyurethane nanocomposites were compounded via in-situ polymerization. The research indicated that nano-particles dispersed well in the polyurethane matrix, and played an important role in the increase of the performance as well as the reduction of the cost of polyurethane. There are three chapters constitute the thesis:
     The first chapter is the introduction which presents the frequently used inorganic nanoparticles, as well as their surface modification methods, and their application in polyurethane modification. Finally, the design of the whole paper is advanced.
     In the second chapter, nano-silica/polyurethane composites were synthesized via in-situ polymerization. Firstly, poly (tetramethylene ether glycol) (PTMEG) and poly (butylenes adipate glycol) (TPEG) and ethylene glycol (EG) and N, N-Dimethylformamide (DMF) and nano-silica were mixed as a certain proportion. Then the mixture treated by high-speed shearing machine and high pressure shearing homogenizer for 10 minutes respectively was placed in a three-neck flask with 4> 4'-diphenylmethane diisocyanate (MDI), The polymerization of polyurethane was carried out at 90℃under nitrogen atmosphere for 3 h. During the reaction, a small amount of MDI was appended according to the viscosity of the system. The composite resins were studied by FTIR, GPC, TGA and SEM. The result showed that the nano-silica in composites method possess homogenous dispersion, and the addition of nano-silica enhanced the mechanical properties of the composites but not reduce the molecular weights.
     The third chapter is the synthesis and application of macromolecule surface modifier (BA)m-(MMA)n-COOH. Firstly, the solution consisted of Methyl methacrylate (MMA, monomers), Butyl Acrylate (BA, monomers), Mercaptoacetic acid (2-MA, chain transfer agent) and 2,2'-Azobis (2-methylpropionitrile) (AIBN, radical initiator) in the ratio of 500/500/25/1 was add into toluene within 2.5h at 110℃, then the reaction was carried out for four hours. After that, change the device for the distillation and heated to 170℃to remove the solvent and unreacted monomers. The obtained compound was hydroxyl-terminated polyacrylate copolymers. The structure and thermal stability of copolymers were analyzed by FTIR, 1H NMR,13C NMR, GPC, TGA and DSC. The result indicated that the number-average molecular weight (Mn) of the macromolecule surface modifier which were hydroxyl-terminated was about 3500. The main weight loss of the copolymer which had a Tg was between 300℃and 400℃. Then the macromolecule surface modifier (BA)m-(MMA)n-COOH was used in the surface modification of nano-CaCO3. FTIR and TGA demonstrated that macromolecular modifier bonded covalently with the hydroxide radical on the surface of nano-CaCO3. Size distribution analyzer, sedimentation experiment and TEM were exerted to show that the modified nanoparticles dispersed well in organic solvent without serious agglomeration. Contact angle test investigated that the hydrophile of modified nanoparticles was decreased. Finally, the modified nanopartilces were dispersed into raw materials of polyurethane and nano-CaCO3/polyurethane composites were synthesized via in-situ polymerization. SEM showed that nano-CaCO3 in the nanocomposites was homogenously dispersed in the polyurethane matrix. TGA and tensile strength test indicated that the addition of nano-CaCO3 had no effect on the thermal stability of resins but a small amount of nano-CaCO3 would enhance the tensile strength.
引文
[1]张力德,牟季美.纳米材料[M].沈阳:辽宁科技出版社,1994.
    [2]宋焕成.聚合物基复合材料[M].北京:国防工业出版社,1986:7-36.
    [3]Roy R, Komaoeni S, Roy D M. Mater Res Sco Symp Proc,1984,32:347.
    [4]王依民,夏于旻.纳米颗粒及其聚合物复合材料的研究与应用[J].中国粉体工业,2008,1:5-15.
    [5]张峰.一种大分子表面改性剂的设计、合成及在PU纳米复合材料中的应用《安徽大学硕士论文》-2010-04-01.
    [6]石士考.纳米材料的特性及应用[J].大学化学,2001,16(2):39-42.
    [7]代淑芬.纳米材料的特性和发展[J].无锡南洋学院学报,2008,7(4):49-53.
    [8]朱世东,周根树,蔡锐等.纳米材料国内外研究进展Ⅰ[J].热处理技术与装备,2010,31(3):1-5.
    [9]田玉明,黄平.纳米粉体的特性和制备[J].太原理工大学学报,2000,31(3):316-318.
    [10]李文胜等.纳米晶体光电子性质研究进展[J].无机材料学报,1995,10(3):257-264.
    [11]Makoto Ogawa, Kazuyuki Kuroda, et al. Chem Rev [J].1995,95:399.
    [12]王芳,刘剑洪,罗仲寇,陈敬中.纳米Si02/聚合物复合材料的研究进展[J].材料导报,2006,20(6):181-184.
    [13]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    [14]许珂敬,董云会,杨福贵.化学沉淀法制备多孔纳米Si02粉末[J].淄博学院学报,2000,127:56-65.
    [15]郭宇,吴红梅,尹桂丽.溶胶凝胶法制备纳米二氧化硅[J],天津化工2005,19(1):34-35.
    [16]伊阳,陶鑫.聚合物/纳米Si02复合材料的研究进展[J].工程塑料应用,2006,34(6):71-74.
    [17]旦辉,丁艺,林金辉.高纯球形纳米Si02的制备、改性与应用研究[J].世界科技研究与发展,2006,28(2):48-51.
    [18]朱勇,谢忠,刘亚雄.立方形纳米碳酸钙的工业制备[J].无机盐工业,2005, 37(10):37-39.
    [19]张立德,牟季美.纳米材料和纳米结构[M].北京:科学技术出版社,2001,3.
    [20]曹建军,纳米TiO2及其功能改性塑料的研究进展[J].钢铁钒钛,2004,25(4):1-8.
    [21]Yang Zhou, Shixing Wang, Bingjun Ding,et al. Modification of magnetite nanoparticles via surface initiated atom transfer radical polymerization (ATRP)[J].Chemical Engineering Journal.2008,138:578-585.
    [22]童听,唐涛,朱宁等.利用聚合物乳液合成聚甲基丙烯酸甲酯/二氧化硅纳米杂化材料[J].高等学校化学学报,2002,23(2):306-309.
    [23]汤国虎,叶巧明,连红芳.无机纳米粉体表面改性的研究进展[J].材料导报,2003,17,33-35.
    [24]Monte Salvatore, Sugerman J, Gerald. Proceeding of composites with titanate coupling agents-a review. Poly Eng Sci,1984,24(8):1369.
    [25]柳建宏,于杰,何敏,鲁圣军.KH570用量对纳米SiO2接枝改性的影响[J].胶体与聚合物,2010,28,(1):19-21.
    [26]余海峰,张玲,等.钛酸酯偶联剂改性纳米CaCO3/PVC的结构和性能[J].华东理工大学学报(自然科学版),2005,31(1):119-121.
    [27]张苏,钱家盛,章于川。纳米粉体的表面改性研究[J]。中国粉体工业,2008,(6): 12-16.
    [28]Xia Ru, Zhang Yuchuan, Zhu Qingren, Study on nano-Si3N4/NBR composites' properties[C]. Proceedings of 5th National (International) Nanoscience & Technology, Xi'an,2006.554.
    [29]Xia Ru, Zhang Yuchuan, Zhu Qingren. et al.Surface modification of nano-sized silicon nitride with BA-MAA-AN tercopolymer[J] Journal of Applied Polymer Science,2008,107:562-570.
    [30]王宝利,朱振峰。无机纳米粉体的团聚与表面改性[J].2006,27(1)135-138.
    [31]徐存英,段云彪,张鹏翔,秦亚琴.纳米二氧化钛的表面改性研究[J].云南化工,2000,27(5):67-78.
    [32]袁乔龙,应圣康Al2O3-SiO2溶胶制备及在水溶性聚氨酯中分散行为[J].华东理工大学学报,1998,24(5):526.
    [33]张乃枝,孙振亚.重质碳酸钙矿物表面改性研究与应用[J].湖北化工,1999(4):25-27.
    [34]郭卫红,李盾等.纳米材料及其在聚合物改性中的应用[J].工程塑料应用,1998,26(4):11-13.
    [35]李春霞,李立平,酒金婷等.纳米粒子的表面改性研究进展[J].北京纺织,2002,23(1):57-61.
    [36]赵德仁.高聚物合成工艺学[M].北京:化学工业出版社,1995:12-44.
    [37]邓春雨,黄开勋,徐卫林.TiO2/羊毛粉体复合改性聚氨酯膜及其性能[J].纺织学报,2006,27(4).
    [38]李万捷,赵亮,张腊.聚氨酯改性的研究进展[J].太原科技,2006,(8):7-8.
    [39]赵燕,卿宁.纳米SiO2对聚氨酯的改性研究进展[J].中国皮革,2008,37(11):31-35.
    [40]唐红艳,王继辉.聚氨酯/蒙脱土纳米复合材料的研究进展[J].工程塑料用用,2006,34(4):72-75.
    [41]Xiang X J, Qian J W, Yang W Y, et al. Synthesis and properties of nanosilica-reinforced polyurethane for grouting [J]. Journal of Applied Polymer Science,2006,100:4333-4337.
    [42]邬润德,童莉,费正新.聚氨酯/纳米SiO2原位复合互贯网络材料研究[J].机械工程材料,2005,29(4):27-30.
    [43]陈晓婷,唐旭东,王玉忠.聚合物纳米复合材料研究进展[J].合成树脂及塑料,2001,18(2):62-66.
    [44]王华林,唐超,史铁钧.聚氨酯/SiO2有机无机杂化材料研究[J].高分子材料科学与工程,2006,22(4):250-253.
    [45]张永成,赵雨花,亢茂青,王心葵.纳米蒙脱土插层改性水基聚氨酯的制备和特征[J].化学推进剂与高分子材料,2005,3(1):37-39.
    [46]Hoffman B, et al. Macromol. Rapid Commun,2000,21:57.
    [47]Liu Z, Bai G, Huang Y, et al. Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites[J]. Carbon,2007,45:821-827.
    [48]李明华,章于川,夏茹,等.含活性硅氧烷型大分子改性剂BA-MMA-VTES的合成与表征[J].精细化工,2007,24(12):1227-1231.
    [49]柴大付,董前年,章于川.甲基丙烯酸-丙烯酸丁酯-甲基丙烯酸环氧丙酯三元共聚物的合成与表征[J].合成化学,2008,16(3):318-321.
    [50]Yanlong Tai, Jiasheng Qian, Yuchuan Zhang, et al. Study of Surface Modification of Nano-SiO2 with Macromolecular Coupling Agent (LMPB-g-MAH) [J].Chemical Engineering Journal.2008,141:354-361.
    [1]李保询.聚氨酯工业[J],987,(3):2.
    [2]蔡斯让,郭宁,张瑞珠等,丙烯酸接枝共聚改性聚氨酯乳液的结构与性能[J],涂料工业,2002,6:12-14.
    [3]陆浩翔,江斌,蒋红梅等,湿固化聚氨酯/有机硅嵌段共聚物的合成与性能[J],上海交通大学学报,2007,(41)10:1679-1682.
    [4]耿圭士,唐明义.聚氨酯材料的研究进展[J].天津商学院学报,1995,135-40
    [5]胡运立,邹传品苏醒等聚氨酯/环氧树脂互穿网络聚合物硬质泡沫机械性能的研究[J],聚氨酯工业,2006,21(6):18-21.
    [6]李万捷,赵亮,张腊.聚氨酯改性的研究进展[J],太原科技,2006,(8):7-8.
    [7]Lee S I, Hahn Y B, Nahm K S, et al. Synthesis of polyether-based polyurethane-silica nanocomposites with high elongation property[J]. Polym Adv Technol,2005,16(4):328-331.
    [8]武利民,周树学.原位聚合法制备聚酯聚氨酯Si02纳米复合涂料及性能测试[J],上海涂料,2002,40(4):5-7.
    [9]麦荣顺,陈爽,孙宁.聚氨酯/纳米二氧化硅复合材料的研究进展[J],皮革与化工,2008,25(5),10-13.
    [10]霍丽霞,叶凤英,初广成,等.原位聚合制备纳米Si02/聚丙烯酸酯复合树脂及其氨基烤漆性能的研究[J].涂料工业,2009,39(3):22-24.
    [11]Jeon H T, Jang M K, Kim B K, et al. Synthesis and characterizations of waterborne polyurethane-silica hybrids using sol-gel process [J]. Colloid Surface A:Physicochem Eng Aspects,2007,302(1-3):559-567.
    [1]王勇,仲含芳,韦平,江平开.大分子偶联剂对PE/氢氧化铝阻燃复合材料性能的影响[J],中国塑料,2004,18(1):67-70.
    [2]陈旭东,许家瑞.高分子表面改性剂的分子设计[J].功能高分子学报,1998.11(4):550-554.
    [3]钱浩,林志勇,张莹雪.大分子表面改性剂的设计合成研究进展[J].华侨大学学报,2006.27(4):337-342.
    [4]路平,谷正,王宝金等,纳米碳酸钙表面改性及其应用研究进展[J].安徽化工,2009,35(5):4-7.
    [5]张毅,马秀清,金日光,等.纳米的表面改性及其与聚合物基的复合[J].2003,32(3):59-64.
    [6]恺峰,黄东.纳米碳酸钙表面改性机理及其改性方法[J].新疆化工,2010,3:16-18.
    [7]翼冰,郭万涛,吴医博等.纳米碳酸钙在橡胶中的应用和研究进展[J],材料开发与应用,2008,23(5):85-88.
    [8]吴绍吟,谢达鹛.白色填料的优化及应用[J].橡胶工业,1997,44(4):249-252.
    [9]颜鑫,周继承,邓新云.纳米碳酸钙四大纳米效应应用表现[J].化工文摘,2008,44-47.
    [10]何茵,史春连,盛保信。纳米碳酸钙在低温奶油丁腈橡胶的试验研究[J],现代橡胶技术,2008,34:14-15
    [11]李玉林,范杰,张少华等.纳米碳酸钙填料对氯丁橡胶性能影响的研究[J],广东化工,2008,35(5):77-79
    [12]何杰,张传银,贾仁广.PVC与纳米碳酸钙复合材料的结构与性能研究[J].现代塑料加工应用,2009,21(4):5-9.
    [13]Yu H J, Wang L, Shi Q, et al. Study on nano-CaCO3 modified epoxy powder coatings[J]. P rogress in Organic Coatings,2006,55 (3):296-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700