荷载干细胞的TGF-β3/地塞米松/PLGA微球用于退变椎间盘的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     椎间盘(The intervertebral disc, IVD)由层状纤维环(annulus fibrosus, AF)包裹的髓核(nucleus pulposus, NP)构成。髓核中有大量的椎间盘相关基质蛋白,是由负电荷蛋白聚糖(proteoglycans, PG)和Ⅱ型胶原形成的网状结构。椎间盘在许多情况下都会发生退变,临床上极为常见,给国家医疗花费增加了沉重的负担。现有文献证明,代谢因素如基质金属蛋白酶(matrix metalloproteinases, MMPs),细胞凋亡,炎症相关细胞因子都会加速椎间盘的退变。目前临床上针对椎间盘都以对症治疗为出发点,以减轻痛苦和修补功能为目标,并没有对椎间盘病变进行根治或是对其在生物力学功能上进行修复。对于椎间盘的修复,针对退变早期,新型的生物学治疗方案是对椎间盘的基质进行再生以及正常功能的全面恢复。体外研究显示,TGF-β1, BMP-7, GDF-5和TGF-β3等生长因子会刺激椎间盘细胞的增殖及提高细胞外基质的合成能力。虽然一些研究提示GDF-5和BMP-7会椎间盘的退变产生抑制作用,但Walsh等的研究中,退变椎间盘的环状纤维只有对大剂量TGF-β1的体内注射产生即时效应,这些生长因子在体内短暂的半衰期成为阻碍生长因子治疗效果的瓶颈。微创治疗的微粒组装系统不但可以作为细胞和蛋白质缓释载体,而且在可以用于各种微创组织工程研究。明确的生物组织相容性和安全性,使得PLGA微球作为组织相容复合物被广泛应用于各种各样的生物组织工程研究。但是,培养在PLGA微球上的椎间盘细胞和间充质干细胞(mesenchymal stem cells, MSCs),在常规培养基条件下常常从软骨样细胞表型的干细胞分化为成纤维样细胞。因此,一些试验都在尝试着在椎间盘内髓核组织分化中,将特殊的生长因子和药物包装到PLGA微球上。在材料表面修饰的过程中,纳米颗粒在空间上可以被有序加工,用其制作的各式各样新型材料已被用于光学,电学,磁学设备,此外,生物支架材料的表面修饰可以增加细胞表面的相互作用增强细胞功能。值得一提的是,不同电荷的纳米微粒的层层组装(layer-by-layer assembly, LBL)已经用于新型纳米复合材料的制作,而且纳米多层结构材料也已经用于细胞培养和细胞移植。基于上述研究进展,本课题主要从以下五个方面进行了研究:(1)SD ADSCs的分离培养及鉴定;SD GFP/ADSCs和SD TGF-β3/ADSCs过表达细胞系的构建和鉴定;(2)椎间盘微环境对不同年龄来源ADSCs的活力、增殖和基质合成的影响;(3) DEX/TGF-β3/PLGA纳米微球的制备及对SD ADSCs活性、增殖及分化能力的研究;(4) DEX/TGF-β3/PLGA纳米微球/SD ADSCs复合物移植修复SD大鼠退变椎间盘的研究。
     第一部分SD ADSCs的分离培养及鉴定;SD GFP/ADSCs和SD TGF-β3/ADSCs过表达细胞系的构建和鉴定
     目的分离培养出SD大鼠ADSCs,然后通过三系分化和流式细胞术鉴定其干细胞特征。构建携带TGF-β3和GFP基因的慢病毒载体,转染到.ADSCs,进而药物筛选获得GFP/ADSCs和TGF-β3/ADSCs细胞系,同样鉴定其干细胞特征,为椎间盘退变性疾病的细胞学及基因治疗提供实验依据。
     方法和结果我们首先采用机械剪碎组织,酶消化和贴壁法分离培养出SD大鼠ADSCs,通过研究干细胞形态,生长曲线,表面抗原标记表达谱及三系分化能力,对分离的ADSCs进行鉴定。然后利用Gateway技术构建携带TGF-β3和GFP基因的慢病毒载体,转染到ADSCs,进而药物筛选获得稳定表达TGF-β3和GFP基因的细胞系GFP/ADSCs和TGF-p3/ADSCS。最后,本文按照干细胞形态,表面抗原标记表达谱及三系分化能力,对细胞系GFP/ADSCs和TGF-β3/ADSCs进行鉴定;同时利用RT-PCR和Western Blot检测TGF-β3基因在三种细胞系ADSCs, GFP/ADSCs和TGF-β3/ADSCs中的表达情况。体外成功建立SD大鼠ADSCs培养扩增的方法,并成功诱导出成骨、成脂和成软骨细胞。ADSCs造血干细胞表型标志表达为阴性,而间充质干细胞表型标志表达为阳性。基因转染48h后观察到较强的绿色荧光表达,Lenti-GFP-TGF-β3及Lenti-GFP的转染率均达到90%以上。与GFP/ADSCs和ADSCs细胞相比,RT-PCR、Western blot检测到目的基因TGF-β3在TGF-β3/ADSCs中出现过表达(P<0.05)。此外,GFP/ADSCs和TGF-β3/ADSCs细胞系仍然具有干细胞特征。
     结论分离培养出的SD大鼠ADSCs体外培养扩增容易,具有多向分化潜能和间充质干细胞特征。成功构建了含有TGF-β3基因慢病毒载体,转染ADSCs后,建立了GFP/ADSCs和TGF-β3/ADSCs细胞系。
     第二部分椎间盘微环境对不同年龄来源ADSCs的活力、增殖和基质合成的影响
     目的人脂肪间充质干细胞(ADSCs)可能是椎间盘再生细胞的理想种子细胞,但恶劣微环境是否会改变ADSCs生物活性和代谢活力,最终削弱它们的修复潜力。因此,本章主要研究人ADSCs在正常和退变椎间盘微环境条件下的活力,增殖能力及主要基质蛋白的表达情况。
     方法和结果分别从儿童(年龄在8-12岁,n=6)和成人(年龄33-42岁,n=6)男性捐助者脂肪中培养ADSCs,然后把它们在标准培养基和模拟椎间盘微环境(低糖,酸性,高渗透压和混合环境)的条件下培养2周。Annexin V-FITC (AV-PI)流式细胞术方法检测细胞生物活性,而细胞增殖率测定采用MTT法检测。实时定量聚合酶链反应(RT-PCR)和Western blot分析检测蛋白多糖,胶原蛋白-Ⅰ和胶原蛋白-Ⅱ基因表达的情况。模拟椎间盘微环境的低糖培养条件不但可以保证ADSCs的活力和以较低的正常水平增殖,而且可以提高ADSCs合成蛋白聚糖的能力,所以我们推测椎间盘内的低糖条件可能对ADSCs移植治疗椎间盘退变是一个有利因素。相反,模拟椎间盘微环境的高渗透压和低pH值微环境,损害ADSCs活力,降低ADSCs增殖速度和基质合成能力。此外,供体年龄差异对ADSCs的在椎间盘微环境中活力和增殖的影响甚微。结论对体外培养的ADSCs存活和增殖而言,低糖培养条件是其有利因素,而高渗透压和酸性环境是其有害因素。这些研究结果有利于促进ADSCs用于下腰痛的转化医学研究。
     第三部分DEX/TGF-β3/PLGA纳米微球的制备及对SD ADSCs活性、增殖及分化能力的研究
     目的这项研究旨在确定利用层层组装方法把肝素/多聚L-赖氨酸/生长因子与包埋地塞米松的PLGA微球上,然后评估该三维纳米PLGA微球作为髓核组织工程支架的可行性。
     方法和结果我们的结果证明PLGA微球结构可以在近似零级动力条件下同时释放TGF-β3生长因子和地塞米松。经过乳酸脱氢酶(LDH)检测和CCK-8检测得知,双重缓释的PLGA微球对ADSCs没有细胞毒性,,其还可促进SDADSCs的增殖。体外4周培养后,PLGA微球组的ADSCs细胞的GAG/DNA和Ⅱ型胶原表达显著高于对照组。此外,定量实时PCR检测发现,与对照组相比,PLGA微球组培养的ADSCs有较高水平的Ⅱ型胶原,聚集蛋白聚糖及多能聚糖的表达,但是成骨分化标记物(Ⅰ型胶原)含量较低。
     结论综上,DEX/TGF-β3/PLGA微球可应用于髓核组织工程中,不但作为支架促进ADSCs细胞生长并促进向髓核样细胞进化,而且降低局部微环境的炎症反应。
     第四部分DEX/TGF-β3/PLGA纳米微球/SDADSCs复合物移植修复SD大鼠退变椎间盘的研究
     目的下腰痛常常是由椎间盘髓核退变引起的。组织工程是一个功能强大的治疗模式,其以恢复人脊柱正常的生物力学运动功能为目的。第三章我们报道了一个新的纳米结构的3D PLGA微球,体外研究发现,这种通过层层组装地塞米松和生长因子到3D PLGA微球,可以控释两种生物活性因子,是一种优良的髓核组织工程的细胞载体。本章研究的目的是调查移植3D PLGA微球荷载ADSCs复合物到大鼠椎间盘退变模型,是否可以再生退化的椎间盘。
     方法和结果大鼠共分为四组:正常对照组(NC组,无操作),退变对照组(DC组,针刺操作),PLGA微球治疗组(PM组,针刺操作+PLGA微球移植),PLGA微球荷载ADSCs复合物治疗组(PMA组,针刺操作+PLGA微球荷载ADSCs复合物移植)。分别在移植后的第4、8、16和24周,对四组大鼠椎间盘行X先平片检测椎间盘高度的变化,T2加权磁共振成像(MRI)检查,组织学染色和评分,免疫组化和RT-PCR检测相关基因表达情况。结果表明,移植24周后,以NC组为正常参照,PM和PMA组的椎间盘平均高度值分别约为63%和76%,MRI信号强度分别约47%和76%。生物化学,免疫组织化学和基因表达分析表明在PM和PMA组椎间盘有较多的蛋白多糖积累。
     结论这些数据表明,在大鼠椎间盘退变模型中,移植3D PLGA微球荷载ADSCs复合物能在一定程度再生退化的椎间盘。PLGA微球在细胞移植治疗椎间盘退变性疾病可能会是一种很有前途的生物支架载体。
Introduction
     The intervertebral disc (IVD) is composed of the nucleus pulposus (NP), the annulus fibrosus (AF), and the endplates (EP). Among them, NP contains a large amount of disc-matrix proteins which are negatively charged proteoglycans (PG) within a collagen type Ⅱ network1. Consequently, a swelling pressure is present due to the high concentration of water in the NP2. Notably, IVD has poor self-repair capacity and its degeneration often progresses to an irreversible change. This process usually starts in the NP. In this condition, there is an increase of collagen type Ⅰ and denatured collagen type Ⅱ in extracellular matrix (ECM), whereas proteoglycans are reduced because of the activation of matrix-degrading enzyme which degrades the components of ECM3,4.
     Growth factor therapy is one of the promising modalities to regenerate IVD. It has been shown that transforming growth factor β1(TGFβ1), bone morphogenetic protein (BMP)-7, growth differentiation factor-5(GDF-5), basic fibroblast growth factor (bFGF) and transforming growth factor β3(TGFβ3) could stimulate IVD cells to proliferate and produce ECM in vitro5,6. Moreover, TGFβ3and GDF-5could inhibit IVD degeneration in animal models7,8. However, the short half-life of growth factors represents a problem for their application in vivo. For example, Walsh et al. reported that the anular fibrochondrocytes in degenerated IVDs are responsive to TGF-β1only after multiple injections in vivo9.
     Several groups have investigated whether authentic NP tissue could be engineered in vitro and in vivo by transplanting allogenic donor NP cells and mesenchymal stem cells (MSCs) seeded in3D scaffolds10-12. Among the scaffolds evaluated, mainly solid and preformed scaffolds comprising porous foams and fibrous meshes have been used. However, these types of scaffolds have the major drawback of requiring a surgical incision to position the scaffolds into desired sites in the body. Recently, a wide variety of biodegradable PLG A spherical particles have been utilized for the sustained delivery of bioactive molecules as an injectable depot formulation13,14. Moreover, PLGA is known to be biocompatible that has a broad range of applications in tissue engineering and clinic application15,16. Therefore, PLGA microspheres may be a suitable material for the preparation of injectable scaffolds for NP tissue engineering.
     Microparticulate systems have attracted increasing interest over the past few years as carriers for the delivery of cells and proteins due to minimal invasive procedures in tissue engineering16-18. Growth factors and drugs have been co-incorporated in PLGA microspheres using microparticulate systems for NP tissue differentiation19-21. Especially, anti-inflammatory agents such as dexamethasone can minimize implantation-associated inflammation and promote cell differentiation22,23. It is important to administer both anti-inflammatory corticosteroids and growth factors in a localized environment at low doses, so that both agents can function symbiotically without interference.
     This study contains five parts:(1) Isolation and identification of SD ADSCs; Construction and characterized the overexpressed GFP/ADSCs and TGF-P3/ADSCs cell lines;(2) Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc;(3) Dual delivery for stem cell differentiation using dexamethasone and TGF-β3in/on polymeric microspheres as a cell carrier for nucleus pulposus regeneration;(4) Dual delivery for stem cell matrix accumulation using dexamethasone and TGF-β3in/on a layered polymeric microspheres in a rat disc degeneration model.
     Part I Isolation and identification of SD ADSCs; Construction and characterized the overexpressed GFP/ADSCs and TGF-p3/ADSCs cell lines
     Aim:The purpose of this study was to construct a lentiviral vector containing TGF-β3/GFP gene and transfect into adipose derived stem cells in vitro. Then we use drugs to select GFP/ADSCs and TGF-β3/ADSCs cell lines, which are always characterized as stem cells. It will facilitated the following development of gene and cell therapy in treating diseases of intervertebral disc degeneration.
     Methods and results:Firstly, we cultured SD rat ADSCs through cutting adipose into pieces, digesting using enzyme and isolating by adherent method. Separated ADSCs were identified by studying stem cell morphology, growth curve, surface antigen marker expression profiles and three-line differentiation capacity. Gateway technology was used to construct lentiviral vectors carrying the TGF-β3, and/or GFP gene, and which were transfected into ADSCs later. Antibiotics were used to obtain a stable expression of TGF-β3and/or GFP gene in cell lines TGF-β3/ADSCs and/or GFP/ADSCs. Finally, in accordance with the morphology, surface antigen marker expression profiles and three-line differentiation capacity of stem cells, TGF-β3/ADSCs and GFP/ADSCs were identified. The expression of TGF-β3gene was detected by RT-PCR and Western Blot methods in all three cell lines. SD rats ADSCs were successfully established, cultured and expanded in vitro, and they were also successfully induced into osteogenic, adipogenic and cartilage cells. The hematopoietic stem cell phenotypic markers of ADSCs were negative, while the expression of mesenchymal stem cell phenotypic markers was positive. After48h transfection, strong green fluorescence could be seen, and the transfection rate of Lenti-GFP-TGF-β3and Lenti-GFP were above90%. Compared with GFP/ADSCs and ADSCs cells, the expression of TGF-β3gene is overexpression in TGF-β3/ADSCs cells by RT-PCR and Western blot detection (P <0.05). In addition, the characteristics of stem cells could still be identified in GFP/ADSCs and TGF-β3/ADSCs cell lines.
     Conclusions:SD rats ADSCs were easily isolated and cultured in vitro, which have multiple differentiation potential abilities and mesenchymal stem cell characteristics. Lentiviral vectors containing the TGF-β3/GFP gene were successfully transfected into ADSCs,then GFP/ADSCs and TGF-β3/ADSCs cell lines were established.
     Part Ⅱ Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc
     Aim:Human adipose-derived mesenchymal stem cells (ADMSCs) may be ideal source of cells for intervertebral disc (IVD) regeneration, but the harsh chemical microenvironment of IVD may significantly influence the biological and metabolic vitality of ADMSCs and impair their repair potential. This study aimed to investigate the viability, proliferation and the expression of main matrix proteins of ADMSCs in the chemical microenvironment of IVD under normal and degeneration conditions.
     Methods and results:ADMSCs were harvested from young (aged8-12years, n=6) and mature (aged33-42years, n=6) male donors and cultured under standard condition and IVD-like conditions (low glucose, acidity, high osmolarity, and combined conditions) for2weeks. Cell viability was measured by annexin V-FITC and PI (AV-PI) staining and cell proliferation was measured by MTT assay. The expression of aggrecan, collagen-Ⅰ, and collagen-Ⅱ was detected by real-time quantitative polymerase chain reaction and Western blot analysis. IVD-like glucose condition slightly inhibited cell viability, but increased the expression of aggrecan. In contrast, IVD-like osmolarity, acidity and the combined conditions inhibited cell viability and proliferation and the expression of aggrecan and collagen-Ⅰ. ADMSCs from young and mature donors exhibited similar responses to the chemical microenvironments of IVD.
     Conclusions:IVD-like low glucose is a positive factor but IVD-like high osmolarity and low pH are deleterious factors that affect the survival and biological behaviors of ADMSCs. These findings may promote the translational research of ADMSCs in IVD regeneration for the treatment of low back pain.
     Part Ⅲ Dual delivery for stem cell differentiation using dexamethasone and TGF-β3in/on polymeric microspheres as a cell carrier for nucleus pulposus regeneration
     Aim:This study aimed to investigate the feasibility of the nanostructured3D poly(lactide-co-glycolide)(PLGA) constructs, which are loaded with dexamethasone (DEX) and growth factor embeded heparin/poly(L-lysine) nanoparticles via a layer-by-layer system, to serve as an effective scaffold for nucleus pulposus (NP) tissue engineering.
     Methods and results:Our results demonstrated that the microsphere constructs were capable of simultaneously releasing TGF-β3and DEX with approximately zero order kinetics. The dual bead microspheres showed no cytotoxicity, and promoted the proliferation of the rat adipose-derived mesenchymal stem cells (ADSCs) by lactate dehydrogenase assay and CCK-8assay. After4weeks of cultivation in vitro, the ADSCs-scaffold hybrids contained significantly higher levels of sulfated GAG/DNA and collagen type Ⅱ than the control samples. Moreover, quantitative real time PCR analysis revealed that the expression of disc-matrix proteins including collagen type Ⅱ, aggrecan, and versican in the ADSCs-scaffold hybrids was significantly higher than that in the control group, whereas the expression of osteogenic differentiation marker (collagen type I) was decreased.
     Conclusions:Taken together, these data indicate that Dex/TGF-β3/PLGA microspheres could be used as a scaffold to improve the ADSCs growth and differentiating into NP like cells, and reduce the inflammatory response for IVD tissue engineering.
     Part Ⅳ Dual delivery for stem cell matrix accumulation using dexamethasone and TGF-β3in/on a layered polymeric microspheres in a rat disc degeneration model
     Aim:Low back pain is frequently caused by nucleus pulposus (NP) degeneration. Tissue engineering is a powerful therapeutic strategy which could restore the normal biomechanical motion of the human spine. Previously we reported a new nanostructured3D poly(lactide-co-glycolide)(PLGA) microsphere, which is loaded with dexamethasone and growth factor embedded heparin/poly(L-lysine) nanoparticles via a layer-by-layer system, was an effective cell carrier in vitro for NP tissue engineering. This study aimed to investigate whether the implantation of adipose-derived stem cell (ADSCs) seeded PLGA microspheres into the rat intervertebral disc degeneration model could regenerate the degenerated disc.
     Methods and results:Changes in disc height by plain radiograph, T2-weighted signal intensity in magnetic resonance imaging (MRI), histology, immunohistochemistry and matrix associated gene expressions were evaluated in normal controls (NC)(without operations), degeneration control (DC) group (with needle puncture, only DMEM injection); PLGA microspheres (PM) treatment group (with needle puncture, PLGA microspheres only injection); and PLGA microspheres loaded with ADSCs treatment (PMA) group (with needle puncture, PLGA microspheres loaded with ADSCs injection) for a24-week period. The results showed that24weeks post-transplantation, PM and PMA groups regained a disc height value of about63%and76%, MRI signal intensity of about47%and76%, respectively, compared to NC group. Biochemistry, immunohistochemistry and gene expression analysis indicated the restoration of proteoglycan accumulation in the discs of PM and PMA groups.
     Conclusions:Taken together, these data suggest that ADSCs-seeded PLGA microspheres could partly regenerate the degenerated disc in vivo after implantation into the rat intervertebral disc degeneration model. PLGA microsphere may serve as a promising carrier in cell transplantation therapy for degenerative disc disease.
引文
[1]Martin BI, Deyo RA, Mirza SK, Turner JA, Comstock BA, Hollingworth W, Sullivan SD. Expenditures and Health Status among Adults with Back and Neck Problems. JAMA.2008;299:656-664.
    [2]Diwan AD, Parvataneni HK, Khan SN, Sandhu HS, Girardi FP, Cammisa FP, Jr. Current Concepts in Intervertebral Disc Restoration. Orthop Clin North Am. 2000;31:453-464.
    [3]Zhang Y, Chee A, Thonar EJ, An HS. Intervertebral Disk Repair by Protein, Gene, or Cell Injection:A Framework for Rehabilitation-Focused Biologies in the Spine. PMR.2011;3:S88-94.
    [4]Brown MF, Hukkanen MV, McCarthy ID, Redfern DR, Batten JJ, Crock HV, Hughes SP, Polak JM. Sensory and Sympathetic Innervation of the Vertebral Endplate in Patients with Degenerative Disc Disease. J Bone Joint Surg Br. 1997;79:147-153.
    [5]O'Halloran DM, Pandit AS. Tissue-Engineering Approach to Regenerating the Intervertebral Disc. Tissue Eng.2007; 13:1927-1954.
    [6]Thompson JP, Oegema TR, Jr., Bradford DS. Stimulation of Mature Canine Intervertebral Disc by Growth Factors. Spine (Phila Pa 1976).1991;16:253-260.
    [7]Walsh AJ, Bradford DS, Lotz JC. In Vivo Growth Factor Treatment of Degenerated Intervertebral Discs. Spine (Phila Pa 1976).2004;29:156-163.
    [8]Li J, Yoon ST, Hutton WC. Effect of Bone Morphogenetic Protein-2 (Bmp-2) on Matrix Production, Other Bmps, and Bmp Receptors in Rat Intervertebral Disc Cells. J Spinal Disord Tech.2004; 17:423-428.
    [9]Li X, Leo BM, Beck G Balian G, Anderson GD. Collagen and Proteoglycan Abnormalities in the Gdf-5-Deficient Mice and Molecular Changes When Treating Disk Cells with Recombinant Growth Factor. Spine (Phila Pa 1976). 2004;29:2229-2234.
    [10]Gruber HE, Fisher EC, Jr., Desai B, Stasky AA, Hoelscher G, Hanley EN, Jr. Human Intervertebral Disc Cells from the Annulus:Three-Dimensional Culture in Agarose or Alginate and Responsiveness to Tgf-Betal. Exp Cell Res. 1997;235:13-21.
    [11]Liang H, Ma SY, Feng G, Shen FH, Joshua Li X. Therapeutic Effects of Adenovirus-Mediated Growth and Differentiation Factor-5 in a Mice Disc Degeneration Model Induced by Annulus Needle Puncture. Spine J. 2010;10:32-41.
    [12]Abbott RD, Purmessur D, Monsey RD, Iatridis JC. Regenerative Potential of Tgfbeta3+Dex and Notochordal Cell Conditioned Media on Degenerated Human Intervertebral Disc Cells. J Orthop Res.2012;30:482-488.
    [13]Sobajima S, Kim JS, Gilbertson LG, Kang JD. Gene Therapy for Degenerative Disc Disease. Gene Ther.2004; 11:390-401.
    [14]Moon SH, Gilbertson LG, Nishida K, Knaub M, Muzzonigro T, Robbins PD, Evans CH, Kang JD. Human Intervertebral Disc Cells Are Genetically Modifiable by Adenovirus-Mediated Gene Transfer:Implications for the Clinical Management of Intervertebral Disc Disorders. Spine (Phila Pa 1976). 2000;25:2573-2579.
    [15]Zhang Y, An HS, Thonar EJ, Chubinskaya S, He TC, Phillips FM. Comparative Effects of Bone Morphogenetic Proteins and Sox9 Overexpression on Extracellular Matrix Metabolism of Bovine Nucleus Pulposus Cells. Spine (Phila Pa 1976).2006;31:2173-2179.
    [16]Ehlicke F, Freimark D, Heil B, Dorresteijn A, Czermak P. Intervertebral Disc Regeneration:Influence of Growth Factors on Differentiation of Human Mesenchymal Stem Cells (Hmsc). Int J Artif Organs.2010;33:244-252.
    [17]Ruan D, Zhang Y, Wang D, Zhang C, Wu J, Wang C, Shi Z, Xin H, Xu C, Li H, He Q. Differentiation of Human Wharton's Jelly Cells toward Nucleus Pulposus-Like Cells after Coculture with Nucleus Pulposus Cells in Vitro. Tissue Eng Part A.2012;18:167-175.
    [18]Stoyanov JV, Gantenbein-Ritter B, Bertolo A, Aebli N, Baur M, Alini M, Grad S. Role of Hypoxia and Growth and Differentiation Factor-5 on Differentiation of Human Mesenchymal Stem Cells Towards Intervertebral Nucleus Pulposus-Like Cells. Eur Cell Mater.2011;21:533-547.
    [19]Feng G, Jin X, Hu J, Ma H, Gupte MJ, Liu H, Ma PX. Effects of Hypoxias and Scaffold Architecture on Rabbit Mesenchymal Stem Cell Differentiation Towards a Nucleus Pulposus-Like Phenotype. Biomaterials.2011;32:8182-8189.
    [20]Sakai D, Mochida J, Iwashina T, Hiyama A, Omi H, Imai M, Nakai T, Ando K, Hotta T. Regenerative Effects of Transplanting Mesenchymal Stem Cells Embedded in Atelocollagen to the Degenerated Intervertebral Disc. Biomaterials. 2006;27:335-345.
    [21]Jeong JH, Lee JH, Jin ES, Min JK, Jeon SR, Choi KH. Regeneration of Intervertebral Discs in a Rat Disc Degeneration Model by Implanted Adipose-Tissue-Derived Stromal Cells. Acta Neurochir (Wien).2010; 152: 1771-1777.
    [22]Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage Cells from Human Adipose Tissue:Implications for Cell-Based Therapies. Tissue Eng.2001;7:211-228.
    [23]Xu Y, Balooch G, Chiou M, Bekerman E, Ritchie RO, Longaker MT. Analysis of the Material Properties of Early Chondrogenic Differentiated Adipose-Derived Stromal Cells (Asc) Using an in Vitro Three-Dimensional Micromass Culture System. Biochem Biophys Res Commun.2007;359:311-316.
    [24]Gaetani P, Torre ML, Klinger M, Faustini M, Crovato F, Bucco M, Marazzi M, Chlapanidas T, Levi D, Tancioni F, Vigo D, Rodriguez y Baena R. Adipose-Derived Stem Cell Therapy for Intervertebral Disc Regeneration:An in Vitro Reconstructed Tissue in Alginate Capsules. Tissue Eng Part A.2008; 14: 1415-1423.
    [25]Lu ZF, Zandieh Doulabi B, Wuisman PI, Bank RA, Helder MN. Differentiation of Adipose Stem Cells by Nucleus Pulposus Cells:Configuration Effect. Biochem Biophys Res Commun.2007:359:991-996.
    [26]Lu ZF, Doulabi BZ, Wuisman PI, Bank RA, Helder MN. Influence of Collagen Type Ii and Nucleus Pulposus Cells on Aggregation and Differentiation of Adipose Tissue-Derived Stem Cells. J Cell Mol Med.2008;12:2812-2822.
    [27]Tapp H, Deepe R, Ingram JA, Kuremsky M, Hanley EN, Jr., Gruber HE. Adipose-Derived Mesenchymal Stem Cells from the Sand Rat:Transforming Growth Factor Beta and 3d Co-Culture with Human Disc Cells Stimulate Proteoglycan and Collagen Type I Rich Extracellular Matrix. Arthritis Res Ther. 2008;10:R89.
    [28]Li X, Lee JP, Balian G, Greg Anderson D. Modulation of Chondrocytic Properties of Fat-Derived Mesenchymal Cells in Co-Cultures with Nucleus Pulposus. Connect Tissue Res.2005;46:75-82.
    [29]Feng G, Wan Y, Balian G, Laurencin CT, Li X. Adenovirus-Mediated Expression of Growth and Differentiation Factor-5 Promotes Chondrogenesis of Adipose Stem Cells. Growth Factors.2008;26:132-142.
    [30]Dang JM, Sun DD, Shin-Ya Y, Sieber AN, Kostuik JP, Leong KW. Temperature-Responsive Hydroxybutyl Chitosan for the Culture of Mesenchymal Stem Cells and Intervertebral Disk Cells. Biomaterials.2006;27:406-418.
    [31]Park JS, Yang HN, Woo DG, Jeon SY, Park KH. Multilineage Differentiation of Human-Derived Dermal Fibroblasts Transfected with Genes Coated on Plga Nanoparticles Plus Growth Factors. Biomaterials.2012.
    [32]De Temmerman ML, Rejman J, Vandenbroucke RE, De Koker S, Libert C, Grooten J, Demeester J, Gander B, De Smedt SC. Polyelectrolyte Lbl Microcapsules Versus Plga Microparticles for Immunization with a Protein Antigen. J Control Release.2012;158:233-239.
    [33]Desai KG, Schwendeman SP. Active Self-Healing Encapsulation of Vaccine Antigens in Plga Microspheres. J Control Release.2013; 165:62-74.
    [34]Massumi M, Abasi M, Babaloo H, Terraf P, Safi M, Saeed M, Barzin J, Zandi M, Soleimani M. The Effect of Topography on Differentiation Fates of Matrigel-Coated Mouse Embryonic Stem Cells Cultured on Plga Nanofibrous Scaffolds. Tissue Eng Part A.2012;18:609-620.
    [35]Kassem M. Mesenchymal Stem Cells:Biological Characteristics and Potential Clinical Applications. Cloning Stem Cells.2004;6:369-374.
    [36]Pittenger MF, Martin BJ. Mesenchymal Stem Cells and Their Potential as Cardiac Therapeutics. Circ Res.2004;95:9-20.
    [37]Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, Okochi H, Ochiya T. Adipose Tissue-Derived Mesenchymal Stem Cells as a Source of Human Hepatocytes. Hepatology.2007;46:219-228.
    [38]Friedenstein AJ, Piatetzky S, II, Petrakova KV. Osteogenesis in Transplants of Bone Marrow Cells. J Embryol Exp Morphol.1966; 16:381-390.
    [39]Cui X, Chopp M, Zacharek A, Roberts C, Lu M, Savant-Bhonsale S, Chen J. Chemokine, Vascular and Therapeutic Effects of Combination Simvastatin and Bmsc Treatment of Stroke. Neurobiol Dis.2009;36:35-41.
    [40]Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human Adipose Tissue Is a Source of Multipotent Stem Cells. Mol Biol Cell.2002; 13:4279-4295.
    [41]Schaffler A, Buchler C. Concise Review:Adipose Tissue-Derived Stromal Cells--Basic and Clinical Implications for Novel Cell-Based Therapies. Stem Cells.2007;25:818-827.
    [42]Muschler GF, Nitto H, Boehm CA, Easley KA. Age-and Gender-Related Changes in the Cellularity of Human Bone Marrow and the Prevalence of Osteoblastic Progenitors. J Orthop Res.2001; 19:117-125.
    [43]Banfi A, Bianchi G, Galotto M, Cancedda R, Quarto R. Bone Marrow Stromal Damage after Chemo/Radiotherapy:Occurrence, Consequences and Possibilities of Treatment. Leuk Lymphoma.2001;42:863-870.
    [44]De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, Benhaim P, Hedrick MH, Fraser JK. Differential Expression of Stem Cell Mobilization-Associated Molecules on Multi-Lineage Cells from Adipose Tissue and Bone Marrow. Immunol Lett.2003;89:267-270.
    [45]Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, Fraser JK, Hedrick MH. Multipotential Differentiation of Adipose Tissue-Derived Stem Cells. Keio J Med.2005;54:132-141.
    [46]Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, Bae YC, Jung JS. Characterization and Expression Analysis of Mesenchymal Stem Cells from Human Bone Marrow and Adipose Tissue. Cell Physiol Biochem. 2004;14:311-324.
    [47]Colter DC, Piera-Velazquez S, Hawkins DF, Whitecavage MK, Jimenez SA, Stokes DG Regulation of the Human Sox9 Promoter by the Ccaat-Binding Factor. Matrix Biol.2005;24:185-197.
    [48]Waddington SN, Crossley R, Sheard V, Howe SJ, Buckley SM, Coughlan L, Gilham DE, Hawkins RE, McKay TR. Gene Delivery of a Mutant Tgfbeta3 Reduces Markers of Scar Tissue Formation after Cutaneous Wounding. Mol Ther. 2010;18:2104-2111.
    [49]Follenzi A, Santambrogio L, Annoni A. Immune Responses to Lentiviral Vectors. Curr Gene Ther.2007;7:306-315.
    [50](美国)D.W.拉塞尔著,黄培堂等译美J萨SJ.分子克隆实验指南(套装上下册)(第3版):科学出版社;2008.
    [51]Sindhu A, Arora P, Chaudhury A. Illuminating the Gateway of Gene Silencing: Perspective of Rna Interference Technology in Clinical Therapeutics. Mol Biotechnol.2012;51:289-302.
    [52]Frymoyer JW, Cats-Baril WL. An Overview of the Incidences and Costs of Low Back Pain. Orthop Clin North Am.1991;22:263-271.
    [53]Serigano K, Sakai D, Hiyama A, Tamura F, Tanaka M, Mochida J. Effect of Cell Number on Mesenchymal Stem Cell Transplantation in a Canine Disc Degeneration Model. J Orthop Res.2010;28:1267-1275.
    [54]Smith LJ, Nerurkar NL, Choi KS, Harfe BD, Elliott DM. Degeneration and Regeneration of the Intervertebral Disc:Lessons from Development. Dis Model Mech.2011;4:31-41.
    [55]Buckwalter JA. Aging and Degeneration of the Human Intervertebral Disc. Spine (Phila Pa 1976).1995;20:1307-1314.
    [56]Sakai D. Future Perspectives of Cell-Based Therapy for Intervertebral Disc Disease. Eur Spine J.2008; 17 Suppl 4:452-458.
    [57]Ganey T, Hutton WC, Moseley T, Hedrick M, Meisel HJ. Intervertebral Disc Repair Using Adipose Tissue-Derived Stem and Regenerative Cells:Experiments in a Canine Model. Spine (Phila Pa 1976).2009;34:2297-2304.
    [58]Acosta FL, Jr., Metz L, Adkisson HD, Liu J, Carruthers-Liebenberg E, Milliman C, Maloney M, Lotz JC. Porcine Intervertebral Disc Repair Using Allogeneic Juvenile Articular Chondrocytes or Mesenchymal Stem Cells. Tissue Eng Part A. 2011;17:3045-3055.
    [59]Preston SL, Alison MR, Forbes SJ, Direkze NC, Poulsom R, Wright NA. The New Stem Cell Biology:Something for Everyone. Mol Pathol.2003;56:86-96.
    [60]Urban JP. The Role of the Physicochemical Environment in Determining Disc Cell Behaviour. Biochem Soc Trans.2002;30:858-864.
    [61]Risbud MV, Guttapalli A, Stokes DG, Hawkins D, Danielson KG, Schaer TP, Albert TJ, Shapiro IM. Nucleus Pulposus Cells Express Hif-1 Alpha under Normoxic Culture Conditions:A Metabolic Adaptation to the Intervertebral Disc Microenvironment. J Cell Biochem.2006;98:152-159.
    [62]Wuertz K, Godburn K, Neidlinger-Wilke C, Urban J, Iatridis JC. Behavior of Mesenchymal Stem Cells in the Chemical Microenvironment of the Intervertebral Disc. Spine (Phila Pa 1976).2008;33:1843-1849.
    [63]Hartel M, di Mola FF, Selvaggi F, Mascetta G, Wente MN, Felix K, Giese NA, Hinz U, Di Sebastiano P, Buchler MW, Friess H. Vanilloids in Pancreatic Cancer: Potential for Chemotherapy and Pain Management. Gut.2006;55:519-528.
    [64]Luoma K, Riihimaki H, Luukkonen R, Raininko R, Viikari-Juntura E, Lamminen A. Low Back Pain in Relation to Lumbar Disc Degeneration. Spine (Phila Pa 1976).2000;25:487-492.
    [65]Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA. Characterization of the Human Nucleus Pulposus Cell Phenotype and Evaluation of Novel Marker Gene Expression to Define Adult Stem Cell Differentiation. Arthritis Rheum.2010;62:3695-3705.
    [66]Taylor JR. Growth of Human Intervertebral Discs and Vertebral Bodies. J Anat. 1975;120:49-68.
    [67]Ferguson SJ, Ito K, Nolte LP. Fluid Flow and Convective Transport of Solutes within the Intervertebral Disc. J Biomech.2004;37:213-221.
    [68]Bibby SR, Jones DA, Ripley RM, Urban JP. Metabolism of the Intervertebral Disc:Effects of Low Levels of Oxygen, Glucose, and Ph on Rates of Energy Metabolism of Bovine Nucleus Pulposus Cells. Spine (Phila Pa 1976). 2005;30:487-496.
    [69]Shirazi-Adl A, Taheri M, Urban JP. Analysis of Cell Viability in Intervertebral Disc:Effect of Endplate Permeability on Cell Population. J Biomech. 2010;43:1330-1336.
    [70]Kokkonen SM, Kurunlahti M, Tervonen O, Ilkko E, Vanharanta H. Endplate Degeneration Observed on Magnetic Resonance Imaging of the Lumbar Spine: Correlation with Pain Provocation and Disc Changes Observed on Computed Tomography Diskography. Spine (Phila Pa 1976).2002;27:2274-2278.
    [71]Horner HA, Urban JP.2001 Volvo Award Winner in Basic Science Studies:Effect of Nutrient Supply on the Viability of Cells from the Nucleus Pulposus of the Intervertebral Disc. Spine (Phila Pa 1976).2001;26:2543-2549.
    [72]Bibby SR, Urban JP. Effect of Nutrient Deprivation on the Viability of Intervertebral Disc Cells. Eur Spine J.2004; 13:695-701.
    [73]Rinkler C, Heuer F, Pedro MT, Mauer UM, Ignatius A, Neidlinger-Wilke C. Influence of Low Glucose Supply on the Regulation of Gene Expression by Nucleus Pulposus Cells and Their Responsiveness to Mechanical Loading. J Neurosurg Spine.2010;13:535-542.
    [74]Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A. Nutrition of the Intervertebral Disc:Solute Transport and Metabolism. Connect Tissue Res. 1981;8:101-119.
    [75]Lai WM, Mow VC, Sun DD, Ateshian GA. On the Electric Potentials inside a Charged Soft Hydrated Biological Tissue:Streaming Potential Versus Diffusion Potential. J Biomech Eng.2000; 122:336-346.
    [76]Mavrogonatou E, Kletsas D. High Osmolality Activates the Gl and G2 Cell Cycle Checkpoints and Affects the DNA Integrity of Nucleus Pulposus Intervertebral Disc Cells Triggering an Enhanced DNA Repair Response. DNA Repair (Amst).2009;8:930-943.
    [77]Haschtmann D, Stoyanov JV, Ferguson SJ. Influence of Diurnal Hyperosmotic Loading on the Metabolism and Matrix Gene Expression of a Whole-Organ Intervertebral Disc Model. J Orthop Res.2006;24:1957-1966.
    [78]Ishihara H, Warensjo K, Roberts S, Urban JP. Proteoglycan Synthesis in the Intervertebral Disk Nucleus:The Role of Extracellular Osmolality. Am J Physiol. 1997;272:C1499-1506.
    [79]Razaq S, Wilkins RJ, Urban JP. The Effect of Extracellular Ph on Matrix Turnover by Cells of the Bovine Nucleus Pulposus. Eur Spine J. 2003; 12:341-349.
    [80]Ichimura K, Tsuji H, Matsui H, Makiyama N. Cell Culture of the Intervertebral Disc of Rats:Factors Influencing Culture, Proteoglycan, Collagen, and Deoxyribonucleic Acid Synthesis. J Spinal Disord.1991;4:428-436.
    [81]Ohshima H, Urban JP. The Effect of Lactate and Ph on Proteoglycan and Protein Synthesis Rates in the Intervertebral Disc. Spine (Phila Pa 1976). 1992;17:1079-1082.
    [82]Stenderup K, Justesen J, Clausen C, Kassem M. Aging Is Associated with Decreased Maximal Life Span and Accelerated Senescence of Bone Marrow Stromal Cells. Bone.2003;33:919-926.
    [83]Kretlow JD, Jin YQ, Liu W, Zhang WJ, Hong TH, Zhou G, Baggett LS, Mikos AG, Cao Y. Donor Age and Cell Passage Affects Differentiation Potential of Murine Bone Marrow-Derived Stem Cells. BMC Cell Biol.2008;9:60.
    [84]Chen HQ, Yao R, Han J, Deng L, Li L. [Effect of Aging on the Ability of Growth and Differentiation of Rat Bone Marrow Stromal Cells]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao.2003;25:244-249.
    [85]Marlovits S, Hombauer M, Truppe M, Vecsei V, Schlegel W. Changes in the Ratio of Type-I and Type-Ii Collagen Expression During Monolayer Culture of Human Chondrocytes. J Bone Joint Surg Br.2004;86:286-295.
    [86]Johnstone.B B. The Fluid Content of the Human Intervertebral Disc. Comparison between Fluid Content and Swelling Pressure Profiles of Discs Removed at Surgery and Those Taken Postmortem. Spine (Phila Pa 1976).1992; 17:4.
    [87]Walker MH, Anderson DG. Molecular Basis of Intervertebral Disc Degeneration. Spine J.2004;4:158S-166S.
    [88]Silva P, Crozier S, Veidt M, Pearcy MJ. An Experimental and Finite Element Poroelastic Creep Response Analysis of an Intervertebral Hydrogel Disc Model in Axial Compression. J Mater Sci Mater Med.2005; 16:663-669.
    [89]Costa F, Sassi M, Ortolina A, Cardia A, Assietti R, Zerbi A, Lorenzetti M, Galbusera F, Fornari M. Stand-Alone Cage for Posterior Lumbar Interbody Fusion in the Treatment of High-Degree Degenerative Disc Disease:Design of a New Device for an "Old" Technique. A Prospective Study on a Series of 116 Patients. Eur Spine J.2011;20 Suppl 1:S46-56.
    [90]Masuda K, Takegami K, An H, Kumano F, Chiba K, Andersson GB, Schmid T, Thonar E. Recombinant Osteogenic Protein-1 Upregulates Extracellular Matrix Metabolism by Rabbit Annulus Fibrosus and Nucleus Pulposus Cells Cultured in Alginate Beads. J Orthop Res.2003;21:922-930.
    [91]Chujo T, An HS, Akeda K, Miyamoto K, Muehleman C, Attawia M, Andersson G, Masuda K. Effects of Growth Differentiation Factor-5 on the Intervertebral Disc--in Vitro Bovine Study and in Vivo Rabbit Disc Degeneration Model Study. Spine (Phila Pa 1976).2006;31:2909-2917.
    [92]An HS, Takegami K, Kamada H, Nguyen CM, Thonar EJ, Singh K, Andersson GB, Masuda K. Intradiscal Administration of Osteogenic Protein-1 Increases Intervertebral Disc Height and Proteoglycan Content in the Nucleus Pulposus in Normal Adolescent Rabbits. Spine (Phila Pa 1976).2005;30:25-31; discussion 31-22.
    [93]Masuda K, Imai Y, Okuma M, Muehleman C, Nakagawa K, Akeda K, Thonar E, Andersson G, An HS. Osteogenic Protein-1 Injection into a Degenerated Disc Induces the Restoration of Disc Height and Structural Changes in the Rabbit Anular Puncture Model. Spine (Phila Pa 1976).2006;31:742-754.
    [94]Kim HW, Gu HJ, Lee HH. Microspheres of Collagen-Apatite Nanocomposites with Osteogenic Potential for Tissue Engineering. Tissue Eng.2007; 13:965-973.
    [95]Lee ES, Park KH, Kang D, Park IS, Min HY, Lee DH, Kim S, Kim JH, Na K. Protein Complexed with Chondroitin Sulfate in Poly(Lactide-Co-Glycolide) Microspheres. Biomaterials.2007;28:2754-2762.
    [96]Duan H, Nie S. Cell-Penetrating Quantum Dots Based on Multivalent and Endosome-Disrupting Surface Coatings. J Am Chem Soc.2007;129:3333-3338.
    [97]Markusen JF, Mason C, Hull DA, Town MA, Tabor AB, Clements M, Boshoff CH, Dunnill P. Behavior of Adult Human Mesenchymal Stem Cells Entrapped in Alginate-Grgdy Beads. Tissue Eng.2006;12:821-830.
    [98]Kashiwagi N, Suzuki S, Seto Y, Futami T. Bilateral Humeral Lengthening in Achondroplasia. Clin Orthop Relat Res.2001:251-257.
    [99]Benya PD, Shaffer JD. Dedifferentiated Chondrocytes Reexpress the Differentiated Collagen Phenotype When Cultured in Agarose Gels. Cell.1982;30:215-224.
    [100]Bonaventure J, Kadhom N, Cohen-Solal L, Ng KH, Bourguignon J, Lassclin C, Freisinger P. Reexpression of Cartilage-Specific Genes by Dedifferentiated Human Articular Chondrocytes Cultured in Alginate Beads. Exp Cell Res. 1994;212:97-104.
    [101]Stokes DG, Liu G, Dharmavaram R, Hawkins D, Piera-Velazquez S, Jimenez SA. Regulation of Type-Ii Collagen Gene Expression During Human Chondrocyte De-Differentiation and Recovery of Chondrocyte-Specific Phenotype in Culture Involves Sry-Type High-Mobility-Group Box (Sox) Transcription Factors. Biochem J.2001;360:461-470.
    [102]Choi YS, Cha SM, Lee YY, Kwon SW, Park CJ, Kim M. Adipogenic Differentiation of Adipose Tissue Derived Adult Stem Cells in Nude Mouse. Biochem Biophys Res Commun.2006;345:631-637.
    [103]Choi YS, Park SN, Suh H. Adipose Tissue Engineering Using Mesenchymal Stem Cells Attached to Injectable Plga Spheres. Biomaterials.2005;26:5855-5863.
    [104]Kim M, Choi YS, Yang SH, Hong HN, Cho SW, Cha SM, Pak JH, Kim CW, Kwon SW, Park CJ. Muscle Regeneration by Adipose Tissue-Derived Adult Stem Cells Attached to Injectable Plga Spheres. Biochem Biophys Res Commun. 2006;348:386-392.
    [105]Newman KD, McBurney MW. Poly(D,L Lactic-Co-Glycolic Acid) Microspheres as Biodegradable Microcarriers for Pluripotent Stem Cells. Biomaterials. 2004;25:5763-5771.
    [106]Mirkin CA. Programming the Assembly of Two-and Three-Dimensional Architectures with DNA and Nanoscale Inorganic Building Blocks. Inorg Chem. 2000;39:2258-2272.
    [107]Collier CP, Vossmeyer T, Heath JR. Nanocrystal Superlattices. Annu Rev Phys Chem.1998;49:371-404.
    [108]Kim W, Ng JK, Kunitake ME, Conklin BR, Yang P. Interfacing Silicon Nanowires with Mammalian Cells. J Am Chem Soc.2007; 129:7228-7229.
    [109]Hickey T, Kreutzer D, Burgess DJ, Moussy F. In Vivo Evaluation of a Dexamethasone/Plga Microsphere System Designed to Suppress the Inflammatory Tissue Response to Implantable Medical Devices. J Biomed Mater Res.2002;61:180-187.
    [110]Sekiya I, Koopman P, Tsuji K, Mertin S, Harley V, Yamada Y, Shinomiya K, Nifuji A, Noda M. Dexamethasone Enhances Sox9 Expression in Chondrocytes. J Endocrinol.2001; 169:573-579.
    [111]Takano T, Takigawa M, Suzuki F. Stimulation by Glucocorticoids of the Differentiated Phenotype of Chondrocytes and the Proliferation of Rabbit Costal Chondrocytes in Culture. J Biochem.1985;97:1093-1100.
    [112]Derfoul A, Perkins GL, Hall DJ, Tuan RS. Glucocorticoids Promote Chondrogenic Differentiation of Adult Human Mesenchymal Stem Cells by Enhancing Expression of Cartilage Extracellular Matrix Genes. Stem Cells. 2006;24:1487-1495.
    [113]Im GI, Shin YW, Lee KB. Do Adipose Tissue-Derived Mesenchymal Stem Cells Have the Same Osteogenic and Chondrogenic Potential as Bone Marrow-Derived Cells? Osteoarthritis Cartilage.2005;13:845-853.
    [114]Bae SE, Son JS, Park K, Han DK. Fabrication of Covered Porous Plga Microspheres Using Hydrogen Peroxide for Controlled Drug Delivery and Regenerative Medicine. J Control Release.2009;133:37-43.
    [115]Yoon E, Dhar S, Chun DE, Gharibjanian NA, Evans GR. In Vivo Osteogenic Potential of Human Adipose-Derived Stem Cells/Poly Lactide-Co-Glycolic Acid Constructs for Bone Regeneration in a Rat Critical-Sized Calvarial Defect Model. Tissue Eng.2007;13:619-627.
    [116]Tomita M, Lavik E, Klassen H, Zahir T, Langer R, Young MJ. Biodegradable Polymer Composite Grafts Promote the Survival and Differentiation of Retinal Progenitor Cells. Stem Cells.2005;23:1579-1588.
    [117]Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L, Zhu R. Cartilage Regeneration Using Mesenchymal Stem Cells and a Plga-Gelatin/Chondroitin/Hyaluronate Hybrid Scaffold. Biomaterials.2006;27:4573-4580.
    [118]Wang Q, Wang J, Lu Q, Detamore MS, Berkland C. Injectable Plga Based Colloidal Gels for Zero-Order Dexamethasone Release in Cranial Defects. Biomaterials.2010;31:4980-4986.
    [119]Siemionow K, An H, Masuda K, Andersson G, Cs-Szabo G. The Effects of Age, Sex, Ethnicity, and Spinal Level on the Rate of Intervertebral Disc Degeneration: A Review of 1712 Intervertebral Discs. Spine (Phila Pa 1976). 2011;36:1333-1339.
    [120]Han B, Zhu K, Li FC, Xiao YX, Feng J, Shi ZL, Lin M, Wang J, Chen QX. A Simple Disc Degeneration Model Induced by Percutaneous Needle Puncture in the Rat Tail. Spine (Phila Pa 1976).2008;33:1925-1934.
    [121]Lu DS, Shono Y, Oda I, Abumi K, Kaneda K. Effects of Chondroitinase Abe and Chymopapain on Spinal Motion Segment Biomechanics. An in Vivo Biomechanical, Radiologic, and Histologic Canine Study. Spine (Phila Pa 1976). 1997;22:1828-1834; discussion 1834-1825.
    [122]Mao HJ, Chen QX, Han B, Li FC, Feng J, Shi ZL, Lin M, Wang J. The Effect of Injection Volume on Disc Degeneration in a Rat Tail Model. Spine (Phila Pa 1976).2011;36:E1062-1069.
    [123]Stokes I A, Aronsson DD, Spence H, Iatridis JC. Mechanical Modulation of Intervertebral Disc Thickness in Growing Rat Tails. J Spinal Disord. 1998:11:261-265.
    [124]MacLean JJ, Lee CR, Alini M, Iatridis JC. The Effects of Short-Term Load Duration on Anabolic and Catabolic Gene Expression in the Rat Tail Intervertebral Disc. J Orthop Res.2005;23:1120-1127.
    [125]Sobajima S, Kompel JF, Kim JS, Wallach CJ, Robertson DD, Vogt MT, Kang JD, Gilbertson LG. A Slowly Progressive and Reproducible Animal Model of Intervertebral Disc Degeneration Characterized by Mri, X-Ray, and Histology. Spine (Phila Pa 1976).2005;30:15-24.
    [126]Grupp TM, Meisel HJ, Cotton JA, Schwiesau J, Fritz B, Blomer W, Jansson V. Alternative Bearing Materials for Intervertebral Disc Arthroplasty. Biomaterials. 2010;31:523-531.
    [127]Endres M, Abbushi A, Thomale UW, Cabraja M, Kroppenstedt SN, Morawietz L, Casalis PA, Zenclussen ML, Lemke AJ, Horn P, Kaps C, Woiciechowsky C. Intervertebral Disc Regeneration after Implantation of a Cell-Free Bioresorbable Implant in a Rabbit Disc Degeneration Model. Biomaterials.2010;31:5836-5841.
    [128]Claridge SA, Mastroianni AJ, Au YB, Liang HW, Micheel CM, Frechet JM, Alivisatos AP. Enzymatic Ligation Creates Discrete Multinanoparticle Building Blocks for Self-Assembly. J Am Chem Soc.2008;130:9598-9605.
    [129]Na K, Kim S, Park K, Kim K, Woo DG, Kwon IC, Chung HM, Park KH. Heparin/Poly(L-Lysine) Nanoparticle-Coated Polymeric Microspheres for Stem-Cell Therapy. J Am Chem Soc.2007;129:5788-5789.
    [130]Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA. Biologic Properties of Mesenchymal Stem Cells Derived from Bone Marrow and Adipose Tissue. J Cell Biochem.2006;99:1285-1297.
    [131]Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, or Adipose Tissue. Stem Cells.2006;24:1294-1301.
    [132]Sakai D, Mochida J, Yamamoto Y, Nomura T, Okuma M, Nishimura K, Nakai T, Ando K, Hotta T. Transplantation of Mesenchymal Stem Cells Embedded in Atelocollagen Gel to the Intervertebral Disc:A Potential Therapeutic Model for Disc Degeneration. Biomaterials.2003;24:3531-3541.
    [133]Sakai D, Mochida J, Iwashina T, Watanabe T, Nakai T, Ando K, Hotta T. Differentiation of Mesenchymal Stem Cells Transplanted to a Rabbit Degenerative Disc Model:Potential and Limitations for Stem Cell Therapy in Disc Regeneration. Spine (Phila Pa 1976).2005;30:2379-2387.
    [134]Jeong JH, Jin ES, Min JK, Jeon SR, Park CS, Kim HS, Choi KH. Human Mesenchymal Stem Cells Implantation into the Degenerated Coccygeal Disc of the Rat. Cytotechnology.2009;59:55-64.
    [135]Takahashi M, Kido K, Aoi A, Furukawa H, Ono M, Kodama T. Spinal Gene Transfer Using Ultrasound and Microbubbles. J Control Release.2007; 117: 267-272.
    [136]Crevensten G, Walsh AJ, Ananthakrishnan D, Page P, Wahba GM, Lotz JC, Berven S. Intervertebral Disc Cell Therapy for Regeneration:Mesenchymal Stem Cell Implantation in Rat Intervertebral Discs. Ann Biomed Eng.2004;32:430-434.
    [137]Bjorklund A, Lindvall O. Cell Replacement Therapies for Central Nervous System Disorders. Nat Neurosci.2000;3:537-544.
    [138]Chen X, Katakowski M, Li Y, Lu D, Wang L, Zhang L, Chen J, Xu Y, Gautam S, Mahmood A, Chopp M. Human Bone Marrow Stromal Cell Cultures Conditioned by Traumatic Brain Tissue Extracts:Growth Factor Production. J Neurosci Res. 2002;69:687-691.
    [139]Chopp M, Li Y. Treatment of Neural Injury with Marrow Stromal Cells. Lancet Neurol.2002; 1:92-100.
    [140]Jendelova P, Herynek V, Urdzikova L, Glogarova K, Kroupova J, Andersson B, Bryja V, Burian M, Hajek M, Sykova E. Magnetic Resonance Tracking of Transplanted Bone Marrow and Embryonic Stem Cells Labeled by Iron Oxide Nanoparticles in Rat Brain and Spinal Cord. J Neurosci Res.2004;76:232-243.
    [141]Mahmood A, Lu D, Chopp M. Intravenous Administration of Marrow Stromal Cells (Mscs) Increases the Expression of Growth Factors in Rat Brain after Traumatic Brain Injury. J Neurotrauma.2004;21:33-39.
    [142]Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, Katakowski M, Zhang LJ, Lu M, Janakiraman N, Chopp M. Human Marrow Stromal Cell Therapy for Stroke in Rat:Neurotrophins and Functional Recovery. Neurology. 2002;59:514-523.
    [143]Yang F, Leung VY, Luk KD, Chan D, Cheung KM. Mesenchymal Stem Cells Arrest Intervertebral Disc Degeneration through Chondrocytic Differentiation and Stimulation of Endogenous Cells. Mol Ther.2009;17:1959-1966.
    [1]Martin, B.I., et al., Expenditures and health status among adults with backand neck problems. JAMA,2008.299(6):p.656-64.
    [2]DePalma, M.J., J.M. Ketchum, and T. Saullo, What is the source of chronic low back pain and does age play a role?-Pian Med,2011.12(2):p.224-33.
    [3]Gracely, R.H., Pain measurement. Acta Anaesthesiol Scand,1999.43(9):p. 897-908.
    [4]Ghahreman, A. and N. Bogduk, Predictors of a favorable response to transforaminal injection of steroids in patients with lumbar radicular pain due to disc herniation. Pain Med,2011.12(6):p.871-9.
    [5]Panjabi, M.M., The stabilizing system of the spine. Part Ⅱ. Neutral zone and instability hypothesis. J Spinal Disord,1992.5(4):p.390-6; discussion 397.
    [6]Depalma, M., et al., Structural etiology of chronic low back pain due to motor vehicle collision. Pain Med,2011.12(11):p.1622-7.
    [7]Raczkowski, J.W., B. Daniszewska, and K. Zolynski, Functionalscoliosis caused by leg length discrepancy. Arch Med Sci,2010.6(3):p.393-8.
    [8]Kirkaldy-Willis, W.H., et al., Pathology and pathogenesis of lumbar spondylosis and stenosis. Spine (Phila Pa 1976),1978.3(4):p.319-28.
    [9]Yang, K.H. and A.I. King, Mechanism of facet load transmission as a hypothesis for low-back pain. Spine (Phila Pa 1976),1984.9(6):p.557-65.
    [10]Lipson, S.J., D.A. Fox, and J.L. Sosman, Symptomatic intravertebral disc herniation (Schmorl's node) in the cervical spine. Ann Rheum Dis,1985.44(12): p.857-9.
    [11]Farfan, H.F. and J.D. Sullivan, The relation of facet orientation to intervertebral disc failure. Can J Surg,1967.10(2):p.179-85.
    [12]Schleip, R., et al., Letter to the Editor concerning "A hypothesis of chronic back pain:ligament sub failure injuries lead to muscle control dysfunction " (M. Panjabi). Eur Spine J,2007.16(10):p.1733-5; author reply 1736.
    [13]Panjabi, M.M., A hypothesis of chronic back pain:ligament subfailure injuries lead to muscle control dysfunction. Eur Spine J,2006.15(5):p.668-76.
    [14]DePalma, M.J., J.M. Ketchum, and T.R. Saullo, Etiology of chronic low back pain in patients having undergone lumbar fusion. Pain Med,2011.12(5):p. 732-9.
    [15]Karabekir, H.S., et al., Effect of ligamenta flava hypertrophy on lumbar disc herniation with contralateral symptoms and signs:a clinical and morphometric study. Arch Med Sci,2010.6(4):p.617-22.
    [16]Petronic, I., et al., Distribution of affected muscles and degree ofneurogenic lesion in patients with spina bifida. Arch Med Sci,2011.7(6):p.1049-54.
    [17]van Dieen, J.H., L.P. Selen, and J. Cholewicki, Trunk muscle activation in low-back pain patients, an analysis of the literature. J Electromyogr Kinesiol, 2003.13(4):p.333-51.
    [18]Lund, J.P., et al., The pain-adaptation model:a discussion of the relationship between chronic musculoskeletalpain and motor activity. Can J Physiol Pharmacol,1991.69(5):p.683-94.
    [19]Maigne, J.Y. and P. Vautravers, Mechanism of action of spinal manipulative therapy. Joint Bone Spine,2003.70(5):p.336-41.
    [20]Roberts, S., et al., Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am,2006.88 Suppl 2:p.10-4.
    [21]Raj, P.P., Intervertebral disc:anatomy-physiology-pathophysiology-treatment Pain Pract,2008.8(1):p.18-44.
    [22]Kitano, T., et al., Biochemical changes associated with the symptomatic human intervertebral disk. Clin Orthop Relat Res,1993(293):p.372-7.
    [23]Wuertz, K., K. Godburn, and J.C. Iatridis, MSC response to pH levels found in degenerating intervertebral discs. Biochem Biophys Res Commun,2009.379(4): p.824-9.
    [24]Hambly, M.F. and V. Mooney, Effect of smoking and pulsed electromagnetic fields on intradiscal pHin rabbits. Spine (Phila Pa 1976),1992.17(6 Suppl):p. S83-5.
    [25]Krapf, M.W., et al., [Recording muscle spasm in the musculus erector spinae using in vivo 31P magnetic resonance spectroscopy in patients with chronic lumbalgia and generalized tendomyopathies]. Z Rheumatol,1992.51(5):p. 229-37.
    [26]Diamant, B., J. Karlsson, and A. Nachemson, Correlation between lactate levels and pH in discs of patients with lumbar rhizopathies. Experientia,1968.24(12): p.1195-6.
    [27]Keshari, K.R., et al., Lactic acid and proteoglycans as metabolic markers for discogenic back pain. Spine (Phila Pa 1976),2008.33(3):p.312-7.
    [28]Bartels, E.M., et al., Oxygen and lactate concentrations measured in vivo in the intervertebral discs of patients with scoliosis and back pain. Spine (Phila Pa 1976),1998.23(1):p.1-7; discussion 8.
    [29]Baumann, T.K., et al., Responses of adult human dorsal root ganglion neurons in culture to capsaicin and lowpH. Pain,1996.65(1):p.31-8.
    [30]Strobel, E.S., et al., Tissue oxygen measurement and 31P magnetic resonance spectroscopy in patients with muscle tension and fibromyalgia. Rheumatol Int, 1997.16(5):p.175-80.
    [31]Vormann, J., et al., Supplementation with alkaline minerals reduces symptoms in patients with chronic low back pain. J Trace Elem Med Biol,2001.15(2-3):p. 179-83.
    [32]Moore, M.R., et al., Relationship between vertebralintraosseouspressure, pH, PO2, pCO2, and magnetic resonance imaging signal inhomogeneity in patients with back pain. An in vivo study. Spine (Phila Pa 1976),1991.16(6 Suppl):p. S239-42.
    [33]Prommahachai, A., et al., Correction with instrumented fusion versus non-corrective surgery for degenerative lumbar scoliosis:a systematic review. J Med Assoc Thai,2010.93(8):p.920-9.
    [34]Menkin, V., Biochemical Mechanisms in Inflammation. Br Med J,1960.1(5185): p.1521-8.
    [35]Aoki, Y, et al., Nerve fiber ingrowth into scar tissue formed following nucleus pulposus extrusion in the rabbit anular-puncture disc degeneration model:effects of depth of puncture. Spine (Phila Pa 1976),2006.31(21):p. E774-80.
    [36]Ozawa, T., et al., The degenerated lumbar intervertebral disc is innervated primarily by peptide-containing sensory nerve fibers in humans. Spine (Phila Pa 1976),2006.31(21):p.2418-22.
    [37]Wang, Y.Z. and T.L. Xu, Acidosis, acid-sensing ion channels, and neuronal cell death. Mol Neurobiol,2011.44(3):p.350-8.
    [38]Ohshima, H. and J.P. Urban, The effect oflactate and pH on proteoglycan and protein synthesis rates in the intervertebral disc. Spine (Phila Pa 1976),1992. 17(9):p.1079-82.
    [39]Ishihara, H. and J.P. Urban, Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J Orthop Res,1999.17(6):p.829-35.
    [40]Holm, S., et al., Nutrition of the intervertebral disc:solute transport and metabolism. Connect Tissue Res,1981.8(2):p.101-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700