可注射式自体脂肪组织复合PRF和SVF在小型猪模型中的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:自体脂肪组织抽吸注射移植是目前软组织修复常用的方法,然而无法预知的吸收率(20%~90%),常常需要多次注射或过度移植,移植效果的个体差异明显。本课题组在研究中发现,在脂肪颗粒中复合PRF和(或)SVF可以有效的降低移植组织吸收率,并且在小动物模型中得到有效的实验论证,现拟通过大动物实验进一步观察这种思路的可行性。
     目的:建立小型猪脂肪移植的动物模型,制备可注射式AG(脂肪颗粒)复合PRF(富血小板血浆)和(或)SVF(血管基质成分)混合物,在猪耳背部,猪腹部植入皮肤扩张器后的皮下,猪背部软组织缺损皮下进行注射移植,通过观察不同实验组中移植组织的吸收率及组织学检查结果来评价新的移植方式的动物实验效果。
     方法:
     1.实验分组:对照组为单纯脂肪颗粒组分;实验组A为脂肪颗粒+PRF组分;实验组B为脂肪颗粒+PRF+SVF组分。
     2.在贵州小型猪中建立制备AG(脂肪颗粒)复合PRF(富血小板血浆)和(或)SVF(血管基质成分)混合物的手术模型,在猪耳背皮下,猪侧腹部扩张器皮肤下,猪背部软组织缺损皮下注射移植脂肪组织。
     3.在不同观察点通过卡尺和B超测量观察和统计比较不同实验组的吸收率的变化。
     4.对组织标本进行组织学检测(HE染色,油红染色,FⅧ因子免疫组化染色,Tunel细胞凋亡检查)比较不同实验组的差别。
     5.使用SPSS统计学软件对实验数据进行分析。
     结果:
     1.在贵州小型猪中建立了AG(脂肪颗粒)复合PRF(富血小板血浆)和(或)SVF(血管基质成分)混合物的手术模型,猪耳背部软组织移植、猪腹部皮肤扩张器皮下软组织移植、猪背部软组织缺损皮下软组织移植的实验模型。
     2.在猪耳背部皮下移植模型中,按照20ml,10ml和5ml阶梯体积进行注射移植实验,对照组︰实验组A︰实验组B按照1︰1︰1进行,每组6例。单次大剂量注射脂肪组织20m l,移植腔隙为类圆形,直径约5cm,移植物形成高度约2.5cm。对照组移植体积存活率约为6.25%(SD3.59),实验组A存活率约为9.27%(SD3.69),实验组B存活率约为12.96%(SD4.02)。单次大剂量注射脂肪组织10ml,移植腔隙为类圆形,直径约5cm,移植物形成高度约1.3cm。对照组移植体积存活率约为10.28%(SD2.42),实验组A存活率约为21.88%(SD4.34),实验组B存活率约为31.00%(SD4.29)。单次大剂量注射脂肪组织5ml,移植腔隙为类圆形,直径约5cm,移植物形成高度约0.9cm。对照组移植体积存活率约为31.01%(SD10.76),实验组A存活率约为30.80%(SD7.01),实验组B存活率约为46.75%(SD9.04)。
     对数据进行单因变量(存活率)多因素(阶梯体积和实验组别)方差分析,结果显示实验组B移植存活率要高于实验组A,实验组A移植存活率要高于对照组;5ml移植组存活率高于10ml移植组,10ml移植组存活率高于20ml移植组,其组间差异具有统计学意义。
     对组织标本检查中发现,对照组组织标本断面出血点较少,标本组织不均一,有坏死变形的脂肪结节,正常的脂肪组织比例较小;实验组A组织标本断面有丰富出血点,血管较粗,大小不均匀,未见明显的坏死变性的脂肪结节,脂肪组织比例较多;实验组B组织标本断面出血丰富,出血点细小均匀,组织均匀一致。
     在对组织血管数量的单变量多因素分析中,在20ml移植组中,实验组B的血管数量高于实验组A,实验组A高于对照组;在10ml和5ml移植组中对照组的血管数量高于实验组A,高于实验组B,其差异具有统计学意义。
     Tunel凋亡检测中观察到对照组中所有的凋亡染色均有大量的凋亡细胞,而实验组A和实验组B的切片中凋亡细胞数量明显减少,而5ml,10ml和20ml组间没有明显区别。
     在油红染色中,对照组移植后的组织中脂滴被染成红色,脂肪泡体积一致性较差,散在分布;在实验组中,脂肪泡体积一致性较好,分布较均匀,脂滴间隔为结缔组织细胞,实验组A和实验组B差异不明显。
     3.建立9例20ml扩张器模型,移植术后均发生严重吸收,切开皮肤后发现皮肤增厚明显,皮下少量瘢痕结缔组织,脂肪组织存活率低,对照组同实验组A和实验组B无明显差别。
     4.完成软组织缺损脂肪复合物移植18例,其中6例作为对照组,6例作为实验组A,6例作为实验组B。对照组脂肪移植量为13.60±3.05ml,术前脂肪层厚度为13.85±2.71mm,邻近脂肪层厚度为39.55±2.48mm,移植增加了2.85±0.82mm脂肪层厚度;实验组A脂肪移植量为11.00±2.24ml,术前脂肪层厚度为12.74±1.69mm,邻近脂肪层厚度为39.54±1.97mm,移植增加了11.27±5.51mm脂肪层厚度;实验组B脂肪移植量为11.20±1.30ml,术前脂肪层厚度为13.35±2.00mm,邻近脂肪层厚度为42.34±1.69mm,移植增加了16.73±3.27mm脂肪层厚度。由于移植物区域的面积测量存在困难,仅观测移植区域中心点脂肪层厚度变化来评估移植物的吸收存活情况,对照组中移植物厚度存活率为11.04±2.80%,实验组A移植物厚度存活率为40.94±16.79%,实验组B移植物厚度存活率为56.80±10.19%,一维方差分析组间差异具有统计学意义;LSD两两比较其差异均具有统计学意义。
     实验组A和实验组B的血管计数少于对照组,实验组B和实验组A同对照组的主要区别是单个棕染的团块细胞数量较少,提示为较小的血管生长丰富。
     结论:
     1.使用猪作为实验对象进行脂肪移植是可行的选择之一。
     2.在脂肪颗粒中复合PRF和(或)SVF在单腔隙注射移植5ml,10ml和20ml的实验观察中,脂肪颗粒中复合PRF和(或)SVF移植的吸收率小于单纯使用脂肪颗粒进行移植的吸收率,脂肪颗粒复合PRF和SVF作为移植材料的吸收率小于脂肪颗粒复合PRF进行移植的吸收率,差异均具有统计学意义。
     3.在猪腹部制作皮肤扩张器模型,并在腔隙中进行移植实验观察,实验结果显示实验组和对照组移植物均发生严重吸收,提示在此实验构想可行性较低。
     4.在猪背部制备的软组织缺损模型中进行脂肪组织移植实验观察,实验结果提示在脂肪颗粒中加入PRF和(或)SVF有着较好的移植效果。
     5.使用自体血液加工制备富含生长因子及纤维蛋白成分的PRF,自体脂肪组织加工制备富含脂肪干细胞及脂肪前体细胞的SVF,将其加入自体脂肪组织作为移植复合物进行移植可以有效的减少移植吸收率,并可能使得存活组织状态更稳定,更成熟。
Background: Injectable autologous fat tissue transplantion of liposuction is a commonmethod in soft tissue reconstruction, but it often needs repeat injections or over-filling dueto unpredictable absorption rate (20%~90%). In earlier studies, an improve of survivalpercentage when PRF and (or) SVF was added to adipose granule before transplantion invitro studies and vivo studies in rabbits.
     Purpose: Establishedment of fat transplantation model in minipig, preparation ofinjective adipose granule, PRF and SVF composites, subcutaneous injection of thecomposites to different sites of the animal model. The absorption rates of the experimentalgroup and the control group were calculated and compared to evaluate this news ways ofadipose tissue transplantion.
     Methods:
     1. Establishedment of fat transplantation model in minipig: a. the preparation ofinjective adipose granule, PRF and SVF composites; b. subcutaneous injection of thecomposites in the ears of minipigs; c. injection of the composites in the cavity in theabdominal prepared by a soft tissue expander; d. subcutaneous injection of the compositesin the soft tissue defect in the back of the minipigs.
     2. Caliper and B-mode ultrasound were used to measure the volume changes of thegraft materials.
     3. The tissue specimens were prepared for histological examination: hematoxylin andeosin (H&E) staining; Oil-red O staining; Factor VIII immunohistochemical staining forVessel count; Cell apoptosis using Tunel technique. Differences between the experimentalgroup and the control group were analyzed.
     Results:
     1. The fat transplantation models in minipig were established: a. the preparation of injective fat particles, PRF and SVF composites; b. subcutaneous injection of thecomposites in the ears of minipigs; c. injection of the composites in the cavity in theabdominal prepared by a soft tissue expander; d. subcutaneous injection of the compositesin the soft tissue defect in the back of the minipigs.
     2. Subcutaneous injection of the composites in the ear of minipigs: The ratio of controlgroup, experimental group A and group B was1︰1︰1, each group included6cases.When20ml of the adipose composites was injected, the diameter of the donor site wasabout5cm, the height of the donor site was about2.5cm, the survival percentage of thecontrol group, experiment group A and experiment group B was6.25%(SD3.59),9.27%(SD3.69) and12.96%(SD4.02), respectively; When10ml of the adipose composites wasinjected, the diameter of the donor site was about5cm, the height of the donor site wasabout1.3cm, the survival percentage of the control group, experiment group A andexperiment group B was10.28%(SD2.42),21.88%(SD4.34) and31.00%(SD4.29),respectively; When5ml of the adipose composites was injected, the diameter of the donorsite was about5cm, the height of the donor site was about0.9cm, the survival percentageof the control group, experiment group A and experiment group B was31.01%(SD10.76),30.80%(SD7.01) and46.75%(SD9.04), respectively.
     Single dependent variable multi-factor ANOVA analyses show that the surviralpercentage of experiment group B was higher than experiment group A, the surviralpercentage of experiment group A was higher than control group; the surviral percentageof5ml group was higher than10ml group, the surviral percentage of10ml group washigher than20ml. All the differences between groups were statistically significant.
     The vessel counts of the specimen after Factor VIII immunohistochemical stainingwere anaylized by Single dependent variable multi-factor ANOVA, the results show that in20ml graft groups, the experiment group B had higher vessel count than the experimentgroup A, the experiment group A had higher vessel count than the control group, while in10ml and5ml graft groups, the control group count highest, then the experiment group A,the experiment group B count lowest. The differences between groups were statisticallysignificant.
     Cell apoptosis using Tunel technique showed that there were a lot more apoptotic cellsin control groups than experimental groups, but no obvious difference between5ml,10mland20ml groups.
     Oil-red O staining of the specimen showed that the fat lipid droplets were dyed red,the fat bubbles consistency was poor in control groups, the fat bubbles consistency wasbetter in experiment groups, but no siginificant difference between the experiment group Aand group B.
     3. Injection of the composites in the cavity in the abdominal prepared by soft tissueexpander:9models were set up,3for control group,3for experiment group A, and3forexperiment group B, but all the cases were found severe absorbed, no obvious adiposetissue were found during ultrasound exam and sample surgery, no statistics differencebetween experiment group A and group B.
     4. Subcutaneous injection of the composites in the soft tissue defect in the back of theminipigs:18cases of the models were set up,6for control group,6for experiment groupA, and6for experiment group B. In the control group, the volume of tissue graft was13.60ml (SD3.05), the thickness of the adipose tissue before the transplantation was13.85mm (SD2.71), and the augmented soft tissue was2.85mm (SD0.82); In theexperiment group A, the volume of tissue graft was11.00ml (SD2.24), the thickness ofthe adipose tissue before the transplantation was12.74mm (SD1.69), and the augmentedsoft tissue was11.27mm (SD5.51); In the experiment group B, the volume of tissue graftwas11.20ml (SD1.30), the thickness of the adipose tissue before the transplantation was13.35mm (SD2.00), and the augmented soft tissue was16.73mm (SD3.27).
     There was no statistic difference between the groups of volume of tissue graft, andthere was no statistic difference between the groups of the thickness of the adipose tissuebefore the transplantation, but there was statistic difference between the groups of theaugmented soft tissue.
     The survival percentage of the augmented thickness of adipose tissue of the controlgroup, the experiment group A and B was11.04%(SD2.80),40.94%(SD16.79) and56.80%(10.19) respectively. ANOVA analyse showed there was statistic differencebetween groups.
     The vessel count showed that the experiment group A and B had less vessel numberthan control group. The difference between the experiment group A and B was that the cellnumber of each vessel count less in the experiment group B than group A, which maightindicate the adipose tissue in experiment group B was more mature and stable.
     Conclusions:
     1. Using minipig as one of the subjects of adipose tissue transplant is a viable option.
     2. Subcutaneous injection of5ml,10ml and20ml of the composites in the ears ofminipigs shows injection of adipose granule+PRF and adipose granule+PRF+SVF havebetter result than injection of adipose granule only, and injection of adiposegranule+PRF+SVF shows the best results.
     3. The idea of injection of the composites in the cavity in the abdominal prepared bya soft tissue expander may not be a viable option.
     4. Experiments of subcutaneous injection of the composites in the soft tissue defect inthe back of the minipigs show that adipose granule+PRF+SVF composites have betterresult in adipose transplantation.
     5. When PRF and (or) SVF is added in adipose granule during transplantation, thesurvival percentage of the graft material is greatly increased, and the augmented tissuelooks more autologous tissue alike, maybe more mature and stable.
引文
1. Gomillion, C.T. and K.J. Burg, Stem cells and adipose tissue engineering.Biomaterials,2006.27(36): p.6052-63.
    2. Brown, S.A., et al., Basic science review on adipose tissue for clinicians. PlastReconstr Surg,2010.126(6): p.1936-46.
    3. Gir, P., et al., Fat grafting: evidence-based review on autologous fat harvesting,processing, reinjection, and storage. Plast Reconstr Surg,2012.130(1): p.249-58.
    4. Lovett, M., et al., Vascularization strategies for tissue engineering. Tissue Eng PartB Rev,2009.15(3): p.353-70.
    5. Carpaneda, C.A. and M.T. Ribeiro, Study of the histologic alterations and viabilityof the adipose graft in humans. Aesthetic Plast Surg,1993.17(1): p.43-7.
    6. Salgarello, M., G. Visconti, and A. Rusciani, Breast fat grafting with platelet-richplasma: a comparative clinical study and current state of the art. Plast ReconstrSurg,2011.127(6): p.2176-85.
    7. Koh, Y.J., et al., Stromal vascular fraction from adipose tissue forms profoundvascular network through the dynamic reassembly of blood endothelial cells.Arterioscler Thromb Vasc Biol,2011.31(5): p.1141-50.
    8. Liu, B., et al., The Adjuvant Use of Stromal Vascular Fraction and Platelet-RichFibrin for Autologous Adipose Tissue Transplantation. Tissue Eng Part C Methods,
    2012.
    9.谭新颖, et al.,自体基质血管成分改善脂肪组织移植效果的实验研究.中国美容医学,2011(03): p.425-427.
    10.谭新颖, et al.,可注射自体脂肪组织移植动物模型的建立.实用口腔医学杂志,2011(02): p.159-163.
    11. Kaufman, M.R., et al., Autologous fat transfer national consensus survey: trends intechniques for harvest, preparation, and application, and perception of short-andlong-term results. Plast Reconstr Surg,2007.119(1): p.323-31.
    12. Wolf, G.A., et al., Magnetic resonance imaging assessment of gluteal fat grafts.Aesthetic Plast Surg,2006.30(4): p.460-8.
    13. Zocchi, M.L. and F. Zuliani, Bicompartmental breast lipostructuring. AestheticPlast Surg,2008.32(2): p.313-28.
    14. Niechajev, I. and O. Sevcuk, Long-term results of fat transplantation: clinical andhistologic studies. Plast Reconstr Surg,1994.94(3): p.496-506.
    15. Delay, E., et al., Fat injection to the breast: technique, results, and indicationsbased on880procedures over10years. Aesthet Surg J,2009.29(5): p.360-76.
    16. Park, S., B. Kim, and Y. Shin, Correction of superior sulcus deformity with orbitalfat anatomic repositioning and fat graft applied to retro-orbicularis oculi fat forAsian eyelids. Aesthetic Plast Surg,2011.35(2): p.162-70.
    17. Rubin, A. and S.M. Hoefflin, Fat purification: survival of the fittest. Plast ReconstrSurg,2002.109(4): p.1463-4.
    18. Lei, M., et al., Effect of rhVEGF gene transfection on survival of grafts afterautologous free granular fat transplantation in rats. Chin J Traumatol,2008.11(1):p.49-53.
    19. Locke, M.B. and T.M. de Chalain, Current practice in autologous fattransplantation: suggested clinical guidelines based on a review of recent literature.Ann Plast Surg,2008.60(1): p.98-102.
    20. Rohrich, R.J., E.S. Sorokin, and S.A. Brown, In search of improved fat transferviability: a quantitative analysis of the role of centrifugation and harvest site. PlastReconstr Surg,2004.113(1): p.391-5; discussion396-7.
    21. Ullmann, Y., et al., Searching for the favorable donor site for fat injection: in vivostudy using the nude mice model. Dermatol Surg,2005.31(10): p.1304-7.
    22. Zhu, M., et al., Supplementation of fat grafts with adipose-derived regenerativecells improves long-term graft retention. Ann Plast Surg,2010.64(2): p.222-8.
    23. Yoshimura, K., et al., Cell-assisted lipotransfer for cosmetic breast augmentation:supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg,2008.32(1): p.48-55; discussion56-7.
    24. Zuk, P.A., et al., Multilineage cells from human adipose tissue: implications forcell-based therapies. Tissue Eng,2001.7(2): p.211-28.
    25. Padoin, A.V., et al., Sources of processed lipoaspirate cells: influence of donor siteon cell concentration. Plast Reconstr Surg,2008.122(2): p.614-8.
    26. Pu, L.L., Discussion: Sources of processed lipoaspirate cells: influence of donorsite on cell concentration. Plast Reconstr Surg,2008.122(2): p.619-20.
    27. Smith, P., et al., Autologous human fat grafting: effect of harvesting andpreparation techniques on adipocyte graft survival. Plast Reconstr Surg,2006.117(6): p.1836-44.
    28. Shiffman, M.A. and S. Mirrafati, Fat transfer techniques: the effect of harvest andtransfer methods on adipocyte viability and review of the literature. Dermatol Surg,
    2001.27(9): p.819-26.
    29. Crawford, J.L., et al., Fine tuning lipoaspirate viability for fat grafting. PlastReconstr Surg,2010.126(4): p.1342-8.
    30. Pu, L.L., et al., The viability of fatty tissues within adipose aspirates afterconventional liposuction: a comprehensive study. Ann Plast Surg,2005.54(3): p.288-92; discussion292.
    31. Boschert, M.T., et al., Analysis of lipocyte viability after liposuction. PlastReconstr Surg,2002.109(2): p.761-5; discussion766-7.
    32. Erdim, M., et al., The effects of the size of liposuction cannula on adipocytesurvival and the optimum temperature for fat graft storage: an experimental study.J Plast Reconstr Aesthet Surg,2009.62(9): p.1210-4.
    33. Gonzalez, A.M., et al., An alternative method for harvest and processing fat grafts:an in vitro study of cell viability and survival. Plast Reconstr Surg,2007.120(1): p.285-94.
    34. Ferguson, R.E., et al., The viability of autologous fat grafts harvested with theLipiVage system: a comparative study. Ann Plast Surg,2008.60(5): p.594-7.
    35. Xie, Y., et al., The effect of centrifugation on viability of fat grafts: an evaluationwith the glucose transport test. J Plast Reconstr Aesthet Surg,2010.63(3): p.482-7.
    36. Kim, I.H., et al., Evaluation of centrifugation technique and effect of epinephrineon fat cell viability in autologous fat injection. Aesthet Surg J,2009.29(1): p.35-9.
    37. Ramon, Y., et al., Enhancing the take of injected adipose tissue by a simple methodfor concentrating fat cells. Plast Reconstr Surg,2005.115(1): p.197-201;discsussion202-3.
    38. Minn, K.W., et al., Effects of fat preparation methods on the viabilities ofautologous fat grafts. Aesthetic Plast Surg,2010.34(5): p.626-31.
    39. Conde-Green, A., N.F. de Amorim, and I. Pitanguy, Influence of decantation,washing and centrifugation on adipocyte and mesenchymal stem cell content ofaspirated adipose tissue: a comparative study. J Plast Reconstr Aesthet Surg,2010.63(8): p.1375-81.
    40. Kurita, M., et al., Influences of centrifugation on cells and tissues in liposuctionaspirates: optimized centrifugation for lipotransfer and cell isolation. PlastReconstr Surg,2008.121(3): p.1033-41; discussion1042-3.
    41. Pallua, N., et al., Content of the growth factors bFGF, IGF-1, VEGF, andPDGF-BB in freshly harvested lipoaspirate after centrifugation and incubation.Plast Reconstr Surg,2009.123(3): p.826-33.
    42. Coleman, S.R., Structural fat grafts: the ideal filler? Clin Plast Surg,2001.28(1): p.111-9.
    43. Xie, Y., et al., An integrated fat grafting technique for cosmetic facial contouring. JPlast Reconstr Aesthet Surg,2010.63(2): p.270-6.
    44. Sherman, J.E., et al., Blindness and necrotizing fasciitis after liposuction and fattransfer. Plast Reconstr Surg,2010.126(4): p.1358-63.
    45. Coleman, S.R., Avoidance of arterial occlusion from injection of soft tissue fillers.Aesthet Surg J,2002.22(6): p.555-7.
    46. Carpaneda, C.A. and M.T. Ribeiro, Percentage of graft viability versus injectedvolume in adipose autotransplants. Aesthetic Plast Surg,1994.18(1): p.17-9.
    47. Nishimura, T., et al., Microvascular angiogenesis and apoptosis in the survival offree fat grafts. Laryngoscope,2000.110(8): p.1333-8.
    48. Karacaoglu, E., et al., The role of recipient sites in fat-graft survival: experimentalstudy. Ann Plast Surg,2005.55(1): p.63-8; discussion68.
    49. Thanik, V.D., et al., A murine model for studying diffusely injected human fat.Plast Reconstr Surg,2009.124(1): p.74-81.
    50. Moore, J.H., Jr., et al., Viability of fat obtained by syringe suction lipectomy:effects of local anesthesia with lidocaine. Aesthetic Plast Surg,1995.19(4): p.335-9.
    51. Keck, M., et al., Local anesthetics have a major impact on viability ofpreadipocytes and their differentiation into adipocytes. Plast Reconstr Surg,2010.126(5): p.1500-5.
    52. Shoshani, O., et al., The effect of lidocaine and adrenaline on the viability ofinjected adipose tissue--an experimental study in nude mice. J Drugs Dermatol,
    2005.4(3): p.311-6.
    53. Berry, M.G. and D. Davies, Liposuction: A review of principles and techniques. JPlast Reconstr Aesthet Surg,2010.
    54. Botti, G., et al., A Clinical Trial in Facial Fat Grafting: Filtered and Washed versusCentrifuged Fat. Plast Reconstr Surg,2011.127(6): p.2464-73.
    55. Amar, R.E. and D.M. Fox, The Facial Autologous Muscular Injection (FAMI)Procedure: An Anatomically Targeted Deep Multiplane Autologous Fat-GraftingTechnique Using Principles of Facial Fat Injection. Aesthetic Plast Surg,2011.
    56. Ozmen, S., et al., Hemodynamic changes and fluid shifts after large-volume fluidinfiltration: results from a porcine model. Ann Plast Surg,2010.64(1): p.83-8.
    57. Kenkel, J.M., et al., Hemodynamics, electrolytes, and organ histology oflarger-volume liposuction in a porcine model. Plast Reconstr Surg,2004.113(5): p.1391-9.
    58. Kim, Y.H., et al., Analysis of postoperative complications for superficialliposuction: a review of2398cases. Plast Reconstr Surg,2011.127(2): p.863-71.
    59. Rosing, J.H., et al., Autologous fat grafting for primary breast augmentation: asystematic review. Aesthetic Plast Surg,2011.35(5): p.882-90.
    60. Choi, Y.S., et al., Adipogenic differentiation of adipose tissue derived adult stemcells in nude mouse. Biochem Biophys Res Commun,2006.345(2): p.631-7.
    61. Hemmrich, K., et al., Autologous in vivo adipose tissue engineering inhyaluronan-based gels--a pilot study. J Surg Res,2008.144(1): p.82-8.
    62. Levenberg, S., et al., Engineering vascularized skeletal muscle tissue. NatBiotechnol,2005.23(7): p.879-84.
    63. Gimble, J. and F. Guilak, Adipose-derived adult stem cells: isolation,characterization, and differentiation potential. Cytotherapy,2003.5(5): p.362-9.
    64. Yoshimura, K., et al., Cell-assisted lipotransfer for facial lipoatrophy: efficacy ofclinical use of adipose-derived stem cells. Dermatol Surg,2008.34(9): p.1178-85.
    65. Lendeckel, S., et al., Autologous stem cells (adipose) and fibrin glue used to treatwidespread traumatic calvarial defects: case report. J Craniomaxillofac Surg,2004.32(6): p.370-3.
    66. El-Ftesi, S., et al., Aging and diabetes impair the neovascular potential ofadipose-derived stromal cells. Plast Reconstr Surg,2009.123(2): p.475-85.
    67. Tousoulis, D., et al., Heart regeneration: what cells to use and how? Curr OpinPharmacol,2008.8(2): p.211-8.
    68. Tarte, K., et al., Clinical-grade production of human mesenchymal stromal cells:occurrence of aneuploidy without transformation. Blood,2010.115(8): p.1549-53.
    69. Yoon, Y.S., et al., Unexpected severe calcification after transplantation of bonemarrow cells in acute myocardial infarction. Circulation,2004.109(25): p.3154-7.
    70. Bel, A., et al., Composite cell sheets: a further step toward safe and effectivemyocardial regeneration by cardiac progenitors derived from embryonic stem cells.Circulation,2010.122(11Suppl): p. S118-23.
    71. Menasche, P., Cell-based therapy for heart disease: a clinically oriented perspective.Mol Ther,2009.17(5): p.758-66.
    72. Tateishi-Yuyama, E., et al., Therapeutic angiogenesis for patients with limbischaemia by autologous transplantation of bone-marrow cells: a pilot study and arandomised controlled trial. Lancet,2002.360(9331): p.427-35.
    73. Matoba, S., et al., Long-term clinical outcome after intramuscular implantation ofbone marrow mononuclear cells (Therapeutic Angiogenesis by CellTransplantation [TACT] trial) in patients with chronic limb ischemia. Am Heart J,
    2008.156(5): p.1010-8.
    74. Mesimaki, K., et al., Novel maxillary reconstruction with ectopic bone formationby GMP adipose stem cells. Int J Oral Maxillofac Surg,2009.38(3): p.201-9.
    75. Garcia-Olmo, D., et al., Treatment of enterocutaneous fistula in Crohn's Diseasewith adipose-derived stem cells: a comparison of protocols with and without cellexpansion. Int J Colorectal Dis,2009.24(1): p.27-30.
    76. Garcia-Olmo, D., M. Garcia-Arranz, and D. Herreros, Expanded adipose-derivedstem cells for the treatment of complex perianal fistula including Crohn's disease.Expert Opin Biol Ther,2008.8(9): p.1417-23.
    77. Garcia-Olmo, D., et al., Expanded adipose-derived stem cells for the treatment ofcomplex perianal fistula: a phase II clinical trial. Dis Colon Rectum,2009.52(1): p.79-86.
    78. Ebrahimian, T.G., et al., Cell therapy based on adipose tissue-derived stromal cellspromotes physiological and pathological wound healing. Arterioscler Thromb VascBiol,2009.29(4): p.503-10.
    79. Le Blanc, K. and O. Ringden, Immunomodulation by mesenchymal stem cells andclinical experience. J Intern Med,2007.262(5): p.509-25.
    80. Puissant, B., et al., Immunomodulatory effect of human adipose tissue-derivedadult stem cells: comparison with bone marrow mesenchymal stem cells. Br JHaematol,2005.129(1): p.118-29.
    81. Constantin, G., et al., Adipose-derived mesenchymal stem cells ameliorate chronicexperimental autoimmune encephalomyelitis. Stem Cells,2009.27(10): p.2624-35.
    82. Dohan, D.M., et al., Platelet-rich fibrin (PRF): a second-generation plateletconcentrate. Part I: technological concepts and evolution. Oral Surg Oral Med OralPathol Oral Radiol Endod,2006.101(3): p. e37-44.
    83. Gassling, V.L., et al., Platelet-rich plasma and platelet-rich fibrin in human cellculture. Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2009.108(1): p.48-55.
    84. Dohan Ehrenfest, D.M., et al., In vitro effects of Choukroun's PRF (platelet-richfibrin) on human gingival fibroblasts, dermal prekeratinocytes, preadipocytes, andmaxillofacial osteoblasts in primary cultures. Oral Surg Oral Med Oral Pathol OralRadiol Endod,2009.108(3): p.341-52.
    85. Soffer, E., J.P. Ouhayoun, and F. Anagnostou, Fibrin sealants and plateletpreparations in bone and periodontal healing. Oral Surg Oral Med Oral Pathol OralRadiol Endod,2003.95(5): p.521-8.
    86. Borzini, P. and L. Mazzucco, Platelet gels and releasates. Curr Opin Hematol,2005.12(6): p.473-9.
    87. Everts, P.A., et al., Platelet-rich plasma and platelet gel: a review. J Extra CorporTechnol,2006.38(2): p.174-87.
    88. Anitua, E., et al., Autologous platelets as a source of proteins for healing and tissueregeneration. Thromb Haemost,2004.91(1): p.4-15.
    89. Marx, R.E., et al., Platelet-rich plasma: Growth factor enhancement for bone grafts.Oral Surg Oral Med Oral Pathol Oral Radiol Endod,1998.85(6): p.638-46.
    90. Anitua, E., et al., The potential impact of the preparation rich in growth factors(PRGF) in different medical fields. Biomaterials,2007.28(31): p.4551-60.
    91. Alsousou, J., et al., The role of platelet-rich plasma in tissue regeneration. Platelets,
    2012.
    92. Dhillon, R.S., E.M. Schwarz, and M.D. Maloney, Platelet-rich plasma therapy-future or trend? Arthritis Res Ther,2012.14(4): p.219.
    93. Malhotra, A., et al., Can platelet-rich plasma (PRP) improve bone healing? Acomparison between the theory and experimental outcomes. Arch Orthop TraumaSurg,2012.
    94. Martinez-Zapata, M.J., et al., Autologous platelet-rich plasma for treating chronicwounds. Cochrane Database Syst Rev,2012.10: p. CD006899.
    95. Gentile, P., et al., A comparative translational study: the combined use of enhancedstromal vascular fraction and platelet-rich plasma improves fat graftingmaintenance in breast reconstruction. Stem Cells Transl Med,2012.1(4): p.341-51.
    96. Sunitha Raja, V. and E. Munirathnam Naidu, Platelet-rich fibrin: evolution of asecond-generation platelet concentrate. Indian J Dent Res,2008.19(1): p.42-6.
    97. Dohan, D.M., et al., Platelet-rich fibrin (PRF): a second-generation plateletconcentrate. Part II: platelet-related biologic features. Oral Surg Oral Med OralPathol Oral Radiol Endod,2006.101(3): p. e45-50.
    98. Choukroun, J., et al., Platelet-rich fibrin (PRF): a second-generation plateletconcentrate. Part IV: clinical effects on tissue healing. Oral Surg Oral Med OralPathol Oral Radiol Endod,2006.101(3): p. e56-60.
    99. Trombelli, L., et al., Clinical effect of subgingival tetracycline irrigation andtetracycline-loaded fiber application in the treatment of adult periodontitis.Quintessence Int,1996.27(1): p.19-25.
    100. Arora, N.S., et al., Platelet-rich plasma: a literature review. Implant Dent,2009.18(4): p.303-10.
    101. Dohan, D.M., et al., Platelet-rich fibrin (PRF): a second-generation plateletconcentrate. Part III: leucocyte activation: a new feature for platelet concentrates?Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2006.101(3): p. e51-5.
    102. Bacilious, N., et al., Breast reconstruction using tissue expanders and implants inHodgkin's patients with prior mantle irradiation. Plast Reconstr Surg,2002.109(1):p.102-7.
    103. Serra-Renom, J.M., J.M. Del Olmo, and J.M. Serra-Mestre, FAT GRAFTING INPOST MASTECTOMY BREAST RECONSTRUCTION WITH EXPANDERSAND PROSTHESIS IN PATIENTS WHO HAVE RECEIVED RADIOTHERAPY.:Formation of new subcutaneous tissue. Plast Reconstr Surg,2009.
    104. Serra-Renom, J.M., J.L. Munoz-Olmo, and J.M. Serra-Mestre, Fat grafting inpostmastectomy breast reconstruction with expanders and prostheses in patientswho have received radiotherapy: formation of new subcutaneous tissue. PlastReconstr Surg,2010.125(1): p.12-8.
    105. Levi, J.R., et al., Histologic evaluation of laser lipolysis comparing continuouswave vs pulsed lasers in an in vivo pig model. Arch Facial Plast Surg,2011.13(1):p.41-50.
    106. Young, C., et al., A porcine model for adipose tissue-derived endothelial celltransplantation. Cell Transplant,1992.1(4): p.293-8.
    107. Hackett, E.S., et al., Evaluation of porcine hydrated dermis augmented repair in afascial defect model. J Biomed Mater Res B Appl Biomater,2011.96(1): p.134-8.
    108. Vallée, M., J.F. C té, and J. Fradette, Adipose-tissue engineering: Takingadvantage of the properties of human adipose-derived stem/stromal cells.Pathologie Biologie,2009.57(4): p.309-317.
    109. Xie, Y., Q. Li, and D. Zheng,[Treatment of autologous fat injection for hemifacialatrophy]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2007.21(12): p.1308-11.
    110. Sterodimas, A., et al., Thirtyfour years of liposuction: past, present and future. EurRev Med Pharmacol Sci,2012.16(3): p.393-406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700