三电平脉冲整流器的控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲整流器是一种以脉宽调制(PWM)方式工作的整流器,又称为四象限变流器。脉冲整流器与传统的相控变流器具有功率因数高、谐波含量低、体积小、重量轻及动态响应快等优点。
     经过几十年的发展传统的两电平脉冲整流器已经相当成熟,但是在大功率的应用中有很多的问题难以解决,如需要昂贵且笨重的变压器、较高的开关损耗及功率开关难以达到规定的耐压要求等。从而出现了三电平脉冲整流器,三电平脉冲整流器每个桥臂上使用的IGBT的个数是两电平的两倍,因此它的每个回路中每个开关所承受的电压只有两电平的一半,从而增加了功率开关的使用寿命。而且三电平脉冲整流器能产生五种电平的线电压,在相同开关频率及控制方式下,其输出电压和电流中的谐波含量远小于传统的两电平脉冲整流器。最后,功率器件的造价是随着电压等级的提高而增加的,所以对于一些大功率电路来说三电平的性价比是优于两电平的。正是由于三电平脉冲整流器的优越性能,目前我国生产的CRH2型动车组正是采用的三电平脉冲整流器。
     三电平脉冲整流器的主要控制方法包括间接电流控制直接电流控制两大类,直接电流控制又主要包括滞环电流控制、固定开关频率的瞬态电流控制及预测电流控制三种。本文详细分析了三电平脉冲整流器上述的几种控制方式及中点电位不平衡的原因和危害及中点电位滞环控制法和判断H桥功率法两种控制中点电位平衡的主要策略,给出了三电式脉冲整流器主要参数的计算方法,分析验证了在一定程度上增加支撑电容从而去除二次滤波回路的可能性。最后以CRH2型车上使用的二极管钳位型三电平脉冲整流器的主要参数在Matlab/Simulink环境下分别搭建了以间接电流控制,瞬时直接电流控制及预测电流控制方式的仿真模型,并分别针对其在不同负载之间切换时电路各主要性能指数进行了详细系统的仿真分析。
     结果表明:在三种控制方式下的三电平脉冲整流器的功率因数都始终接近于1,针对中点电位控制方案快速有效。间接电流控制下输出电压纹波较大,且直流侧支撑电容电压均衡度较差,负载由再生满载向牵引满载切换时输出电压存在震荡。瞬时直接电流控制与预测控制输出电压纹波小,负载切换时直流输出电压跌落小、调整较快,但瞬时直接电流控制下负载由再生满载向牵引满载切换时直流输出电压跌落较大,而预测电流控制下直流侧支撑电容电压均衡度在再生情况下较差。总体来看,瞬时直接电流控制与预测控制策略能满足脉冲整流器对各种工况下的动静态性能要求。
Pulse rectifier is a kind of rectifier under the pulse-width modulation. Pulse rectifier had the advantages of low harmonic, small size, light weight and fast dynamic response compared to the conventional phased converter.
     Two-level pulsed rectifier is already quite mature after decades of development, but has a lot of difficult problems in the high-power applications. Such as need expensive and bulky transformers, high switching loss and the power switch is difficult to achieve the required. So three-level rectifier comes into being. For the IGBT in the three-level rectifier is double to the two-level, so voltage that each switch is exposed only half to the two-level, thus increasing the life of the power switch. After all the three-level can produce five kinds of line voltage level, Harmonic content of output voltage and current is far less than two-level rectifier under the same control. Finally, the cost of power devices is to engage with the high voltage levels increased, so the three-level is better than two-level in the high- power circuit. For these, the three-level PWM rectifier was used in the CRH2.
     Indirect current control and direct current control were the two major control methods for the three-level rectifier. Direct current control including hysteresis current control, transient control and predict current control. The paper analyzed the every control mode. Aiming at neutral point shift problem of three-level Neutral Point Clamping rectifier, two effective control schemes were presented. Calculations of main parameters were given in the paper. A supposes was confirmed that the LC circuit can remove through increase the support capacity in some certain circumstances. At last three simulation models are designed in Matlab/Simulink environment, carried out a systematic simulation and analyze when the loads were changed.
     The simulation results show that the whole system can achieve the unity power factor, the neutral point voltage control is fast and effective. The output voltage ripple is larger under the indirect current control, In contrast the other two control methods are better, output voltage drop is small and adjustment time is short when the load changed. However, the instantaneous current control and predict current control have some problems in some certain circumstances. In a word, the instantaneous current control and predict current control can meet the static and dynamic performance requirements for various conditions.
引文
[1]林渭勋.现代电力电子电路[M].浙江大学出版社,2002:248-314.
    [2]张立,赵永健.现代电力电子技术[M].科学出版社,1995.
    [3]王兆安,黄俊.电力电子技术[M].机械工业出版社,2000:3-165.
    [4]张崇巍,张兴.PWM整流器及其控制[M].机械工业出版社,2003.
    [5]Akagi Hirofumi etc. Instantaneous reactive power compensators comprising switching devices without energy storage components[C]. IEEE Trans Ind Appl,1984, IA(20): 625-630.
    [6]王兆发,杨君,刘进军.谐波抑制和无功功率补偿[M].机械工业出版社,1999.
    [7]Wu R, Dewan S B, Slemon G B. A PWM AC-to-DC converter with fixed switching frequency[C]. IEEE Trans Ind Appl,1990,26:880-885.
    [8]Habelter.G. A place vector-Based rectifier regulator for AC/DC/AC converters[C]. IEEE Trans Power Electron,1993,8:30-36.
    [9]H.W.Van Der Broeck, H.Skudelny, G.V.Stanke. Analysis and Realization of a Pulse-width Modulator Based on Voltage Space vectors[C]. IEEE Trans,1988,24(4): 142-150.
    [10]A.Tilli, A.Tonielli. Sequential Design of Hysteresis Current controller for three-phase Inverter[C]. IEEE Trans,1998,45(5):771-781.
    [11]Jih-Sheng Lai et. Multilevel Converters-A New Breed of Power Converters[C]. IEEE Trans. On Industry Applications.1996,32(3):509-517.
    [12]F.Z.Peng et. A Multilevel Voltage Source Inverter with separate DC Source for Static Var Generation[C]. IEEE Proc.1995:2541-2548.
    [13]M.D.Manjrekar, P.K.Steimer and T.A.Lipo. Hybrid multilevel power conversion system:a competitive solution for high-power applications[C]. Trans. Applicat.2003, 36(3):834-841.
    [14]F.Z.Peng. A generalized multilevel inverter topology with self voltage balancing Trans[C]. Ind. Applicat.2001,37(2):611-618.
    [15]T.A.Meynard et. Multilevel Conversion:High Voltage Choppers and Volatge-source Inverters[C]. IEEE Proc,1992:397-403.
    [16]Zhou Dongsheng, Rouaud D G. Experimental comparisons of space vector neutral point balancing strategy for three-level topology[C]. IEEE Transactions on Power Electronics,2001,16 (6):872-879
    [17]GCarrara, S.Gardella, M.Marchesoni et. A New Multilevel PWM Method:A Theoretical Analysis. IEEE Transactions on Power Electronics[C].1992,7(3): 497-505.
    [18]Jurgen K.Steike. Switching Frequency Optimal PWM Control of a Three-Level Inverter[C]. IEEE Transactions on Power Electronics.1992,7(3):487-496.
    [19]Zhongchao Zhang, Jinbo Kuang, Xiao Wang et. Force commutated HVDC and SVC Based on Phase-Shifted Multi-Converter Modules[C]. IEEE Transactions on Power Delivery.1993,8(2):712-718.
    [20]NAbae, LTakahashi, H.Akagi. A New Neutral-Point-Clamped PWM Inverte[C]r. IEEE Trons.1981,17(5):518-523.
    [21]Bor-Ren Lin, Yi-Lang Hou, Huann-Keng chiang. Implementation of a Three-Level Rectifier For Power factor Correction[C], Power Electronics, IEEE Transactions,2000: 891-900.
    [22]Bor-Ren Lin, Der-Jan Chen, Hui-Ru Tsay. Bi-directional AC-DC converter based on neutral point clamped[C], Industrial Electronics proceedings, IEEE International Symposium,2001:619-624.
    [23]Chun T Rim, Dong Y Hu, Gyu Hcho. Transformers as equivalent circuits for switches: General Proofs and D-Q Transformation-Based Analyse[C]s. IEEE Trans Ind Appl, 1990,26(4):777-785.
    [24]Hengchun Mao, Dushan Boroyerich, Fred C Y Lee. Novel reduced-order small signal model of a three-phase PWM rectifier and its application in control design and system analysis[C]. IEEE Trans Power Electronics,1998,13(3):511-521.
    [25]Dixion JW, Ooi B T. Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier. IEEE Trans Power Electron,1998,35:508-515.
    [26]张兴.PWM整流器及其控制策略研究[D].合肥工业大学博士学位论文,2003年6月.
    [27]陶良慧.三电平四象限脉冲整流器控制策略研究[D].西南交通大学硕士学位论文,2008年6月.
    [28]刘志敏.PWM整流器控制策略研究分析[D].西南交通大学硕士学位论文,2008年6月.
    [29]李岩.半控型三电平PWM整流器的拓扑结构及其控制策略研究[D].哈尔滨工业大学硕士学位论文,2007年7月.
    [30]张玉成.单相电压型PWM整流器研究[D].华中科技大学硕士学位论文,2007年2月.
    [31]景巍,谭国俊,赵张飞,叶守彬.三电平PWM整流器的研究[J].电力电子技术,2010,44(10):22-43.
    [32]李大虎,石新春.三相电压型PWM整流器及其控制策略的仿真[J].大功率变流技术,2010(3):19-23.
    [33]黄栋杰,邓平,曹霞,刘玲.两点式和三点式脉冲整流器的仿真分析[J].设计参考,2010,12(11):75-76.
    [34]贾俊川,李卫国.三相电压型PWM整流器的控制特性[J].电力自动化设备,2010,30(4):63-65.
    [35]顾建海.电压型四象限脉冲整流器技术在铁路电力牵引中的应用[J].电力电子技术,2006(10):17.
    [36]潘燕.单相三电平整流器建模及MATLAB仿真实现[J].变流技术与电力牵引,2007(2):11-15.
    [37]章志兵,张志学.单相三电平整流器控制方法及中点平衡的研究[J].机车电传动,2008(4):34-38.
    [38]阮会.三电平中点电压平衡PWM控制策略研究[J].船电技术,2009,29(5):43-46.
    [39]李海波.三电平四象限PWM整流器的研究[D].兰州理工大学硕士学位论文,2004年5月。
    [40]董娟.三相高功率因数整流器控制策略研究及实现[D].西安理工大学硕士学位论文,2001年3月.
    [41]李春龙,沈颂华,卢家林等.任意PF单相PWM整流器电感参数的选择[J].电力电子技术,2007,414(9):17-18.
    [42]董晓鹏,王兆安.PWM整流器直流电压对电源电流控制的影响[J].电力电子技术,1998(8):7-10.
    [43]周迪.中高压多电平PWM整流器的研究[D].天津大学硕士学位论文,2004年1月.
    [44]冯晓芸.电力牵引交流传动及其控制系统[M].西南交通大学出版社,2007.
    [45]刘志刚,叶斌,梁晖.电力电子学[M].北方交通大学出版社,2004.
    [46]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与运用[M].清华大学出版社,2002.
    [47]张崇巍,张兴.PWM整流器及其控制[M].机械工业出版社,2003.
    [48]Dixon J W, Kullarni A B, Nishimato M. B T. Characteristics of a controlled-current PWM rectifier-inverter link. IEEE Trans Ind Appl.1987:1022-1028.
    [49]崔俊国,陶生桂.IGBT三电平逆变器电压空间矢量控制方法的研究[J].同济大学学报,2001(2):31-35.
    [50]苏玉刚,陈渝光.电力电子技术[M].重庆大学出版社,2003.
    [51]杨德刚,刘润生,赵良炳.三相高功率因数整流器的电流控制[J].电工技术学报, 2000(2):83-87.
    [52]史伟伟,蒋全,胡敏强等.单相电压型PWM整流器的数学模型和主电路设计[J].东南大学学报,2002,32(1):50-55.
    [53]屈莉莉.三相高功率因数电压型PWM可逆整流器的研究[D].西安交通大学硕士学位论文,2002年6月.
    [54]唐丽丽,郑琼林.单相PWM整流器主电路参数选择探讨[J].北方交通大学学报,2000,24(4):98-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700