非并网型永磁直驱式风力发电系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机的日益加深,环境问题的积重难返,人类正背着这两座大山踽踽前行。对于新能源的开发利用已经在各国间达成共识。作为新能源技术中的主力军,风力发电技术近些年来得到了飞速发展。本文着眼于针对解决远离电网地区电力短缺问题的非并网型永磁直驱式风力发电系统,主要从低速永磁同步发电机本体及功率变换策略方面进行研究。
     首先,深入分析永磁直驱式风力发电机技术特点。将低速多级结构设计、反电动势波形质量提高、固有电压调整率降低、短路电流倍数控制等方面作为电机本体设计及参数校验的重要因素。基于有限元分析的方法,合理选择定转子外形尺寸参数、槽数极数配合;设计不等厚型磁钢,进一步提高反电动势波形质量;进而,通过传统方式降低固有电压调整率,优化电机性能;对绕组短路时最大去磁工作点进行校核,验证优化后方案在短路电流倍数方面满足要求。
     其次,在分析风机空气动力学模型的基础上,本文对传统的最大功率跟踪(MPPT)方式进行了改进。提出了改进功率信号反馈与查表法相结合的方法,将直流侧功率近似风机输出功率,对相应风速进行区间划分,在构建的最优工作点曲线及一定风速下转速功率曲线表格的基础上,系统按不定长步长的方式快速搜索到当前风速下最佳工作点。
     再次,对于发电机侧功率变换器进行设计。本文将PWM整流技术应用到风力发电系统中,实现AC-DC变换、最大功率跟踪、蓄电池充电等。提出一种转速电流双闭环结构,将最大功率跟踪算法搜索到的最优转速值作为转速给定,构成系统外环,实现最大功率跟踪;采用id = 0控制方式的电流内环实现系统高功率因数运行。软件仿真及风场实验均验证该方式切实可行,且性能良好。
     最后,本文应用单周期控制方式对用户侧逆变器进行设计。单周期控制策略单相逆变电源能够抑制直流电压波动及负载变化对输出的影响。在对原理进行详尽分析的基础上,搭建仿真与实验平台,结果证明单周期控制输出谐波含量低、正弦度好,能够很好的满足风力发电的需要。
With the burden of serious energy crisis and deteriorated environmental problem, the society of human beings is facing a horrible dilemma. To develop and utilize the new energy has been recognized among different countries. Therefore, the wind power technology has been developing rapidly in recent years. This paper focus on the non-grid-connected direct drive PMSG wind power system that aiming at changing the situation of the remote area lack of power, the low-speed generator and control strategy of converters are researched in this paper.
     Firstly, on the basis of comprehensive elaboration of the features about the PMSG used in wind power system. The design of low-speed multipole PMSG, inprovement of the waveform quality of back-EMF, reduction of the voltage regulation rate and control of short-circuit current are regarded as the key factors in the design and check of generator. Based on the finite element analysis, reasonable parameters and slot-pole match are chosen due to those factors. Then, a type of nonuniform thickness tile shape is designed to optimize the quality of back-EMF. The voltage regulation rate is reduced by conventional means and demagnetising working point is checked to confirm the short-circuit current proper. Through these measures, the performance of PMSG is promoted.
     Secondly, based on the analysis of Aerodynamics model of wind turbine, conventional MPPT strategy is discussed and improved in this paper. An improved method based on the combination of table lookup and power signal feedback is proposed. Through this new way, the power of DC link is regarded as the output power of wind turbine, the wind velocity is devided into several regions and the tables about optimal power curve and RPM-Power curve are formed in this method, the optimal working point is found out by the pattern of undifined length.
     Thirdly, the rectifier of the generator side is designed and researched.To realize the convert of power from AC to DC, MPPT, charging for the battery, the rectifier based on the PWM strategy is introduced to the wind power system. Two closed loop is constituted by RPM(obtained through MPPT strategy) and current. The proposed strategy is proved correct and effective through simulation and wind field experiment.
     Finally, the inverter for the users is analysised and designed. The OCC(one cycle control) is imported into single phase inverter in this paper. Based on the detailed analysis about the principle, simulation and experiment platforms are built, the output voltage has a good performance and lower THD. The inverter controlled by OCC strategy is fit for wind power technology, revealed by the simulation and experiment results.
引文
[1]刘其辉.变速恒频风力发电系统运行与控制研究[D].杭州:浙江大学,2005:1-2.
    [2] National research council. Environmental Impacts of Wind Energy Project [M].Washington D.C:The National Academic Press,2007:17-21.
    [3]聂家林.我国风力发电产业三大主要问题的研究[D].合肥:合肥工业大学,2010:6-7.
    [4] Yan Y,Xia C L,Song Z F,et al. Assessing the Growth and Future Prospect of Wind Power in China[C]. Proceedings of the 2010 International Conference on Electrical and Control Engineering,2010:3391-3395.
    [5]包耳,胡红英.风力发电的发展状况与展望[J].大连民族学院学报,2011,13(1):1.
    [6]罗如意,林晔,钱野.世界风电产业发展综述[J].可再生能源,2010,28(2):13-14.
    [7] Pal S. Wind Energy-An Innovative Solution to Global Warming[C]. The 1st International Conference on the Developments in Renewable Energy Technology,2009:1-3.
    [8]顾为东.非并网风电对中国风电发展的影响与前景分析[J].上海电力,2007,1:11-12.
    [9] National research council. Electricity From Renewable Resources:Status Prospects,and Impediments[M]. Washington D.C:The National Academic Press,2010:68-73.
    [10]李建林,许洪华.风力发电中的电力电子变流技术[M].北京:机械工业出版社,2008:3-4.
    [11]杜继光.双馈风力发电机双PWM变换器的研究与设计[D].沈阳:沈阳工业大学,2007:5-13.
    [12] Pena R,Clare J C,Asher G M. Doubly Fed Induction Generator Using Back-to Back PWM Converters and its Application to Variable-Speed Wind-Energy Generation[J]. IEE Proceedings on Electric Power Applications, 1996,143(3):231-241.
    [13] Jin J,Chen Q H,Ma Y D,et al. Non-grid-connected wind power system and its high power DC-DC converter [C]. World Non-Grid-Connected WindPower and Energy Conference,2009:1-5.
    [14] Polinder H,van der Pijl F A,Tavner P J. Comparison of Direct-Drive and Geared Generator Concepts for Wind Turbines[J]. IEEE Transaction on energy conversion,2006,21(3):725-732.
    [15] Nasar S A,Boldear I,Unnewehr L E. Permanent Magnet,Reluctance,and Self-synchronous Motors[J]. Boca Raton:CRC Press, 1993:15-25.
    [16]汤蕴璆,史乃.电机学[M].第2版.北京:机械工业出版社,2005:143-148.
    [17] Guo Z H,Chang L C. Calculation and Study on Cogging Torque of Small Wind Turbine PMSG[C]. Canadian Conference on Electrical and Computer Engineering,2008:000589-000594.
    [18]王秀和.永磁电机[M].北京:中国电力出版社,2007:80-82.
    [19]夏亮.单边磁拉力对电机转轴挠度影响的计算[J].防爆电机,2009,44(2):49-50.
    [20]黄晟,任智杰,黄科元等.永磁同步电动机气隙磁密优化方法研究[J].微电机,2009,42(10):26-28.
    [21]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997:287-289.
    [22] Hansen M O L. Aerodynamics of Wind Turbines[M]. 2nd ed. UK and USA:Earthscan,2008:23-30.
    [23] Barton R S,Lucas W C. Development of the 7.3 MW Mod-5A Wind-Turbine Generator System[J]. IEEE Proceedings On Physical Science Measurement and Instrumentation,1983,130(9):537-541.
    [24] Strachan N P W,Jovcic D. Dynamic modeling simulation and analysis of an offshore variable-speed directly-driven permanent magnet wind energy conversion and storage system (WECSS)[C]. Oceans 2007,2007:1-5.
    [25]张喜茂.直驱风力发电变流器及控制研究[D].西安:西安交通大学,2010:27-28.
    [26]王成元,夏加宽,孙宜标.现代电机控制技术[M].北京:机械工业出版社,2008:104-106.
    [27] Bu F F,Huang W X,Hu Y W,et al. Study of Implementation of a Control Algorithm for Wind Turbine Yaw Control System[C]. Wind Non-Grid-Gonnected Wind Power and Energy Conference,2009:1-5.
    [28] Chen F P,Yang J M. Fuzzy PID Controller Used In Yaw System of Wind Turbine [C]. The 3rd International Conference on Power Electronics Systemsan Application,2009:1-4.
    [29] Wu K C,Joseph R K,Thupili N K. Evaluation of Classical and Fuzzy Logic Controllers for Wind Turbine Yaw Control [C]. The First IEEE Regional Conference on Aerospace Control Systems,1993:254-258.
    [30] Abo-Khalil A G,Lee D C. MPPT Control of Wind Generation Systems Based on Estimated Wind Speed Using SVR[J]. IEEE Transactions on Industrial Electronics,2008,55(3):1489-1490.
    [31]卞松江.变速恒频风力发电关键技术研究[D].杭州:浙江大学,2003:45-47.
    [32] Han K, Chen C Z. A novel control strategy of wind turbine MPPT implementation for direct-drive PMSG wind generation imitation platform[C]. IEEE 6th International Power Electronics and Motion Control Conference,2009:2255-2259.
    [33] Beltran B,Ahmed-Ali T,Benbouzid M E H. Sliding Mode Power Control of Variable-Speed Wind Energy Conversion Systems [J]. IEEE Transactions on Energy Conversion,2008,23(2):554-557.
    [34]王丰收,沈传文,刘伟.风力发电系统控制策略研究[J].电气传动自动化,2006,28(5):1-5.
    [35]李大虎,石新春.三相电压型PWM整流器及其控制策略的仿真[J].大功率变流技术,2010,(3):19-23.
    [36] Andriollo M,Martinelli G, Morini A ,et al. Performance Assessment of a Wind PM Generator-Rectifier System by an Integrated FEM-Circuit Model [C]. IEEE International conference on Electric Machines & Drives,2007,1:358-362.
    [37]张崇巍,张兴. PWM整流器及其控制[M].北京:机械工业出版社,2003:15-18.
    [38] Ye Y, Kazerani M, Quintana V H. A Novel Modeling and Control Method for Three-phase PWM Converters[C]. IEEE 32nd Annual conference on Power Electronics Specialists,2001,1:102-103.
    [39] Wei K X,Wang S M. Modeling and Simulation of Three-Phase Voltage Source PWM Rectifier[C]. Proceedings of the 2008 International Conference on Advanced Computer Theory and Engineering,2008:982-986.
    [40] Sato S,Suehiro Y,Yamamoto M,et al. High Power-Factor 3-phase PWM Rectifier[C]. The 24th Annual International Conference onTelecommunications Energy,2002:303-308.
    [41]苏奎峰,吕强,常天庆等. TMS320X281XDSP原理及C程序开发[M].北京:北京航空航天大学,2008:2-4.
    [42]曾嵘,年珩.离网型风力发电系统逆变器控制技术研究[J].电力电子技术,2010,44(6):5-6.
    [43] Smedley K M,Cuk S. One-Cycle Control of Switching Converters [C]. IEEE 22nd Annual conference on Power Electronics Specialists,1991:888-896.
    [44] Wang M Y,Hui Y Q,Xian C Y. One-cycle Control Based Voltage Source Inverter[C]. Proceedings of the Eighth International Conference on Electrical Machines and Systems,2005,2:1176-1177.
    [45]中国国家标准化委员会.离网型风能、太阳能发电系统用逆变器-第1部分:技术条件[S].北京:中国标准出版社,2006:2-4.
    [46]彭力.基于状态空间理论的PWM逆变电源控制技术研究[D].武汉:华中科技大学,2004:53-65.
    [47]赵卓鹏,贾石峰.电流滞环跟踪PWM控制仿真研究[J].电气传动自动化,2011,33(2):1-3.
    [48]周雪松,宋代春,马幼捷等.光伏发电系统的并网重复控制及仿真[J].电力电子技术,2010,44(5):9-10.
    [49]杜金明.离网型风力发电系统电能变换系统及优化控制[D].哈尔滨:哈尔滨工业大学学位论文,2009:40-45.
    [50]陈庆学. DC-DC变换器滑模变结构控制的研究[D].杭州:浙江工业大学学位论文,2008:4-6.
    [51]张昌凡,王耀南.滑模变结构的智能控制及其应用[J].中国电机工程学报,2001,21(3):44.
    [52] Smedley K M. One-Cycle Control for renewable energy conversion systems[C]. 34th Annual Conference of IEEE on Industrial Electronics, 2008:13-15.
    [53]姜春霞.微型燃气轮发电机组的电力变换系统研究[D].沈阳:沈阳工业大学,2005:18-19.
    [54] Steinke J K. Use of an LC Fliter to achieve a Motor-friendly Performance of the PWM Voltage Source Inverter[J]. IEEE Transactions on Energy Conversion,1999,14(3):650-652.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700