316LN不锈钢锻造过程晶粒演变规律实验与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
316LN奥氏体不锈钢作为核电关键件材料,具有较好的力学性能和耐晶间应力腐蚀性能,而应用到大型锻件中时存在着粗晶和混晶等质量问题,严重影响锻件的力学性能。因而,对316LN不锈钢在大型锻件锻造过程中的晶粒演变规律进行较为系统的研究,可为预测实际锻造过程中的晶粒变化提供实验依据,并且为大型锻件制备的关键技术奠定理论基础,对微观组织模拟技术的发展有着重要的意义。
     本文采用物理实验和数值模拟相结合的技术手段,系统研究了316LN在锻造过程中的晶粒演变规律以及组织模拟技术。组织模拟技术中的核心问题是建立准确的组织演变模型,因此本文从晶粒长大、动态再结晶、静态再结晶以及亚动态再结晶等方面开展了基础的研究,获得如下主要结论:
     (1)采用以回归误差平方和最小为优化目标的方法,给出了晶粒长大模型,该模型能够较为准确的预测热处理中的晶粒长大过程。
     (2)在Gleeble-1500D热力模拟试验机上,采用热压缩实验研究了316LN不锈钢的高温流变行为。通过分析基础实验数据,提出316LN高温塑性变形时的流变应力与变形速率、变形温度之间的关系可选用双曲正弦函数来加以描述。依据应力应变曲线,并采用Poliak和Joans所提出的方法,确定了动态再结晶的临界应变值,建立了动态再结晶动力学方程。
     (3)采用双道次热压缩实验,研究了316LN不锈钢静态软化行为,得出静态再结晶和亚动态再结晶的软化曲线都符合Avrami方程,呈现典型的S型曲线特征。静态再结晶受应变的影响要比应变速率要大,但亚动态再结晶则相反,通过对不同的变形参数研究,得出应变越大,静态再结晶分数越大;应变率越高,亚动态再结晶分数越大。
     (4)结合宏观热力学行为与微观组织演变的耦合技术,将微观组织演变模型输入DEFORM软件中,对不同火次的实际锻造试验过程进行了模拟,并将模拟所得的晶粒尺寸结果与实际锻造试验所得的晶粒尺寸结果进行对比,两者误差较小,从而验证了所建微观组织模型的可靠性。根据不同火次的锻造试验结果,得知静态再结晶不但能细化晶粒,而且使晶粒分布更加均匀,同时通过数值模拟对细匀化结果进行验证,进而也证明了所建组织模型的可靠性。最后本文利用DEFORM 3D软件对管坯某一拔长火次进行了数值模拟,预测结果显示最大变形区域晶粒尺寸约在59μm -98μm之间。
316LN austenitic stainless steel, which show good mechanical properties and resistance to intergranular stress corrosion, has been a candidate for the key pieces of nuclear materials. But it seriously affect the mechanical properties of forgings when the quality problems about the existence of coarse grain and mixed grain on heavy forging.Thus,it is of significance importantly on a systematical study of the grain evolution of 316LN austenitic stainless steel in the heavy forging process to provide experiment basis for predicting the grain during the actual forging process,to lay the theoretical foundation for the preparation of the key technologies of heavy forging and to develop the microstructure simulation technology.
     The evolution law of grain and the technology of microstructural simulation were investigated by means of the combination of physical experiments and numerical simulation. Establishing a microstructural model is the core issue of the technology of microstructural simulation,thus this arctice carry out the basis research on the grain growth,dynamic recrystallization,static recrystallization and metadynamic recrystallization.The main conclusions are as follows:
     (1)Grain growth model was proposed when the regression error sum of squares was minimized and this model can predict accurately the grain growth during the heat treatment process.
     (2) The flow behavior of 316LN stainless steel during hot compression deformation was studied by Gleeble-1500D thermal mechanical simulator. This results show the relationship between the temperature, strain rate and the flow stress can described by the hyperbolic optional sine function based on the experimental data.Based on the method which was proposed by Poliak and Joans, the dynamic recrystallization of the critical strain was determined and the dynamic recrystallization kinetics equation was established.
     (3)The static softening behaviors were investigated by two-pass hot compression tests.The results show static recrystallization and meta-dynamic recrystallization softening curves are consistent with Avrami equation, showing the typical S-curves.Static recrystallization was affected larger by strain than strain rate, however, meta-dynamic recrystallization was on the contrary. The different deformation parameters was studied to obtain that the greater the strain was, the larger the fraction of static recrystallization was and the higher the strain rate was,the larger the dynamic Asia recrystallized fraction was.
     (4)Based on the coupling technology of macro-thermodynamic behavior and microstrcture evolution ,the established models wre inputted in DEFORM 2D software and the actual process of forging of the different repeated firings was simulated .The comparison of results by the simulation with the experiment show that the error was very small which verifies the reliability of the microstructure model.According to the results of forging of the different repeated firings , static recrystallization not only made the grain more refinement, but also made grain size distribution more uniform.While the results are verified by the numerical simulation, and then it proved the reliability of the microstructure model. Finally, based on DEFORM 3D software,a firings of stretching for pipe blake was simulated ,and the numerical simulation results predicted that the grain size of the maximum deformation area can reach between 59μm and 98μm .
引文
[1]欧阳予.世界核电技术发展趋势及第3代核电技术的定位[J].发电设备, 2007(5): 325-331.
    [2]孙红,佟莹等.锻造技术的发展历程及未来趋势[J].科技创新导报, 2009(12):161-162.
    [3]马庆贤,曹起骧,钟约先.大型锻件的模拟技术及内部质量控制研究[J].中国机械工程,1999,10( 9):1021-1023.
    [4]郭会光,田继红.大型锻造的质量控制和研究方略[J].大型铸锻件, 2007(2):45-46.
    [5]郭会光,张巧丽,陈慧琴.大锻件热成形的现代集成研究方法[J].大型铸锻件, 2003(2): 3-5.
    [6]翁宇庆主编.《轧钢新技术3000问》[M].北京:中国科技出版社.2005.
    [7]R.Kopp,Mutti-levelsimulation of metal-forming processes Advanc,Tech.Plasti, 1987 :1229-1234.
    [8]张巧丽.护环热成形工艺质量预报和控制的研究[D]:[硕士学位论文].山西:太原科技大学,1996.
    [9]王本一,石伟,刘庄.数值模拟技术在大型锻造生产中的应用[J].大型铸锻件,1999(1): 15-20.
    [10]刘建生,刘志颖,陈慧琴,陈金科.模拟技术的集成及在大型锻造工艺研发中的应用[J].大型铸锻件, 2009(1): 2-5.
    [11]李俊,李润方,游理华.热锻成型工件的微观组织模拟[J].塑性工程学报, 1999,6(2):8-12.
    [12]刘振宇,许云波,王国栋著.热轧钢材组织-性能演变的模拟和预测[J].沈阳:东北大学出版社,2004.
    [13]H.J.McQUEEN and J.J.JONAS.Recent Advances in Hot Working: Fundamental Dynamic Softening Mechanisms[J].American Society For Metals 1984,6(6):233-241.
    [14] A. Belyakov , H. Miura, T. Sakai. Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel[J]. Materials Science and Engineering, 1998, 255 (1/2) : 139–147.
    [15]H.J.McQUEEN and J.J.JONAS.Role of the Dynamic and Static Softening Mechanism in Multistage Hot Working[J]. American Society For Metals. 1984,6(6):410-420.
    [16] R.D. Doherty , D.A. Hughes , F.J. Humphreys , J.J. Jonas d D. Juul Jensen , M.E. Kassner , W.E. King , T.R. McNelley , H.J. McQueen , A.D. Rollett. Current issues inrecrystallization: a review[J].Materials Science and Engineering :A.1997,239:219–274.
    [17]罗皎,李淼泉,李宏.塑性变形时的微观组织模拟[J].材料导报,2008,22(3):102-106.
    [18]Sellars C M, WhitemanJ A. Recrystallization and grain growth in hot rolling[ J] . Mater Sci, 1979, 13( 3) : 187.
    [19] Yada H, Senuma T. Resistance to hot deformation of steel[ J] . J Japanese Soc Techn Plasticity, 1988, 27: 33
    [20] Kopp R, Karnhausen K. Numerical simulation method for designing thermomechanical treatment illustrated by bar rolling scand[ J] . J Metall, 1991, 20: 351.
    [21]李晓丽,陈胜晖,李淼泉.金属热态塑性成形过程中组织演变的模型化研究[J].中国机械工程,2004,15(1):86-90.
    [22]赵彦芬,遆文新,汪小龙,薛飞.核电站用钢管材料及其国产化[J].钢管2007,36(2):11-14.
    [23]T.S. Byun , N. Hashimoto, K. Farrell. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels[J]. Acta Materialia, 2004, 52: 3889–3899.
    [24]Songtao Wang , Ke Yang, Yiyin Shan , Laifeng Li . Plastic deformation and fracture behaviors of nitrogen-alloyed austenitic stainless steels[J]. Materials Science and Engineering: A .2008,490:95–104.
    [25]陈书贵编译.316L和316LN奥氏体不锈钢的低温疲劳性能[J].大型铸锻件, 1993(4):72-75.
    [26]朱峰,曹起骧,徐秉业.ASME SA508-3钢的再结晶晶粒细化规律[J].塑性工程学报2000,7(3):1-3.
    [27]李红,罗海文,杨才福,方旭东.奥氏体不锈钢热轧加工性能的数学模型[J].研究材料导报2006,20(10):102-106.
    [28]刘微.加热温度对含铌Q345钢第二相粒子固溶析出及晶粒长大的影响[J].宽厚板, 2004,10(2):24-27.
    [29]刘宗昌等编著.金属固态相变教程[M].北京:冶金工业出版社, 2003.
    [30]吕成,张立文等.GH4169合金热加工中微观组织模拟研究进展[J].热加工工艺,2006,35(18).57-60.
    [31]黄光杰,朱清洋,黄本多.3104铝合金高温塑性变形本构关系研究[J].材料导报, 2006,20:460-462.
    [32]张孝平.Cr-Mn-Ni-Cu-N奥氏体不锈钢热变形行为及热加工图[D].硕士毕业论文甘肃:兰州理工大学,2009.
    [33]Sellars C M,Tegart W J M.La relation entre la resistance et la structure dans le deformation a chaud[J].Mem Sci Rev Metall.1966(63):731-746.
    [34]Hee Y. Kim and Soon H. Hong. High temperature deformation behavior and microstructural evolution of Ti-47Al-2Cr-4Nb intermetallic alloys [J]. Scripta Materialia, Vol. 38, (1998),No.10, pp. 1517–1523
    [35] Preface to viewpoint set on: phase transformations and deformation in magnesium alloys [J].Scripta Materialia, 2003, 48: 981-984.
    [36]罗子健,俞汉清,郭乃成.金属塑性成形原理[M ].西安:西北工业大学出版社, 1988. 47-79.
    [37]Zener C, Hollomon J H. Effect of strain—rate up on the plastic flow of steel[J]. J Appl Phys,1944,15(1):22.
    [38] MCqueen H J ,Ryan N D. Constitutive analysis in hot working[J]. Mater Sci Eng ,2002 ,A322 :43.
    [39] Poliak E I ,Jonas J J . Inaitiation of dynamic recrystalliztion inconstant st rain rate hot deformation[J]. ISIJ Inter ,2003 , 43(5) :684.
    [40]何宜柱,陈大宏等.动态再结晶动力学模型的研究[J].华东冶金学院学报,1995,12(2),146-150.
    [41] Medina S F ,etal .Modelling of the Dynamic Recrystallization of Austenite in Low Alloy and Microalloyed Steels[J]. Acta Mater ,1996 ,44 (1) :165
    [42]Bowden J W,etal . Effect of Interpass Time on Austenite Grain Refinement by Means of Dynamic Recrystallization of Austenite[J].Metallurgical Transactions ,1991 ,22A(12) :2947.
    [43]C M Sellars. Hot Working and Forming Processes [A ]. C.M.Sellars and G.J.Davies. Metals Society[C]. London: IMS, 1980:3-11.
    [44]Kim S,Lee Y,Jang B L. L.Modeling of recrystallization and austenite grain size for AISI316 stainless steel and its application to hot bar rolling[J].Mater Sci Eng A,2003,357(1/2):235-239.
    [45]沈丙振,方能炜,沈厚发,等.低碳钢奥氏体再结晶模型的建立[J].材料科学与工艺,2005,13(5):516-520.
    [46]李立新,洪杰,邓宁,等.含硼微合金钢静态及亚动态再结晶动力学模型研究[J].武汉科技大学学报:自然科学版,2004,27(4):334—336.
    [47]Kazeminezhad M.On the modeling of the static recrystallization considering the initial grain size effects[J].Mater Sci Eng A,2008,486(1/2):202-207.
    [48]Zhang Z H,Liu Y N,Liang X K,etal.The effect of Nb on recrystallization behavior of a Nb micro-alloyed stell[J].Mater Sci Eng A,2008,474(1/2):254-260.
    [49]Lassraoui A,Jonas J J.Prediction of temperature distribution flow stress and microstructure during the multi-pass hot rolling of steel plate an strip[J].ISIJ International,1991,31(1):95-105.
    [50]蔺永诚,陈明松,钟掘. 42CrMo钢形变奥氏体的静态再结晶[J].中南大学学报(自然科学版)2009,40(2):411-416.
    [51]Sun W P,Hawbolt E B.Comparison between static and metadynamic recrystallization an application to the hot rolling of steels[J].ISIJ International,1997,37(10):1000-1009.
    [52]BaiD Q, Yue S,Maccagno T, etal.Static Recrystallization of Nb and Nb-B Steels under Continuous Cooling Conditions [J]. ISIJ International, 1996, 36 ( 8 ) :1084—1093.
    [53] Barraclough D R , Sellars C M. Static recrystallization and restoration after hot deformation of type 304 stainless steel[J] . Metal Science , 1978 , 13 : 257-267.
    [54] Cho S H , Kang KB , Jonas J J , etal . Effect of manganese on recrystallisation kinetics of niobium microalloyed steel[J] . Materials Science and Technology ,2002 , 18 (3) : 389 - 395.
    [55] A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson.Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation[J].Materials Science and Engineering: A,2008, 485(1-2):664-672.
    [56]吴泽终锻火次及参数对GH4133A合金晶粒度与拉伸性能的影响[D]: [硕士学位论文].西安:西北工业大学,2007.
    [57]薛利平,鹿守理,窦晓峰,赵辉.金明金属热变形时组织演化的有限元模拟及性能预报[J].北京科技大学学报,2000,22(1):34-37.
    [58]刘东,罗子健等.基于显微组织演化的本构关系的有限元变形-传热-组织演化耦合分析方法[J].塑性工程学报,2006,13(1):62-65.
    [59]董岚枫.大型水轮机主轴空心钢锭锻造成型关键技术的模拟研究[D]:[博士学位论文]北京:清华大学,2008.
    [60]孙康宁等.《现代工程材料成形与机械制造基础》[M].北京:高等教育出版社, 2005:175-176.
    [61]锻工手册编写组.《锻工手册》[M].北京:机械工业出版社,1975 :191-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700