地震液化引起的地面大变形试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饱水砂土地震液化引起的地面大变形会对液化区的各种结构产生灾难性的破坏,在过去的几次大地震中均发现有因地面大变形而导致的破坏现象,但目前对该问题的研究较为欠缺,有关饱水砂土液化问题现有的研究基本都局限在初始液化之前,在饱水砂土地震液化的影响因素、产生的机理及条件、液化势的判别等方面积累了大量的研究成果,而液化后问题的研究才处于起步阶段。本文结合国家自然科学基金“地震液化引起的地面大位移研究”(No.59809004)对饱水砂土液化后的相关问题进行了研究。主要工作内容如下:
     参与研制了振动扭剪全自动多功能三轴仪,并利用其独特试验功能设计了一套饱水砂土液化后特性的试验方法,试验过程中模拟地震作用的动加载过程及模拟大变形发生的静加载过程均采用应力控制的方式进行,试验方法跟现场条件更为接近并用该试验方法对相对密实度、固结压力、液化度等对液化后变形特性的影响进行了研究。结果表明液化后加载时变形将会表现出截然不同的两段,即低强度段和强度恢复段,其中低强度段试样的强度极低,在剪应力增加极小的情况下土体将发生大的变形,随试样的相对密实度不同低强度段的应变可达百分之几到百分之几十,该段试样中的有效应力近似为零;而强度恢复段随应变的增长试样中的有效应力将逐步上升,土体的模量逐步得到恢复直至与液化前的模量相近。砂土液化后模量随应变增加而增大的特性与常规三轴试验中模量随应变增大而减小的特性不同,相对密实度、液化度、初始有效固结压力等都以特定的方式对影响着液化后的变形特性。
     采用常规动三轴试验对饱水砂土动加载后的再固结体变特性及其相对密实度、动荷载波形等影响因素进行了试验研究,重点对初始有效固结压力对再固结体变的影响进行了研究,研究发现动荷载波形及频率不会对土体的再固结体变特性构成影响,在动荷载使得土体达到初始液化之前固结压力对再固结体变的影响也较小,而当土体达到初始液化之后,固结压力对再固结体变的影响不可忽略,根据大量有关固结压力影响的试验结果提出了一个可考虑初始有效固结压力、相对密实度、液化度等影响的再固结体变计算公式。
     根据动加载液化后静扭剪时试样将在近乎为零的有效应力下发生大的应变,以及液化后再固结时体变的绝大部分都发生于有效应力近似为零的阶段的试验现象,对饱水砂土液化后大变形机理进行了分析,提出了大变形的机理,指出动加载使得饱水砂土颗粒趋于紧密,土体中的水体有被压缩的趋势以及液化后砂土的剪胀特性是造成液化后特殊应力应变关系的根本原因,其中动加载导致的土体体变势反映了水体的压缩程度,可由再固结规律来描述,砂土液化后的剪胀特性对于一定颗粒特征及相对密实度的土体而言可以认为是维持不变的。
    
    摘要
     基于大变形机理以及文中提出的再固结体变公式提出了一个饱水砂土液化后本构
    模型,模型不寻求液化后整个加载过程中的应力应变反应,将液化后过程分成低强度
    段和强度恢复段两段来分别进行表达,因为低强度段应变产生于极小的剪应力作用下
    因此认为该段应变是必然会发生的,强度恢复段应变的大小取决于土体所受剪应力的
    大小。该模型可考虑初始有效固结压力、相对密实度、液化度等对液化后变形特性的
    影响。
     基于上述本构模型及分层总和法的概念提出了一个大变形简化预测分析方法,并
    用该方法给出了一个预测示例。
Damage to structures may be caused by large ground displacement due to seismic liquefaction. This kind of damage has been observed many times in several strong earthquakes in the past. However, the research concerned is limited. The state-of-art of sand liquefaction is mainly about the behavior of saturated sand under cyclic loading before initial liquefaction. There are many researches about the mechanism, influence factors, judging methods of sand liquefaction. And the research of these is relatively mature. When it comes to the research about the post-liquefaction behavior of saturated sand, the situation is not so famous. The current research is supported by the National Science Foundation project of Large Ground Displacement due to Seismic Liquefaction (No. 59809004), and in this thesis the basic aspects about the post-liquefaction behavior of saturated sand has been thoroughly investigated. The main contents of the current research are as follows:
    In order to investigate the behavior of saturated sand, a multi-functional tri-axial test equipment has been designed. Using it can do many kinds of dynamic/static tests. And a post-liquefaction test method has been put forward, in which the cyclic loading and the static loading courses are both controlled by stress mode. This method reflects the in-situ conditions well and truly, and a lot of tests have been done using this method. In these tests the effects of confining pressure, relative density, liquefaction severity etc. have been thoroughly investigated. It is found that the post-liquefaction behavior of saturated sand is distinctly different from those without dynamic loading. Large deformation will yield when the sand is liquefied, and the deformation is composed of two parts approximately. The two parts can be called as low-stiffness part and stiffness-recover part separately. The former is mainly developed when the effective confining pressure goes though zero in undrained loading. The stiffness is very low in this part, and the shear strain ranges from several percent to tens of percent. The latter is depending on the magnitude of shear stress. In this part the stiffness recovers step by step till it comes near to the stiffness of sand without dynamic loading. No matter what the relative density, confining pressure, liquefaction severities are, the post-liquefaction deformation will show the same characteristic. The factors mentioned above have their own affecting ways.
    A lot of tests have been done to investigate the reconsolidation characteristics of sand after dynamic loading. The research focused mainly on the effects of confining pressure. It is found that the effect is not distinctive before initial liquefaction, but when initial liquefaction occurs the effect of confining pressure can't be ignored. Based on test results, a new formula has been put forward. This formula can be used to calculate volumetric strain of reconsolidation after dynamic loading. And it can take the effects of confining pressure,
    
    
    
    relative density, liquefaction severity etc. into account.
    Based on the phenomena of post-liquefaction tests, the reason of post-liquefaction large deformation has been analyzed. It is pointed out that the compression of water in saturated sand caused by the densification of sand during dynamic loading and the dilation trend of liquefied sand are related to this. A new mechanism of large post-liquefaction deformation of saturated sand is established.
    According to the mechanism of large post-liquefaction deformation and the reconsolidation volumetric strain formula, a post-liquefaction constitutive model had been put forward. This model describes the post-liquefaction behavior of sand by two parts, corresponding to low-stiffness part and stiffness-recover part. The prediction results by the model show good consistency with the test results.
    A simplified large post-liquefaction deformation method has been put forward, which is designed to calculate the post-liquefaction deformation of horizontally-layered or near horizontally-layered
引文
1.刘汉龙,陆绍俊.1995年日本阪神大地震及其震害.第五届全国土动力学学术会议论文集,大连理工大学出版社,1998,pp.550-555
    2.吴世明,徐攸在.土动力学现状与发展.岩土工程学报,1998,120(3),pp.125~131
    3.刘汉龙.计算土动力学研究现状与展望.第六届全国土动力学学术会议论文集,中国建筑工业出版社,2002,pp.84~98
    4.刘汉龙.土动力学与岩土地震工程研究进展.河海大学学报,1999,27(1),pp.6~15
    5. Seed H. B., Lee K. L. "Liquefaction of saturation during cyclic loading". Journal of the Soil Mechanics and Foundation Division, ASCE, 1966, 92(SM6), pp. 105~134
    6. Ishihara, K., Tatsuoka, F. & Yasuda, S. "Undrained deformation and liquefaction of sand under cyclic stress" ,Soils and Foundations, 1975,15(7), pp.29~44
    7. Tatsuoka, F. & Ishihara, K. "Yielding of sand in triaxial compression" ,Soils and Foundations, 1974, 14(2), pp. 63~76
    8. Oda, M. "Deformation mechanism of sand in triaxial compression tests" Soils and Foundations, 1972.12(4), pp. 45~63
    9.黄文熙.砂基和砂坡的液化研究.水工建设中的结构力学与岩土力学问题,水利电力出版社,1984
    10. Zavoral, D. Z. and Campanella, R. G. "Frequency Effects of Damping/Modulus of Cohesive Soil", Dynamic Geotechnical Testing, 1994, ASTM STP 1213, pp. 165-190
    11. Ishihara, K., Sodekawa, M. and Tanaka, Y. "Effects of Overconsolidation on Liquefaction Characteristics of Sands Containing Fines", Dynamic Geotechnical Testing, 1977, ASTM, STP 654,
    12.赵成刚,尤昌龙.饱和砂土液化与稳态强度.土木工程学报,2001,34(3),pp.90-96
    13. Seed, H. B. and Lee, K. L. "Liquefaction of saturated sands during cyclic loading" J. Soil Mech. and Found. Div., ASCE, 1966, 92(SM6), pp. 105-134
    14. Castro, G. and Poulos, J. "Factors affecting liquefaction and cyclic mobility", Liquefaction Problems in Geotechnical Engineering, Annual Convention and Exposition, AS CE, New York, 1976, pp. 105-138
    15. Robertson, E K., Sasitharan, S., Cunning, J. C. and Sego, D. C. "Shear-wave velocity to evaluate in-situ state of Ottawa sand", J. GED, ASCE, 1995, 121(3), PP.262-273
    16. Hyodo, M., Yamamoto, Y. and Sugiyama, M. "Undrained cyclic shear behavior of normally consolidated clay subjected to initial static shear stress", Soils and Foundations, 1994, 34(4), pp. 1-11
    17. Ladd, R. S. "Specimen preparation and cyclic stability of sands" Liquefaction problems in Geotechnical Engineering, ASCE National Convention, pp. 199-226
    18. Anderson, D. G. and Stokoe Ⅱ, K. H. "Shear Modulus: A time-dependent soil property", Dynamic geotechnical testing, ASTM, STP 654, PP.66-90
    19. Robertson, P. K., Woeller, D. J. and Finn, W. D. L. "Seismic cone penetration test for evaluating liquefaction potential under cyclic loading", Canada Geotechnical J., Vol. 29, pp.686-695
    20. Sasitharan, S., Robertson, P. K. and Sego, D. C. "Preliminary evaluation of flow liquefaction of silty sands using shear wave velocity", Proc. 46th Annual Canadian Geotechnical Conference, pp. 505-513
    21.陈国兴,胡庆兴,刘雪珠.关于砂土液化判别的若干意见.地震工程与工程振动,2002,22(1),pp.141-151
    
    
    22. Seed, H. B. and Lee, K. L. "Liquefaction of Saturated Sands during Cyclic Loading", J. Soil Mech. and Found. Div., ASCE, 1966, 92(SM6)
    23. Taylor, E W. and Hughes, A. M. I. " Dynamic Properties of Foundation Subsoils as Determined from Laboratory Tests", Proc. 3rd World Conference Earthquake Engineering, 1965,Vol. 1, pp. 196-209
    24. Iwasaki, T. and Tatsuoka, F. "Effect of Grain Size and Grading on Dynamic Shear Modulus of Sands", Soils and Foundations, 1977, 17(3), pp.19-35
    25. Oda, M. "Initial Fabrics and their relations to mechanical properties of granular material" Soils and Foundations, 1972,12(1), pp.17~36
    26. Oda, M. "The mechanism of fabrics changes during compressional deformation of sand" Soils and Foundations, 1972, 12(2), pp.1~18
    27. Finn, W.D.L. Bransby, EL. & Pickerering D.J. "Effect of strain history on liquefaction of sand", Proc. 1970, ASCE 96(SM6), pp.1917~1934
    28. Ishihara, K. & Okada, S. "Effects of large preshearing on cycling behavior of sand". Soils and Foundations, 1982, 22 (3)
    29. SuzuKi, T. & Toki, S. "Effects of preshearing on volummatic deformation characteristics of dry sand subjected to cyclic loadings", Soils and Foundations, 1984, 22(2)
    30.俞培基,秦蔚琴.预剪对饱和砂土动剪模量的影响,第五届全国土力学会议论文集,1987
    31. Seed, H. B. and Idriss, I. M. "A Simplified Procedure for Evaluating Soil Liquefaction Potential", Proc. ASCE, 1971, 93(SM9)
    32. Finn, W. D. L. and Bhatia, S. K. "Prediction of Seismic Porewater Pressure", Proc. 10th International Conference on Soil Mechanics and Foundation Engineering, 1981, Vol.3
    33. Hardin, B. O., Drnevich, V. P. "Shear modulus and damping in soils: measurement and parameter effects". Journal of the Soil Mechanics and Foundation Engineering Division, 1972, 98(6), pp. 603~624
    34.沈珠江.一个计算砂土液化变形的等价粘弹性模型.第四届全国土力学及基础工程学术会议论文集,建筑工业出版社,1986,pp.199~207
    35.陈生水,沈珠江.钢筋混凝土面板堆石坝的地震永久变形分析.岩土工程学报,1990,12(3),pp.66~72
    36.王志良,王余庆,韩清宇.不规则循环剪切荷载作用下土的粘弹性模型.岩土工程学报,1980.2(3),pp.10~20
    37. Iwan, W. D. "On a class of models for the yielding behavior of continuous and composite system", ASME, 1967, 34(3), pp. 21~33
    38.王明洋,赵跃堂,钱七虎,国胜兵.饱和砂土爆炸液化模型研究.解放军理工大学学报,2001,2(2),pp.50-54
    39.王明洋,国胜兵,赵跃堂等.饱和砂土动力液化研究进展.解放军理工大学学报,2002,3(1),pp.13-18
    40. Iai, S., Matsunaga, Y. and Kameoka, T. "Strain space plasticity model for cyclic mobility," Report of Port and Harbour Research Institute, 1990, 29(4), pp27-56
    41.丰土根.饱和砂土不排水动力特性及多机构边界面塑性模型研究,河海大学博士学位论文,2002,南京
    42.李湘菘,明海燕,蔡正银.流动液化和反复流动的本构模型.第六届全国土动力学学术会议论文集,中国建筑工业出版社,2002,pp.3~18
    
    
    43. Seed, H. B. and Lee, K. L. "Liquefaction of saturated sands during cyclic loading", J. of Soil Mech. and Found. Engrg Div., ASCE, 1966, 92(SM6), pp.105-134
    44.张建民,王建华.土动力学与土工抗震.第八届土力学及岩土工程学术会议论文集,万国学术出版社,1999,pp.44-45
    45. National Research Council, "Liquefaction during earthquakes", committee on Earthquake Engineering. National Academy Press, 1985, Washington D.C.
    46. Seed, H. B. "Landslides during earthquakes due to soil liquefaction". Journal of the soil Mechanics and Foundation Engineering, 1968, 94(5), pp. 1055-1122
    47 .Seed, H. B., Idriss, I. M., Lee, K. L. and Makdisi, F.I. "Analysis of the slides in the Lower San Fernando dam during the earthquake of February 9,1971", 1973, Report No. EERC 73-2, University of California, Berkley
    48. Hamada, M.,Yasuda, S., Isoyama, R., and Emoto, K. "Study on liquefaction induced permanent ground displacement", Report of Association for the Development of earthquake Prediction, 1986, Tokyo.
    49. Kolymbas et. al, "Mechanisms of Catstrophic Landslides", The Environment and Climate Programme of the European Commission, Project Reference ENV.4970619
    50.刘惠珊,徐凤萍,李鹏程.液化引起的地面大位移对工程的影响及研究现状.工程抗震,1997,34(2),pp.21-26
    51. Gu W.H., Morgenstern N.R. and Robertson P.K., "Post-earthquake deformation analysis of Wildlife site". J. Geotech. Engrg., ASCE, 1994, 120(2), pp.274-289
    52. Gu W.H., Morgenstern N.R. and Robertson EK., "Progressive failure of lower San Fernando dam". J. Geotech. Engrg., ASCE, 1993, 119(2), pp.333-348
    53. Castro G., Seed R.B., Keller T.O. and Seed H.B., "Steady-state strength analysis of lower San Fernando damslide", J. Geotech. Engrg., ASCE, 1992, 118(3), pp.406-427
    54. Ishihara K., Yasuda S. and Yoshida Y., "Liquefaction-Induced flow failure of embankments and residual strength of silty sand". Soils and Foundations, 1990, 30(3), pp.69-80
    55.孟上九.不规则动荷载下土的残余变形及建筑物不均匀震陷研究.哈尔滨工程力学研究生博士学位论文,2002,哈尔滨
    56. Thevanayagam, S., Wang, C.C., Ravishankar, K. "Determination of post-liquefaction strength: Steady state vs residual strength", Geotechnical Special Publication, 1996, 58/2, pp. 1210-1224
    57. Pillai, V. S., Salgado, F. M. "Post-liquefaction stability and deformation analysis of Duncan Dam", Canadian Geotechnical Journal, 1994, 31 (6), pp.967-978
    58. Finn, W. D. Liana, "Post-liquefaction flow deformation", Geotechnical Special Publication, 2000, 107, pp. 108-122
    59. Shamoto, Y., Sato, M., Futaki, M. and Shimazu, S. "A Site Investigation of Post-Liquefaction Lateral Displacement of Pile Foundations in Reclaimed Land", Tsuchito-Kiso, 1995, Vol.44, No.3, pp.25-28
    60.张建民.地震液化后地基侧向变形对桩基础的影响.第八届土力学及岩土工程学术会议论文集,万国学术出版社,1999,pp.577-580
    61. Shamoto, Y., Zhang, J.-M.., and Tokimatsu, K. "Horizontal residual post-liquefaction deformation of level ground", ASCE Geotechnical Special Publication, 1998, No.75, pp.373-384
    62. Elgamal, A.W., Zeghal, M. and Parra, E. "Liquefaction of an artificial island in Kobe, Japan", Journal
    
    of Geotechnical Engineering, ASCE, 1996, 122(1), pp.536-561
    63. Hamada, M. Large ground deformation and their effects on lifelines: 1964 Niigata Earthquake, 1992, Ch.3 of Hamada and O'Rourke, 3-1 to 3-123
    64.Woods,R.D.土壤动力性能的测试.谢君斐,等译.地震工程和土动力问题译文集,地震工业出版社,1985,pp.203-229
    65. Dobry, R., Taboada, V. and Liu, L. "Centrifuge Modeling of Liquefaction Effects During Earthquakes", Proc. First Intl. Conf. on Earthquke Geotechnical Engineering, Tokyo, Japan, 1995, Nov. 14-16, Vol. 3, pp.1291-1324
    66. Taboada, V. M. "Centrifuge Modeling of Earthquke-Induced Lateral Spreading in sand Using a Laminar Box", Ph.D. Thesis, Civil Engineering Department, Rensselaer Polytechnic Institure, Troy, NY, 1995, August
    67. Scott,R.F., Hushmand, B. and Miura, K. "Interaction of a Pile Group with a Liquefiable Soil", Proc. Workshop on Soil Liquefaction Remediation Technique, 1994, San Francisco, Calif
    68. Sasaki, Y., Tokida, K. Matsumoto, H. and Says, S. "Shake Table Tests on Lateral Ground Flow Induced by Siol Liquefaction", Proceedings, Third Japan-US Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, San Francisco, CA, T.D.O' Rourke and M.Hamada(eds.),National Center for Earthquake Engineering Research, SUNY-Buffalo,Buffalo,NY, 1991, pp. 371-385
    69. Sasaki, Y., Towhata, I., Tokida, K., Yamada, K., Matsumoto, H., Tamari, Y. and Saya, A. "Mechanism of Permanent Displacement of Ground Caused by Seismic Liquefaction", Soils and Foundations, 1992, 32(3), pp.79-96
    70. Zeghal, M. and Elgamal, A. W. "Analysis of Site Liquefaction Using Earthquake Records", Journal of Geotechnical Engineering, ASCE, 1994, 120(6), pp.996-1017
    71. Elgamal, A.M., Zeghal, M. and Parra, E. "Identification and Modeling of Earthquake Ground Response", Proc. First Intl. Conf on Earthquake Geotechnical Engineering, Tokyo, Japan, 1995, Vol.3, pp. 1369-1406
    72. Toboada, V. M., Abdoun, T. And Dobry, R. "Prediction of Liquefaction-Induced Lateral Spreading by Dilatant Sliding Block Model Calibrated by Centrifuge Tests", Proc. 11th World Conf. on Earthquake Engineering, Acapulco, 1996, Mexico, Paper No. 1037
    73. Liu, L. "Centrifuge Ear(?)hquake Modeling of Liquefaction and Its Effects on Shallow Foundations", Ph.D. Dissertation, Rensselaer Polytechnic Institute, Troy, New York, 1992
    74. Abdoun, T. "Modeling of Seismically Induced Lateral Spreading of Multi-Layer Soil Deposit and Its Effect on Pile Foundations", Ph.D. Dissertation, Dept. of Civil Engineering, Rensselaer Polytechnic Institute, Troy, New York, 1997
    75. Meyersohn, W. D., O'Rourke, T. D. and Miura, F. "Lateral Spread Effects on Reinforced Concrete Pile Foundations", Proc. 5th US-Japan Workshop on Earthquake Disaster Prevention for Lifeline Systems, 1992, Tsukuba, pp. 173-196
    76. Yasuda, S., Nagase, H., Kiku, H. and Uchida, Y. "The Mechanism and a Simplified Procedure for the Analysis of Permanent Ground Displacement Due to Liquefaction", Soils and Foundations, 1992, 32(1), pp.149-160
    
    
    77. Iai, S., Morita, T., Matsunaga, Y. and Abiko, K. "Response of a dense sand deposit during 1993 Kushiro- Oki Earthquake", Soils and Foundations, 1995, 35 (1), pp. 115-131
    78. Towhata, I., Park, J. K., and Orense, R. P. "Use of spectrum intensity for immediate detection of subsoil liquefaction", Soils and Foundations, 1996, 36(2), pp. 29-44
    79. Okamura, M., Abdoun, T. and Dobry, R. "Centrifuge Modeling of Earthquake-Induced Lateral Spreading due to Main Shock and Aftershocks", Soils and Foundations,1999, (submitted)
    80. Vaid ,Y. P. and Thomas, J., "Liquefaction and postliquefaction behavior of sand", Journal of Geotechnical Engineering, ASCE, 1995, 121 (2), pp 163-173
    81. Meneses, J., Ishihara, K. and Towhata, I. "Effects of Superimposing Cyclic Shear Stress on the Undrained Behavior of Saturated Sand Under Monotonic Loading", Soils and Foundations, 1998, 38(4), pp.115-127
    82. Meneses, J., Ishihara, K. and Towhata, I. "Flow Failure of Saturated Sand Under Simultaneous Monotonic and Cyclic Stresses", Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(2), pp.132-138
    83.Yoshimine, M. and Ishihara, K. "Flow Potential of Sand During Liquefaction", Soils and Foundations, 1998, 38(3), pp.189-198
    84. Yasuda, S., Yoshida, N., Nagase, H., Mine, K. and Kiku, H. "Stress-strain relationships of liquefied sands", Earthquake Geotechnical Engineering, 1995, Balkema, Rotterdam
    85. Castro, G. "Liquefaction of Sands", Ph.D. Dissertation, Harvard University, Camebridge., Mass, U.S. 1969
    86. Poulos, S. J. "The Steady State of Deformation", Journal of Geotechnical Egineering, ASCE, 1981, 107(5), pp.553-562
    87. Ishihara, K. "Liquefaction and Flow Failure during Earthquake", Geotechnique, 1993, 43(3), pp.351-415
    88. Poulos, S. J. et al. "Liquefaction evaluation procedure", J. Geotechnical Engineering Division, ASCE, 1985, 111 (GT6), pp.772-792
    89. Seed, H. B. "Design Problems in Soil Liquefaction, Journal of Geotechnical Engineering", ASCE, 1987, 113(8), pp. 827-845
    90. Seed, R. B. and Harder, L. F. "SPT-based Analysis of Cyclic Pore Pressure Generation and Undrained Residual Strength", Proc. H. B. Seed Momorial Syrup. Bi-Tech Publishing Ltd., 1990, Vol.2, pp.351-376
    91. Lo Presti, D. C. F., Puci, I., Pallara, O., Maniscalco, R. and Pedroni, S. "Experimental Laboratory Determination of the Steady State of Sands", Soils and Foundations, 2000, 40(1), pp. 113-122
    92.汪闻韶.土的动力强度和液化特性.中国电力出版社,1997,pp.1-169
    93.Zhang Huiming et al.“Steady State Strength of Sand:Concept and Experiment",岩土工程学报,1999,21(2),pp.230-235
    94.赵成刚等.关于“砂土的稳态强度:概念与试验”的讨论.岩土工程学报,1999,21(5),pp.644-645
    95.高玉峰,刘汉龙,余湘娟.残余强度对地震液化区地面大位移地影响.岩石力学与工程学报,2001,20(Supp.1),pp1163-1167
    96. Been, K et al. "The Critical State of Sands", Geotechnique, 1991, 41(3), pp.365-381
    
    
    97. Ishihara, K. "Liquefaction and Flow Failure during Earthquake", Geotechnique, 1993, 43(3), pp.351-415
    98. Kortrad, J. M. "Undrained Respect of Loosely Compacted Sands during Monotonic and Cyclic Compression Tests", Geotechnique, 1993, 43(1), pp.69-90
    99. Negussey, D. and Islam, M. S. "Uniqueness of Steady State and Liquefaction Potential", Canadian Geotechnique Journal, 1994, 31(I), pp.132-139
    100. Yamamuro, J. A. and Lade, P. V. "Steady-State Concepts and Static Liquefaction of Silty Sands", Journal of Geotechnical and Geoenvironment Engineering, 1998, 124(9), pp.868-877
    101. Been, K., Jefferies, M. G. and Hachey, J. E. "The Critical State of Sands", Geotechnique, 1992, 42(4), pp.665-663
    102. Hamada, M., Towhata, I., Yasuda, S. and Isoyama, R. "Study on permanent ground displacement induced by seismic liquefaction", Computers and Geotechnics, 1987, No.4, pp. 197-220
    103. Youd, T. L. and Perkins, D. M. "Mapping of Liquefaction Severity Index", Journal of Geotechnical Engineering, ASCE, 1987, 113(11), pp. 1374-1392
    104. Bartlett, S.F. and Youd, T. L. "Empirical analysis of horizontal ground displacement generated by liquefaction-induced lateral spreads", Tech. Rep:NCEER92-0021, National Center for Earthquake Engineering Research, State University of New York, Buffalo, N.Y., 1992
    105. Bartlett,. S. E and Youd, T. L. "Empirical prediction of liquefaction-induced lateral spread", Journal of Geotechnical Engineering, ASCE, 1995, 121(4), pp.316-329
    106. Chiru-Danzer, M., Juang, C. H., Christopher, R. A. and Suber, J. "Estimation of Liquefaction-Induced Horizontal Displacements Using Artificial Neural Networks", Canadian Geotechnical Journal, 2001, Vol.38, pp.200-207
    107.刘勇键.人工神经网络原理在建筑物震陷预测中的应用.地震研究,2001,24(3),pp.262-266
    108. Kuwano, J. and Ishihara, K. "Analysis of Permanent Deformation of Earthdams due to Earthquakes", Soils and Foundations, 1988, 28(1), pp. 81-92
    109. Newmark, N. M. "Effects of Earthquake on Dams and Embankments-Rankine Lecture", Geotechnique, 1965, 15 (2), pp 139-160
    110. Byrne, P. M., Jitno, H., Salgado, E "Earthquake Induced Displacements of Soil-Structures Systems", Proc. 10th World Conference in Earthquake Engineering, Madrid, Spain, 1992, pp. 1407-1412
    111. Uzuoka, R., Yashima, A., Kawakami, T. and Konrad, J.-M. "Fluid Dynamics Based Prediction of Liquefaction-Induced Lateral Spreading", Computers and Geotechnics, 1998, 22(3), pp.243-282
    112. Hadush, S., Yashima, A. and Uzuoka, R. "Importance of Viscous Fluid Characteristics in Liquefaction-Induced Lateral Spreading Analysis", Computers and Geotechnics, 2000, 27(3), pp. 199-224
    113. Towhata, I., Sasaki, Y., Tokida, K.-I., Matsumoto, H., Tamari, Y. and Yamada, K. "Prediction of Permanent Displacement of Liquefied Ground by Means of Minimum Energy Principle", Soils and Foundations, 1992, 32(3), pp.97-116
    114. Shamoto, Y., Zhang, J.-M.., Goto, S. and Tokimatsu, K. "A new approach to evaluate the postliquefaction permanent deformation in saturated sand", Proceedings, Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, 1996
    
    
    115. Shamoto, Y., Zhang, J.-M.., and Tokimatsu, K. "Methods for evaluating residual post-liquefaction ground settlement and horizontal displacement", Soils and Foundations, Special Issue on Geotechnical Aspects of the January 17, 1995 Hyogo-ken Nambu Earthquake, 1998, 38(2), pp.69-84
    116.张建民.地震液化后地基大变形的实用预测方法.第八届土力学及岩土工程学术会议论文集,万国学术出版社,1999,pp.573-576
    117. Tokimatsu, K. and Yoshimi, Y. "Empirical correlation of soil liquefaction based on SPT N-value and fines content", Soils and Foundations, 1983, 23(4), pp.56-74
    118.袁聚云,杨熙章,赵锡宏等.Ko固结真三轴仪的研制及试验研究.大坝观测与土工测试,1995,19(3),pp.28-32
    119.沈瑞福,王洪瑾,周景星.动主应力轴连续旋转下砂土的动强度.水利学报,1996,(1),pp.27-33
    120.王洪瑾,马奇国,周景星,周克骥.土在复杂应力状态下的动力特性研究.水利学报,1996,(4),pp.57-72
    121.王栋,栾茂田,郭莹.波浪作用下海床动力反应有限元数值模拟与液化分析.大连理工大学学报,2001,41(2),pp.216-222
    122.栾茂田,王栋,郭莹等.海床与海洋地基的动力分析理论与设计方法研究进展评述.第六届全国土动力学学术会议论文集,中国建筑工业出版社,2002,pp.28~48
    123.郭莹,董秀竹,栾茂田,王栋等.波浪荷载作用下砂土动力变形特性的试验研究.第六届全国土动力学学术会议论文集,中国建筑工业出版社,2002,pp.622~627
    124. Cooling, L. F. & Smith, D. B. "The Shearing Resistence of Soils", Proc. Instn. Civ. Engrs, London, 1936(3)
    125. Broms, B. B. & Ratnam, M. V. "Shear Strength of an Anisotropically Consolidated Clay", J. Soil Mech. Fdns Div. Am. Soc. Cir. Engrs. 89, SM6, 1963
    126. Saada, A. S. "A Pneumatic Computer for Testing Cross Anisotropic Materials", Materials Research and Standards 8, 1968(1)
    127. Lomise, G. M. Kryzhanovsky, A. L. Vorontsow, E. I. & Goldin, A. L. "Study of Deformation and Strength of Soil under Three-dimensional State of Stress", Proc. 7th Int. Conf. Soil Mech, Mexico City 1,1969
    128. Ishihara, K. & Yasuda, S. "Sand Liquefaction in Hollow Cylinder Torsion under Irregular Excitation", Soils and Foundations, 1975, 15(1)
    129.刘汉龙,周云东,高玉峰,余湘娟,Nakasono Takeshi.多功能静动三轴仪研制在液化后大变形中的应用.大坝观测与土工测试,2001,25(5),pp.48-51
    130.张国平,王洪瑾,周景星.室内外压不等的空心圆柱扭剪仪的研制.第七届全国土力学与基础工程学术会议论文集,中国建筑工业出版社,1994,pp.65-70
    131.姚仰平.真三轴应力条件下土动力非线性本构模型的新探讨.西安理工大学博士学位论文,1995,西安
    132.栾茂出,郭莹,李木国,王静,王栋,崇金著.土工静力-动力液压三轴-扭剪多功能剪切仪研制中若干问题探讨.第六届全国土动力力学学术会议论文集,中国建筑工业出版社,2002,pp.546-553
    133. Madsen, O. S. "Wave-Induced Pore Pressures and Effective Stresses in a Porous Bed", Geotechnique, 1978, 28(4), pp.377-393
    134. Ishihara, K. and Towhata, I. "Sand Response to Cyclic Rotation of Pricipal Stress Directins as Induced by
    
    Wave Loads", Soils and Foundations, 1983,23(4), pp. 11-26
    135. Hight, D. M., Gens, A. and Symes, M. J. "The development of a new hollow cylinder apparatus for investigating the effects ofpricipal stress rotation in soil", Geotechnique, 1983, 33(4), pp.355~383
    136.振动扭剪全自动多功能三轴仪使用说明
    137.张建民,时松孝次,田屋裕司.饱和砂土液化后的剪切吸水效应.岩土工程学报,1999,21(4),pp.398-402
    138.汪闻韶.日本研究饱和砂土问题的新进展.水利水电科学研究院科学研究论文集,No.16,pp.18-43
    139.刘小生,汪闻韶,赵冬.饱和原状砂土的静、动力强度特性试验研究.水利学报,1991,No.11,pp.41-46
    140.刘小生,汪闻韶.饱和原状砂取样技术和质量控制.工程勘察,1990,No.3
    141.刘小生,赵冬,汪闻韶.原状结构性对砂土动力变形特性的影响试验.水利学报,1993,No.2
    142. Tokimatsu, K., Yamazaki, T. And Yoshimi, Y. "Soil liquefaction evaluations by elastic shear moduli", Soils and Foundations, 1986, 26(1), pp.25-35
    143.黄博.粉土和粉砂的动力特性及地震液化研究.浙江大学博士学位论文,2000,杭州
    144.黄博,陈云敏,殷建华,吴世明.控制试样剪切模量的动三轴液化试验.岩土工程学报,2000,22(6),pp.682-685
    145.黄博,殷建华,陈云敏,吴世明.压电陶瓷弯曲元法测试土样弹性剪切模量.振动工程学报,2001,No.2,pp.155-160
    146.黄博,殷建华,陈云敏,吴世明.基于动三轴试验的现场液化判别剪切波速法.第六届全国土动力学学术会议论文集,中国建筑工业出版社,2002,pp.636~641
    147.刘小生.饱和原状砂土动力性质试验研究.水利水电科学研究院博士学位论文,1990,北京
    148.余湘娟,姜朴,魏松.砂土的稳态强度试验研究.河海大学学报,2001,29(1),pp.50-54
    149.土工试验规程GB SL237-1999.中国水利水电出版社,1999
    150.周云东,刘汉龙,高玉峰,余湘娟.砂土地震液化后大位移室内试验研究探讨.地震工程与工程振动,2002,22(1),pp.152-157
    151.魏迎奇,刘汉龙,余湘娟.砂土液化及液化后分析综述.水利水电科技进展,1997,17(5),pp.35-39
    152. Shamoto, Y., Zhang, J.-M. and Goto, S. "Mechanism of large post-liquefaction deformation in saturated sand", Soils and Foundations, 1997, 37(2), pp. 71-80
    153.徐干成.饱和砂土应力应变控制试验动力特性的比较.同济大学学报,1999,27(1),pp.38-42
    154. Nagase, H., Ishihara, K. "Liquefaction-induced compaction and settlement of sand during earthquakes", Soils and Foundations, 1988, 28(1), pp.65-75
    155.顾宝和,张荣详,石兆吉.地震液化效应的综合评价.工程地质学报,1995,3(3)
    156. Lee, K. L. and Albaisa, A. "Earthquake induced settlements in saturated sands", Proc. ASCE, 1974, 100(GT 4), pp. 387-406
    157.石兆吉,丰万玲,郁寿松.饱和砂土震后再固结体应变的变化规律.岩土工程学报,1989,11(13),pp.43-51
    158.么印凡,谢定义,王士凤.饱和砂土振后再固结变形规律的试验研究.工程抗震,1995,No.4.pp.32-34
    159. Nagase, H., Ishihara, K. "Liquefaction-Induced Compaction and Settlement of Sand During Earthquakes", Soils and Foundations, 1988, 28(1), pp. 65-76.
    
    
    160. Ishihara, K., Yoshimine, M. "Evaluation of Settlements in Sand Deposits Following Liquefaction During Earthquakes", Soils and Foundations, 1992, 32(1), pp. 173-188.
    161. Shamoto, Y., Sato, M. And Zhang, J.-M. "Liquefaction-induced settlements in sand deposits", Proceedings, Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 1995, Vol.2, pp. 215-220.
    162. Shamoto, Y., Sato, M. And Zhang, J.-M. "Simplified Estimation of Earthquake-lnduced Settlements in Saturated Sand Depodits", Soils and Foundations, 1996, 36(1), pp. 152-163
    163.周云东,刘汉龙,丰土根,高玉峰.饱和砂土液化后再固结体变特性研究.河海大学学报,2003,(己录用待发)
    164. LIU Han-long, ZHOU Yun-dong, GAO Yu-feng. "Laboratory Test on the Volumetric Characteristics of Saturated Sea Sands Caused by Cyclic Loading". China Ocean Engineering, 2003, 17(1), pp. 93-100
    165. Kiku, H., Tsujino, S. "Post liquefaction characteristic of sand", 11th World Conference on Earthquake Engineering, Acapulco, 1996, Mexico, Paper No. 1088
    166. Peiris, T. A. and Yoshida, N. "Modeling of volume change characteristics of sand during cyclic loading", 11th World Conference on Earthquake Engineering, Acapulco, 1996, Mexico, Paper No. 1087
    167. Sladen, J. A., D'Hollander, R. D. and Krahn, J. "The liquefaction of sands, a collapse surface approach", Canadian Geotech. J., 1985, Vol.22, pp.564-578
    168.朱俊高,俞炯奇,姜朴.松砂液化后液化区渐进扩散的计算方法初探.水利学报,1998,No.9,pp.52~56
    169.王媛,姜朴,朱俊高,孔彩粉.松粉砂地基地震后堤坝稳定性分析.水利学报,2000,No.11,pp.60~64
    170. Naesgaard, E., Byrne, E M., and Huizen, G. V. "Behavior of light structures founded on soil 'crust' founded over liquefied ground", Geotechnical Earthquake Engineering and Soil Dynamics, 1998, Washington, Vol. 1, pp. 422-433
    171. Finn, W. D. "Seismic analysis of embankment dams" Dam Engineering, 1990, Vol. 1, pp.59-75
    172. Finn, W. D. Liam, M. and Yogendrakumar. "TARA-3L Program for analysis for liquefaction induced flow deformations", Dept. of Civil Engineering, University of British Columbia, Vancouver, B.C., Canada. 1989
    173.张建民.砂土的可逆性和不可逆性剪胀规律.岩土工程学报,2000,22(1),PP.12-17
    174.刘汉龙,周云东,高玉峰.砂土地震液化后大变形特性试验研究.岩土工程学报,2002,24(2),pp.142-146
    175.腾凯,蔺慧敏.地震液化后砂土应力应变关系地预测模型研究.岩土工程界,2003,6(1),pp.53-55
    176. Been, K. and Jefferies, M. G.. "A state parameter for sands", Geoteclmique, 1985,35(2), pp. 99-112
    177. Martin, G R., Finn, W. D.L. and Seed, H. B. "Fundamentals of liquefaction under cyclic loading", J. Geotechnical Engineering, ASCE, 1975, 101 (5)
    178.刘汉龙.土体地震永久变形分析评述.水利水电科技进展,1995,15(4),pp.22-28
    179.刘汉龙,陆兆臻,钱家欢.土石坝地震永久变形分析.河海大学学报,1996,24(1),pp.91-96
    180. Serff, N., Seed, H. B. and Markdisi, F. L., et al. "Earthquake induced deformation of earth dams", Report No.EERC76-4, University o f California, Berkeley, 1976
    
    
    181.刘汉龙,钱家欢.随机地震作用下土石坝地震永久变形预估.岩土工程学报,1996,18(3),pp.19-27
    182.李广信 郭瑞平.土的卸载体缩与可恢复剪胀.岩土工程学报,2000,22(2),PP.158-161
    183. Stark, T. D., Olson, S. M. and Kramer, S. L., et al. "Shear strength of liquefied soil", Geotechnical Earthquake Engineering and Soil Dynamics, 1998, Washington, Vol. 1, pp. 313-324
    184.土工原理与计算.钱家欢,殷宗泽,中国水利水电出版社,1996
    185.王余庆,王士风.建筑物可液化砂基用砾石排水桩法抗震加固的实验研究.冶金建筑科学研究总院,1984,p.122-134
    186. Graf, E. D. "Compaction Grouting "Proc., Grouting, Soil Improvement, and Geosynthetics, held in New Orleans, LA, on 25-28 Feb., R.H. Borden, R.D. Holtz and I. Juran, Eds., ASCE, Geotech. Special Publication No. 30, 1992,Vol. 1, pp.275-287
    187. LittleJohn, G. S. "Chemical Grounting", Ground Improvement ,M.P. Moseley, Ed., CRC Press, Inc., Boca Raton, FL, 1993, pp.100-130
    188. Bell, A.L. "Jet grounting", Ground Improvement, M.P. Moseley, Ed., CRC Press, Inc., Boca Raton, FL, 1993, pp.149-174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700