COMPASS导航卫星定轨研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于卫星导航系统在军民用领域的巨大作用,世界主要大国及地区已经或正在发展自己的卫星导航系统。卫星精密定轨技术是卫星导航的核心技术。针对我国正在建设中的卫星导航系统在星座设计及运行体制方面的技术特点,本文重点研究不同高度卫星组合定轨、GEO卫星精密定轨和预报以及基于星间链路的导航星历自主生成技术。论文主要研究内容及创新点如下:
     (1)系统介绍了导航卫星精密定轨基础理论及方法,分析比较了精密定轨中采用的几种主要参数解算方法。针对卫星动力学方程中包含间断力模型函数时出现的数值积分问题,提出了光滑函数拟合的解决方法,并用含间断点二体问题模拟计算结果验证了该方法的有效性。
     (2)分析了GEO、IGSO、MEO三种不同轨道卫星组合定轨时动力学模型构建问题,介绍了组合定轨观测方程中主要误差的改正方法,详细给出了双差算子的构造方法,提出了可约化不同层次局部参数的非差解算方法。
     (3)研制了基于伪距观测的多星定轨软件,分别采用非差和双差处理模式用国内站实测GPS数据及模拟数据进行了定轨试验。结果表明采用区域站伪距数据进行不同高度卫星组合定轨,精度能够优于10m。
     (4)推导了基于载波相位及伪距组合定轨时模糊度参数协方差估计公式,分析了轨道高度对模糊度参数解算精度的影响,指出了GEO卫星载波相位模糊度参数不易准确确定的原因。用仿真数据进行了区域站载波相位定轨试验以便验证卫星定轨精度。
     (5)针对GEO卫星机动期间定轨及预报问题,提出了将分段常数加速度模型、脉冲加速度模型、脉冲机动力模型用于卫星机动力建模,并用C波段转发实测数据进行了验证。
     (6)将扩展Kalman滤波方法用于GEO卫星定轨,并用实测数据进行了试验。结果表明,采用Kalman滤波方法对GEO卫星定轨,通过合理控制动力学噪声,能够实现卫星轨道机动前后精度的平滑过渡。
     (7)构建了基于实测卫星姿控发动机喷力及卫星姿态数据的GEO卫星机动期间动力学模型,并用C波段转发实测数据进行了验证。结果表明该模型能够用于卫星机动期间轨道预报。
     (8)比较了几种星间测距技术特点,分析了星间测距观测主要误差源和修正方法。针对采用时分多址星间双向测距体制时的时标归化问题,提出了多项式拟合外推的解决方案。
     (9)介绍了基于星间测距的星间自主时间同步原理。提出了一步Kalman滤波法、两步Kalman滤波法以及集中处理法三种星间自主时间同步方法。仿真处理结果表明星间时间同步精度主要与星间观测量精度有关。
     (10)给出了基于星间测距技术的导航卫星分布式自主定轨原理及数据处理流程,提出了采用Kalman滤波方法进行分布式自主定轨的一步法、两步法及SRIF方法,并依据仿真处理结果比较了不同方法的优劣。
     (11)研究了基于星间测距资料的导航卫星自主定轨星座整体旋转不可测问题,分析了导航卫星轨道定向参数长期预报精度,推导了利用卫星预报星历中轨道定向参数控制星座整体旋转的详细算法,给出了具体实现步骤。
     (12)研制了利用星间测距技术进行分布式自主定轨软件。采用GPS精密星历模拟了星间测距观测量并进行了自主定轨试验。结果表明,采用上述自主定轨软件能够实现60天URE优于3m的精度需求。
Because of the importance of GNSS to the civil and military applications, a number of countries or regions in the world have developed or having been developing their satellite navigation systems. The satellite's precision orbit determination (POD) is a key technique to the construction of the satellite navigation system. Concerning this issue, the paper pays attention on three problem:the POD of combining different altitude satellites, the POD and orbit prediction of GEO,/and the method to create the ephemeris autonomously for the navigation system based on crosslink. The main work and contribution are listed as follows:
     (1) The basic theory and method of POD for the satellite navigation system were introduced, and the advantage of various parameter estimation method was analyzed. A smooth function method was used to solve the discontinue problem of the right function of the dynamical equation in numerical integration, the validation of this method was verified using Keplerian orbit.
     (2) The dynamical model for POD of GEO/IGSO/MEO was constructed, and the measurement correction model was introduced. The method for constructing double difference operator was described in detail, and a non-difference algorithm which can eliminates the local parameter was presented.
     (3) A multi-satellite POD software was developed, which uses pseudo-ranges as observations. For this software, a double-difference method and a non-difference method was used to determinate orbits, with GPS or simulation data from regional stations as their measurements. It is shown that the accuracy of orbit determination for combining different altitude satellites is better than 10 meters.
     (4) The covariance expression of the ambiguity parameter was derived in the case where the carrier phase and pseudo-range data was used to determinate the orbit. Based on this expression, the effect of satellite's altitude on the accuracy of ambiguity resolution was analyzed, and the factor limiting the precise estimation of the ambiguity parameter was point out. The carrier phase data of GPS and simulated data from regional stations were used to verify the accuracy of the orbit determination of navigation satellites.
     (5) The piecewise constant acceleration model, The pulse acceleration model, and impulse motor acceleration model was used to model the thrust force during the GEO maneuver, and the observations from TWTFT were used to validated these models.
     (6) The extended Kalman filter algorithm was used to determinate GEO orbit, and the algorithm was validated by observation data. It is shown that the accuracy of orbit is smoother during the maneuver stage with Kalman filter algorithm by proper constraint of the dynamical stochastic noise.
     (7) Based on the thruster force and satellite attitude observations of GEO, a thrust force model was constructed, and this model was validated by TWTFT observations. It is shown that the model can be used to predict the orbit during the orbit maneuver.
     (8) The advantages of different cross-link techniques were compared, the main error that affects the accuracy of crosslink was analyzed and correction model was presented. The polynomial model was used to solve the asynchronous problem in the two-way crosslink observations.
     (9) The time synchronization method based on the crosslink observations was presented. The algorithm involving one-step Kalman filter, the two-step Kalman filter and integrated Kalman filter was used to synchronize times between satellites. It is shown that the accuracy of synchronization depends on the accuracy of observation.
     (10) The theory and data flow chart of distribution process algorithm for autonav was presented. The algorithm includes one-step filter, two-step filter and SRIF were used to determinate the orbit in autonav mode, and the advantages of different methods were compared.
     (11) The unobservable rotation of the navigation constellation was studied based on the crosslink observations, the long term prediction accuracy of the orbit orientation of navigation satellites was analyzed, and the algorithm for getting rid of the unobservable rotation of constellation by constraining orientation of prediction orbit was derived and the detail process steps were given.
     (12)The autonomous orbit determination software for the distribution-processing mode with crosslink measurements was developed. The GPS precision ephemeris was used to simulate the crosslink observations and validate the accuracy of autonav. It is shown that, the accuracy of autonomous orbit determination is better than 3m during 60 days.
引文
[1]Abusali P. A., Tapley B. D., Schutz B. E. Autonomous Navigation of Global Positioning System Satellites Using Cross-Link Measurements[J]. Journal of Guidance, Control, and Dynamics,1998,21(2): 321-327
    [2]Akyilmaz O, Kutterer H. Prediction of Earth Rotation Parameter by Fuzzy Inference System[J]. Journal of Geodesy,2008, Vol(78):82-93
    [3]Altamimi Z, Collilieux X. Preliminary Analysis in view of the the ITRF2005[A]. International Association geodesy symposia[C]. Berlin:Springer berlin Heidelberg,2005:685:691
    [4]Andy W. Estimate the GPS Block IIR AutoNav Clock Behavior[A]. Proceeding of the 1999 Joint Meeting of European Frequency and the Forum and the IEEE International Frequency control Symposium[C]. besancon, France,1999:279-282
    [5]Ananda M. P, Bernstein H, Cunningham W. A. et al. Global Positioning System(GPS) Autonomous Navigation[A]. Location and Navigation Symposium. In proceedings of IEEE Position[C]. Las Vegas, Nevada:IEEE,1990:497-508
    [6]Andersen P H. Multi-level arc combination with stochastic parameter[J]. Journal of Geodesy,200.0, Vol(74):531-551
    [7]Bar-Sever Y. E. New and Improved Solar Radiation Models for GPS Satellites Based on Flight Data [A]. Final Report of Air Force Material Command Space and Missile Systems Center/CZSF[C], April,1997
    [8]Bar-Sever Y. E. A new model for GPS yaw attitude[J]. Journal fo Geodesy,1996,70:714-723
    [9]Beutler G. Moore A. W. The International global navigation satellite system service(IGS):development and achievements[J]. Journal of Geodesy,2009,83:297-307
    [10]Beutler G., Brockmann E., Gurtner W., et al. Extended Orbit Modeling Techniques at the CODE Processing Center of the International GPS Service for Geodynamics (IGS):Theory and Initial Results [J]. Manuscripta Geodaetica,1994,19:367-386
    [11]Beutler G., Brockmann, et al. Extended orbit modeling techniques at the CODE processing center of the intenational GPS service for geodynamics(IGS):theory and initial results[J]. Manuscer Geod, 19:367-386.
    [12]Beutler G, Jaggi A, Hugentobler U, et al. Efficient satellite orbit modeling using pseudo-stochastic parameters. Journal fo Geodesy,2006,80:353-372
    [13]Beutler G, Schaer S, Rothacher M. Wide Area Differential GPS[R]. Bern:Astronomical institute University of Bern,1999
    [14]Bierrman G. Factorization methods for discrete sequential estimation[M]. New York:Academic press, 1977
    [15]Blewitt G. Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2000 km[J]. Journal of Geophysical Researth,1989,94(B8):10187-10203
    [16]Bock Y, Gourevitch S. A., Counselman C. C., et al. Interferometric analysis of GPS phase observations[J]. Manuscripta geodaetica,1986, Vol 11:282-288
    [17]Boucher C, Altamimi Z, Sillard P, et al. The itrf2000[EB/OL]. http://www.iers.org/pub/tn31.pdf
    [18]Brockmann E. Combination of Solutions for Geodetic and Geodynamic Applications of the Global Positioning System (GPS)[D]. Bern:Astronomical institute University of Bern,1996
    [19]Byun S H. Satellite orbit determination using triple-differenced GPS carrier phase I pure kinematic mode[J]. Journal fo Geodesy,2003,76:569-585
    [20]Chang X W, Yang X, Zhou T. MLAMBDA:a modified LAMBDA method for integer least-squares[J]. Journal fo Geodesy,2005,79:552-565
    [21]Chao B F. Predictability of the earth's Polar motion[J]. Bulletin Geodesique,1985, Vol 59:81-93
    [22]Chin T. M., Gross R. S., Dickey J. O. Modeling and forecast of the polar motion excitation functions for short-term polar motion prediction[J]. Journal of Geodesy,2004, Vol(78):343-353
    [23]Chin T. M., Gross R. S., Dickey J. O. Multi-reference evaluation of uncertainty in earth orientation parameter measurements[J]. Journal of Geodesy,2005, Vol(79):24-32
    [24]Choi K R. Jason-1 Precision Orbit Determination Using GPS Combined with SLR and DORIS Tracking Data[D]. Texas:The university of Texas at Austin,2003
    [25]Cocard M, Bourgon S, Kamali O, et al. A systematic investigation of optimal carrier-phase combinations for modernized triple-frequency GPS. Journal fo Geodesy,2008,82:555-564
    [26]Colombo, O L. The Dynamics of Global Positioning Orbits and the Determination of Precise Ephemerides [J]. Journal of Geophysical Research,1989,94(B7):9167-9182.
    [27]Dach R, Hugentobler U, Fridez P, et al. User manual of the Bernese GPS Software Version 5.0[M]. Bern:Astronomical institute, University of Berne,2007
    [28]Dach R, Brockmann E, Schaer S, et al. GNSS processing at CODE:status report. Journal of Geodesy[J].2009, Vol(83):353-365
    [29]Dainty C B, Raquet J F, Beckman C R. Use of Two-Way Time Transfer Measurements to Improve Geostationary Satellite Navigation[A]. ION GNSS 20th International Technical Meeting of the Satellite Division[C], Sep 25-28,2007, Fort Worth, TX:25-28
    [30]Davis J A, Greenhall C A, Stacey P W. A Kalman filter clock algorithm for use in the presence of flicker frequency modulation noise[J]. Metrologia,2005, Vol (42):1-10
    [31]Diez J, D'angelo P, et al. Clock Errors Simulation and Characterisation[A]. ION GNSS 19th International technical meeting of the satellite division[C],2006:815-821
    [32]Dow J M, Neilan R E, Rizos C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems[J]. Journal fo Geodesy,2009, Vol 83:191-198
    [33]Dula J, Afonso G B, Ferreira L D D, et al. Thermal re-emission effects on GPS satellites [J]. Journal of Geodesy,2006,80:665-674
    [34]Fliegel H F, Gallini T E, et al. Global Positioning System Radiation Force Model for Geodetic Applications [J]. Geophysical Research Letters,1992,97(B1):559-568
    [35]Fernandez-Plazaola U, Martin-Guerrero T M, Entrambasaguas J T. A new method for three-carrier GNSS ambiguity resolution[J]. Journal of Geodesy,2008, Vol(82):269-278
    [36]Fernandez L I. Extended kalman filtering for combining earth rotation parameters time seris[A]. Adam and Schwarz. Vistas for geodesy in the new millennium[C]. International association of geodesy symposia
    [37]Ge M, Gendt G, Dick G, et al. A new data processing strategy for huge GNSS global networks[J]. Journal of Geodesy,2006,80:199-203
    [38]Ge M, Gendt G, Rothacher M, et al. Resolution of GPS carrier ambiguities in Precise Point Positioning(PPP) with daily observations[J]. Journal of Geodesy,2008,82:389-399
    [39]Geng J H, Shi C, Zhao Q L, et al. Integrated Adjustment of LEO and GPS in Precision Orbit Determination[A]. In:VI Hotine-Marussi Symposium[C], Wuhan,P,R.China
    [40]Gill E. Precise GNSS-2 Satellite Orbit Determination Based On Inter-satellite-links[A].14th International Symposium on Space Flight Mechanics[C], Iguassu, Brazil, Feb 8-12,1999
    [41]Green R M. Spherical astronomy[M]. London:Cambridge University Press,1981
    [42]Gross R S, Eubanks T M, Steppe J A, et al. A kalman-filter-based approach to combining independent earth-orientation series[J]:Journal of Geodesy,1998,72:215-235
    [43]Habrich H. Geodetic Applications of the Global Navigation Satellite System(GLONASS) and of GLONASS/GPS combination[D]. Bern:Astronomical institute University of Bern,1999
    [44]Hammfahr J., Hornbostel A., Hahn J., et al. Using of Two-Directional Link Techniques for Determination of the Satellite State for GNSS-2[A]. Proceedings of 1999 National Technical Meeting & 19th Biennial Guidance Test Symposium,25-27 January 1999, San Diego, CA:531-540
    [45]Hepner A R, Geering H P. Observability Analysis for Target Maneuver Estimation via Bearing-Only and Bearing-Rate-Only Measurements[J]. Journal of Guidance Control and Dynamics,1990,13(6)
    [46]Hirsch B J. Maneuver Estimation Model for Geostationary Orbit Determination[M]. Ohio:University of Air Force Institute of Technology.2006
    [47]Highsmith D E, Binning P W. Design and test of an algorithm for satellite-tosatellite time transfer. ION GPS 2000,19-22, sept,2000, Salt lake city, UT:1582-1594
    [48]Hofmann-Wellenhof B, Lichtenegger H. GPS Theory and Practice. New York:Springer-Verlag,1992
    [49]Holt G N. Generalized Approach to Navigation of Spaceceaft Formations Using Multiple Sensor[D]. Austin:The University of Texas at Austin,2006
    [50]Hough M E. Nonlinear Recursive Filter for Boost Trajectories[J]. Journal of Guidance Control and Dynamics.2001,24(5)
    [51]Hough M E. Nonlinear Recursive Estimation of Boost Trajectories, Including Batch Initialization and Burnout Estimation[J]. Journal of Guidance Control and Dynamics.2006,29(1):72-81
    [52]Hugentobler U, Jaggi A, Schaer S, et al. Combined processing od GPS Data from ground station and LEO receivers in a global solution[A]. International association of geodesy symposim[C]. Berlin:Springer berlin Heidelberg,2005:169-174
    [53]Jzawinski A H. Stochsstic processes and filtering theory[M]. New York:Academic Press,1970
    [54]Jaggi A. Pseudo-Stochastic Orbit Modeling of Low Earth Satellites Using the Global Positioning System[D]. Bern:Astronomical institute University of Bern,2006
    [55]Jaggi A, Hugentobler U, Beutler G. Pseudo-stochastic oebit modeling techniques for low-earth orbiters. Journal of Geodesy,2006, Vol 80:47-60
    [56]Kang Z G, Tapley B, Bettadpur S, et al. Precise orbit determination for the GRACE mission using only GPS data. Journal of Geodesy,2006, Vol 80:322-331
    [57]Kaplan E D, Hegarty C J. Understanding GPS principles and applications[M]. London:Artech House, Inc,2006
    [58]Kass W G, Dulaney R L, Griffiths J, et al. Global GPS data analysis at the National Geodetic Survey[J]. Journal of Geodesy, Vol(83):289-295
    [59]Kaula W M. Theory of Satellite Geodesy[M]. London:Blaisdell Publishing Company,1966
    [60]Kim J. A Low-Low Satellite-to-Satellite Tracking Mission[D]. Austin:the University of Texas at Austin, 2000
    [61]Kouba J. Testing of Global Presssure/Temperature(GPT) model and Global Mapping Function(GMF) in GPS Analyses[J]. Journal of Geodesy,2009, Vol 83:199-208
    [62]Kouba J. Implementation and testing of the gridded Vienna Mapping Function 1(VMF 1)[J]. Journal of Geodesy,2008, Vol 82:193-205
    [63]Kouba J. Comparison of polar motion with oceanic and atmospheric angular momentum time series for 2-day to chandler periods. Journal of Geodesy,2005, Vol 79:33-42
    [64]Konig R, Michalak G, Neumayer K N, et al. Recent developments in CHAMP orbit determination at GFZ[A]. Earth observation with CHAMP[C]. Berlin Heideberg:Springer,2005
    [65]Kosek W, McCarthy D D, Luzum B J. Possible improvement of Earth orientation forecast using autocovariance prediction procedures[J]. Journal of Geodesy,1998, Vol(72):189-199
    [66]Kristine P, Paul A, John L. Crosslinks for the next-generation GPS[J]. IEEEAC,2003,4:1589-1595
    [67]Kuang D, Rim H J, Schutz B E, et al. Modeling GPS satellite attitude variation for precise orbit determination[J]. Journal of Geodesy,1996,70:572-580
    [68]Lacy M C D, Reguzzoni M, Sanso F, et al. The Bayesian detection of discontinuities in a polynomial regression and its application to the cycle-slip problem[J]. Journal of Geodesy,2008, Vol 82:527-542
    [69]Li H N, Li J S,. On-line minimum-variance estimator for thrust acceleration during orbit transfer process[J]. Journal of Astronautics,2002, Vol 23(5):76-80
    [70]Lichen S M, Wu S C. New Techniques for Orbit Determination of Geosynchronous Geosynchronous-Transfer, and Other High-Altitude Earth Orbiters[J]. AAS,97-676
    [71]Lichten S M. Estimation and Filtering for High-precision GPS Positioning Application[J]. Manuscripta Geodaetica.1990, Vol 15:159-176
    [72]Lichten S M, Bertiger W I. Demonstration of Sub-meter GPS Orbit Determination and 1.5 Part in 108 three-demensional Baseline accuracy[J]. Bull Geod,1989, Vol 63:167-189
    [73]Lichten S M, Bertiger W I. Strategies for High-precision Global Positioning System Orbit Determination[J]. Journal of Geophysical Research,1987,92(B12):12751-12762
    [74]Lundberg B. Mitigation of satellite orbit errors resulting from the numerical integration across shadow boundaries[J]. Applied Mathematics and Computation,2000,112:193-211
    [75]Martoccia D, Bernstein H. GPS Satellite Timing Performance Using the Autonomous Navigation(Autonav)[A]. Proceedings of the ION GPS-98[C],1998
    [76]McCarthy D D, Petit G. IERS Conversions(2003)[M]. IERS Technical Note, No 32, www.iers.org
    [77]Menn M D, Bernstein H. Ephemeris Observability Issues in the Global Positioning System(GPS) Autonomous Navigation (AUTONAV)[J]. IEEE,1994,94:677-680
    [78]Mervart L. Ambiguity Resolution Techniques in Geodetic and Geodynamic Applications of the Global Positioning System[D]. Bern:Astronomical institute of University bern,1995
    [79]Montenbruck O, Gill E. Satellite orbits models, Methods, Applications[M]. Berlin Heidelberg: Springer-Verlag,2000
    [80]Mohiuddin S, Psiaki M L. Carrier-Phase Differential Global Positioning System Navigation Filter for High-Altitude Spacecraft[J]. Journal of Guidance, Control, and Dynamics,2008,31(4):801-814
    [81]Niedzielski T, Kosek W. Prediction of UT1-UTC, LOD and AAM χ3 by combination of least-squares and multivariate stochastic methods. Journal of Geodesy,2008, Vol(82):83-92
    [82]Noll C, Bock Y, Habrich H, A Moore. Development of data infrastructure to support scientific for the international GNSS Service[J]. Journal of Geodesy,2009, Vol(83):309-325
    [83]Odijk D, Teunissen P J G. ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models[J]. Journal of Geodesy,2008, Vol(82):473-492
    [84]Olsen E A, Stadter P A, Asher M S. Long-baseline differential GPS based relative navigation for spacecraft with crosslink ranging measurements[A]. ION GPS 2000,19-22,sept,2000,slat lake city: 1612-1620
    [85]Parkinson B W, Spilker J J, Axelrad P, et al. Global Positioning System-Theory and Applications[M]. Washington D C:American Institute of Aeronautics and Astronautics,1996
    [86]Park C W, How J P, Capots L. Sensing technologies for formation flying spacecraft in LEO using CDGPS and Inter-spacecraft communications system[A]. ION GPS 2000,19-22, sept,2000, salt lake city, UT:1595-1607
    [87]Psiaki M L, Mohiuddin S. Global positioning system integer ambiguity resolution using factorized least-squares techniques. Journal of guidance, control, and dynamics,2007,30(2):346-356
    [88]Rajan J. Hightlights of GPS II-R Autonomous Navigation[A]. The ION 58th Annual Meeting and the CIGTF 21st Guidance Test Symposium[C], Albuquerque, NM, June 24-26,2002
    [89]Rajan J, Orr M, Wang P. On-Orbit Validation of GPS IIR Autonomous Navigation[A]. The ION 59th Annual Meeting and the CIGTF 22st Guidance Test Symposium[C], Albuquerque, NM, June 23-25,2002
    [90]Rajan J A, Brodie P, Rawicz H. Modernizing GPS autonomous navigation with anchor capability[A]. ION GPS/GNSS 2003,9-12,sept 2003, Portland, OR:1534-1542
    [91]Remoddi B W. Using the global positioning system (GPS) phase observable for relative geodesy: modeling, processing, and results[D]. Austin:CSR, University of Texas at Austin,1986
    [92]Reigber C, Luhr H, Grunwaldt L, et al. CHAMP Mission 5 years in orbit[A]. Observation of the earth system from space[C]. Berlin Heideberg:Springer,2006
    [93]Rim H J, Schutz B E. Geoscience Laser Altimeter System(GLAS) Algorithm Theoretical Basis Document,Precision Orbit Determination(POD)[M]. Austin:The University of Texas at Austin, Center for Space Research,2002
    [94]Rim H J. Topex Orbit Determination Using GPS Tracking System[D]. Austin:CSR, The university of Texas at Austin,1992
    [95]Ruiz J R, Frey C H. Geosynchronous Satellite Use of GPS[A]. ION GNSS 18th International Technical Meeting of the Satellite Division[C], Long Beach, CA, Sep 13-16,2005
    [96]Roy A E. Orbit motion[M]. London:Institute of Physics Publishing,2005
    [97]Schaffrin B, Bock Y. A unified Scheme For Processing GPS Dual-Band Phase Observations[J]. Bulletin Geodesique,1988, Vol 62:142-160
    [98]Schuh H, Ulrich M, Egger D, et al. Prediction of Earth orientation parameters by artificial neural networks[J]. Journal of Geodesy,1992, Vol(76):247-258
    [99]Schmid R, Steigenberger P, Gendt G, et al. Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas[J]. Journal of Geodesy,2007,81:781-798
    [100]Schon S, Brunner F K. A proposal for modeling physical correlations of GPS phase observations. Journal of Geodesy,2008,82:601-612
    [101]Shi C, Geng J H, Liu J N, et al. Integrated Adjustment of LEO and GPS with PANDA in Precision Orbit Determination[A]. ION GNSS 19th International Technical Meeting of the Satellite Division[C], Fort Worth, TX,2006
    [102]Springer T A, Beutler G. Improving the Orbit Estimates of the GPS Satellites [J]. Journal of Geodesy, 1999,73(3):147-157
    [103]Springer T A. Modeling and Validating Orbits and Clocks Using the Global Positioning System[D]. Bern:Astronomical institute of University bern,1999
    [104]Springer T A, Beutler G, Rothacher M. A new solar radiation pressure model for the GPS satellite[J]. GPS Solutions,1998
    [105]Steigenberger P, Rothacher M, Fritsche M, et al. Quality of reprocessed GPS satellite orbits[J]. Journal of Geodesy,2009, Vol(83):241-248
    [106]Su H. Precise Orbit Determination of Global Navigation Satellite System of Second Generation[D]. Berlin:University of Munchen,2000
    [107]Tapley B. D., Schutz B. E., Born G. H. Statistical Orbit Determination[M]. San Diego:Elsevier Academic Press,2004
    [108]Teunissen P J G, Kleusberg A. GPS for geodesy[M]. Berlin:Springer,1998
    [109]Teunissen O J G. Best prediction in linear models with mixed integer/real unknowns:theory and application[J]. Journal of Geodesy,2007, Vol(81):759-780
    [110]Teunissen O J G. A canonical theory for short GPS baselines(Part I:The baseline precision). Journal of Geodesy,1997, Vol(71):320-336
    [111]Urschl C, Beutler G, Gurtner W, et al. GPS/GLONASS orbit determination based on combined microwave and SLR data analysis[A]. International Association of geodesy symposia[C]. Berlin:Springer berlin Heidelberg,2005:115-122
    [112]Vollath U. The factorized multi-carrier ambiguity resolution (FAMCAR) approach for efficient carrier-phase ambiguity eatimation[J]. ION GNSS 17th international technical meeting of the satellite division,21-24 sept,2004, Long beach,CA:2499-2507
    [113]Wang M, Gao Y. GPS un-differenced ambiguity resolution and validation. ION GNSS 19th international technical meeting of the satellite division,26-29 september 2006, fort worth, TX:292-300
    [114]Wie B. Attitude and Orbit Control of a Very Large Geostationary Solar Power Satellite[J]. Journal of Guidance, Control, and Dynamics,2005,28(3):439-451
    [115]Witchayangkoon B. Elements of GPS Precise Point Positioning[D]. Maine:The University of Maine, 2000
    [116]Wolf R. Satellite Orbit and Ephemeris Determination using inter satellite links[D]. Munchen: University of Munchen,2000
    [117]Wolfe J D, Speyer J L, Hwang S. Estimation of relative satellite position using transformed differential carrier-phase GPS measurements[J]. Journal of guidance, control, and dynamics,2007,30(5): 1217-1227
    [118]Woodburn J. Mitigation of the effects of eclipse boundary crossings on the numerical integration of orbit trajectories using an Encke type correction algorithm[J]. AAS/AIAA, Santa Barbara, CA,2001
    [119]Wu S C, Bar-sever Y E. Real-timesub-cm differential orbit determination of two-earth orbiters with GPS bias fixing[A]. ION GNSS 19th international technical meeting of the satellite division,26-29 september 2006, fort worth, TX
    [120]Wu S C, Yunck T P, Thornton C L. Reduced-dynamic technique for precise orbit determination of low earth satellites. Journal of Guidance Control and Dynamics,1991,14(1):24-30
    [121]Xu G C. GPS Theory, Algorithms and Applications[M]. Berlin:Springer-Verlag,2003 Yang Y, Zhang S. Adaptive fitting of systematic errors in navigation. Journal of Geodesy,2005, Vol 79: 43-49
    [122]Yoon Y, Montenbruck O. Precise Maneuver Calibration For Remote Sensing Satellites[A].19th International Symposium on Space Flight Dynamics[C], June 4-11,2006, Kanazawa, Japan
    [123]Yunck T P, Wu S C. Orbit Determination of Geosynchronous Satellites By VLBI and △ VLBI[M]. JPL Technical staff,Tracking system and Application Section. NAS 7-100
    [124]Yunck T P, Wu S C. Precise tracking of remote sensing satellites with the global positioning system. IEEE transactions on geoscience and remote sensing,1990,28(1):108-115
    [125]Zhu S Y, Reigber C, Kang Z. Apropos laser tracking to GPS satellite[J]. Journal of Geodesy,1997, Vol 71:423-431
    [126]Zhu S, Reigber C, Konig R. Integrated adjustment of CHAMP, GRACE, and GPS data[J]. Journal of Geodesy,2004, Vol 78:103-108
    [127]Zhu S Y. Prediction of polar motion. Bulletin Geodesique,1982, Vol 56:258-273
    [128]Zhu S Y, Massmann F H, YU Y, et al. Satellite antenna phase center offsets and scale errors in GPS solutions. Journal of Geodesy,2003, Vol 76:668-672
    [129]Ziebart M, Edwards S, Adhya S, et al. High Precision GPS IIR orbit prediction using analytical Non-conservative Force Models[A]. ION GNSS 17th International Technical Meeting of the Satellite Division,21-24, sept,2004,Long Beach,CA:1764-1770
    [130]阿诺尔德В.И.常微分方程[M].沈家骐等译.北京:科学出版社,1985
    [131]奥列尼克OA.偏微分方程讲义.郭思旭译.北京:高等教育出版社,2008
    [132]蔡志武,韩春好,陈金平等.导航卫星长期自主定轨的星座旋转误差分析与控制[J].宇航学报,2008,29(2):522-528
    [133]陈刘成.地影模型对导航卫星个轨道数值积分的影响及改进[J].武汉大学学报(信息科学版),2007,32(5):
    [134]陈金平,尤政,焦文海.基于星间距离和方向观测的导航卫星自主定轨研究[J].宇航学报,2005,26(1):43-46
    [135]陈金平,焦文海,马俊等.基于星间测距/轨道定向参数约束的导航卫星自主定轨[J].武汉大学学报(信息科学版),2005,Vol 30(4):439-443
    [136]崔希璋,於宗俦,陶本藻.广义测量平差[M].武汉:武汉测绘科技大学出版社,2001
    [137]杜兰.GEO卫星精密定轨技术研究[D].郑州:解放军信息工程大学,2006
    [138]高为广GPS/INS自适应组合导航算法研究[D].郑州:解放军信息工程大学,2008
    [139]耿江辉,施闯,赵齐乐等.联合地面和星载数据精密确定GPS卫星轨道[J].武汉大学学报(信息科学版),2007,Vol 32(10):906-909
    [140]郭海荣.导航卫星原子钟时频特性分析理论与方法研究[D].郑州:解放军信息工程大学,2006
    [141]胡小工.空间测量技术的数据处理精度评估和残差统计分析[D].上海:中科院上海天文台,1999
    [142]胡国荣,星载GPS低轨卫星定轨理论研究[D].武汉:中科院测量与地球物理研究所,1999
    [143]黄永宣,李济生等.轨道机动过程中推力加速度的在线最小方差估计[J].空间科学学报,2002,Vol22(4):357-362
    [144]黄勇,胡小工,黄珹等.利用CAPS测距数据确定GEO卫星变轨期间的轨道[J].中国科学G辑:物理学力学天文学,2008,38(12):1750-1758
    [145]黄维彬.近代平差理论及其应用[M].北京:解放军出版社,1992
    [146]贾小林.导航卫星系统星座设计及定轨研究[D].郑州:解放军信息工程大学,2001
    [147]焦文海.地心大地坐标系与高程基准研究[D].郑州:解放军信息工程大学,2000
    [148]朗鲍H.GPS在大地测量和地球动力学中的应用[D].冯万营译.西安:西安测绘研究所,1990
    [149]李征航,卢珍珠,刘万科.导航卫星自主定轨中系统误差△Ω和△t的消除方法[J].武汉大学学报(信息科学版),2007,32(1):27-30
    [150]李济生.人造卫星精密轨道确定[M].北京:解放军出版社,1995
    [151]李志刚,杨旭海,施浒立等.转发器式卫星轨道测定新方法[J].中国科学G辑:物理学力学天文学,2008,38(12):1711-1722
    [152]李恒年,李济生,黄永宣.轨道机动过程中推力加速度的在线最小方差估计[J].空间科学学报,2002,22(4):357-361
    [153]刘林.人造地球卫星轨道力学[M].北京:高等教育出版社,1992
    [154]刘林,周建华等.卫星精密定轨中的数学方法.北京:解放军出版社,2002
    [155]刘林,刘迎春.关于星-星相对测量自主定轨中的亏秩问题.飞行器测控学报,2000,29(3)
    [156]刘大杰,施一民,过静珺.全球定位系统(GPS)的原理与数据处理[M].上海:同济大学出版社,1996年
    [157]刘万科.导航卫星自主定轨及星地联合定轨的方法研究和模拟计算[D].武汉:武汉大学,2008
    [158]刘经南,曾旭平,夏林元等.导航卫星自主定轨的算法研究及模拟结果[J].武汉大学学报(信息科学版),2004,29(12):1040-1043
    [159]楼益栋.导航卫星实时精密轨道与钟差确定[D].武汉:武汉大学,2008
    [160]卢珍珠,李征航,刘万科等.导航卫星星座整体旋转的检测与校正[J].宇航学报,2006,27(6):1397-1400
    [161]毛悦.X射线脉冲星导航算法研究[D].郑州:解放军信息工程大学,2009
    [162]苗永宽.球面天文学[M].北京:科学出版社,1983年
    [163]帕普力斯A.概率,随机变量与随机过程[M].谢国瑞,吴乙申译.北京:高等教育出版社,1984
    [164]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2004
    [165]田继善,吴志勤,吴永杰等.多传感器分布式KALMAN滤波融合算法[J].河南大学学报(自然科学版),1999,29(2):1:4
    [166]秋宏兴.多星精密定轨技术研究[D].北京:中国科学院研究生院,2007
    [167]帅平,曲广吉.导航星座自主导航的时间同步技术[J].宇航学报,2005,26(6):768-772
    [168]帅平,曲广吉.导航星座自主星历更新技术[J].宇航学报,2006,27(2):187-191
    [169]帅平,曲广吉,陈忠贵.导航星座自主导航技术研究[J].中国工程科学,2006,8(3):22-30
    [170]帅平,李明,陈绍龙等.基于X射线脉冲星的导航卫星自主导航[J].中国空间科学技术,2008(2):1-7
    [171]魏子卿,葛茂荣.GPS相对定位的数学模型[M].北京:测绘出版社,1995
    [172]魏子卿.空间测量进展[M].北京:解放军出版社,1996
    [173]卫国.原子钟噪声模型分析与原子钟算法得数学原理[D].西安:中国科学院陕西天文台,1991
    [174]王解先.GPS卫星精密定轨[M].上海:同济大学出版社,1997
    [175]王刚.广域差分GPS系统的研究[D].郑州:解放军信息工程大学,2001
    [176]王歆.人卫数值法定轨中运动方程右函数间断的处理[J].飞行器测控学报,1999,18(4):9-17
    [177]王甫红.星载GPS自主定轨理论及其软件实现[D].武汉:武汉大学
    [178]E M Soop地球静止轨道手册[M].王正才,邢国华,张宏伟等译.北京:国防工业出版社,1999
    [179]夏南银,张守信,穆鸿飞.航天测控系统.北京:国防工业出版社,2002
    [180]肖云.基于卫星跟踪卫星数据恢复地球重力场的研究[D].郑州:解放军信息工程大学,2006
    [181]徐士良FORTRAN常用算法程序集[M].北京:清华大学出版社,1994
    [182]许其风.空间大地测量学[M].北京:解放军出版社,2001年
    [183]杨旭海,李志刚,冯初刚等.GEO卫星机动后的星历快速恢复方法[J].中国科学G辑:物理学力学天文学,2008,38(12):1759-1765
    [184]阎野洲,周伯昭,任萱.关于卫星网整网自主定轨方法的探讨[J].宇航学报,2002,23(2):80-83
    [185]杨元喜.抗差估计理论及其应用[M].北京:八一出版社,1993
    [186]杨元喜.自适应动态导航定位[M].北京:测绘科技出版社,2006
    [187]张艳.基于星间观测的星座自主导航方法研究[D].长沙:国防科技大学,2005
    [188]张艳,张育林.基于星间测量的异构星座自主导航方法研究[J].宇航学报,2005,26(11):30-34
    [189]赵齐乐.GPS导航星座及低轨卫星的精密定轨理论和软件研究[D].武汉:武汉大学,2004
    [190]赵德勇,潘晓刚,周海银等.基于联合定轨策略的星间相对测量自主定轨亏秩问题的改进[J].宇航学报,2006,27(2):181-186
    [191]曾旭平.导航卫星自主定轨研究及模拟结果[D]:武汉:武汉大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700