青海省活动断裂展布特征及其对公路工程的危害
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青海省位于中国西部,青藏高原东北部。新构造运动活跃,晚更新世以来的活动断裂带就有24条之多,断裂带展布的优势方向以NW及NWW向为主。省内断裂的形成、发展、演化与印度板块NNE方向的水平推挤致使青藏高原的隆升密切相关。由于青海中东部及东北部地区发育的北北西—近南北向断裂带右旋走滑的阻扰,使得省内物质向东挤出量,青南高原要大于中、北部地区。且东昆仑以南断裂带的总体活动性要强于青海省中部及北部地区。
     青海省活动断裂带的总体特征是分布密度大、活动性强。断裂带的活动对省内公路工程设施产生了严重的危害。主要表现为对公路路基、路面和边坡的危害。多产生路基开裂、沉降变形,路面裂缝、下凹坑及鼓包破坏发育,路堑边坡开裂等危害现象。
     断裂的活动又可诱发多种次生灾害。深切河谷的断裂、山麓断裂的活动极易引发崩塌、滑坡等次生灾害,导致高路堤整体滑落,路堑边坡岩土体松散化;断裂的走滑运动又可导致河流的拐弯,使河流对公路路堤的侧蚀作用加大,从而引发路基失稳滑移,路基、路面整体滑塌等现象;在高寒气候环境条件下断裂活动又可产生不均匀冻胀、移动冰丘等引发的公路工程灾害问题。
     青海省公路工程面临着严重的活动断层威胁。
Qinghai Province is located west China, northeast Qinghai-Tibet Plain.Neotectonic movement is active, since the epipleistocene active fault zone has had 24 to be many, the predominant direction of fault zone by NW and NWW to primarily. The fault in the formation, development, Evolution and NNE direction of the Indian plate pushing the level of causing uplift of the Qinghai-Tibet Plain are closely related. As the Qinghai center-eastern and north-eastern parts of the growth of north-south and north nearly to the right-lateral strike-slip fault zone obstacles, making the province to eastwards escaping of the matters southern Qinghai plateau is greater, middle and the northern region. Also the overall activity in the south of The East Kunlun Fault zone was stronger than the middle and northern regions in Qinghai Province.
     The Qinghai Province activity fault zone is characterized the overall distribution of density and strong activity. The activities of the fault zone within the highway engineering facilities have a serious hazard. Show the damage being to the highway roadbed , road surface and side slope mainly. Have more roadbed cracking、settlement, the road cracks and pits under the bulge undermine development, cutting slope cracking hazards and so on.
     Fault activity can induce multi-secondary disasters. The activities of the incised valley fault and the piedmont fault are easy to induce multi- secondary disasters just like collapse and landslide etc, which causes the high embankment slide wholly and the rock-soil of the cutting slope loosen; Strike-slip movement of fault can also lead to the river turning and the river lateral erode action to the embankment strengthening, which induces the phenomena of embankment sliding and embankment & pavement sliding wholly etc; Under the condition of alpine climate environment, the fault activity can also produce engineering disasters induced by uneven frost heaving and moving pingos etc.
     The highway engineering is facing serious active fault threat in Qinghai province.
引文
[1]彭建兵,马润勇,席先武,周立新,等.区域稳定动力学的应用实践研究[M].北京:地质出版社,2006
    [2]吴珍汉,胡道功,吴中海,等.青藏高原中段活动断层及诱发地质灾害[M].北京:地质出版社,2005
    [3]潘裕生,孔祥儒.青藏高原岩石圈结构演化和动力学[M].广东:广东科技出版社,1998
    [4]马宗晋,汪一鹏,张燕平.青藏高原岩石圈现今变动与动力学[M].北京:地震出版社,2001
    [5]国家地震局“阿尔金活动断裂带”课题组.阿尔金活动断裂带[M].北京:地震出版社,1992
    [6]国家地震局地质研究所、国家地震局兰州地震研究所.祁连山--河西走廊活动断裂系[M].北京:地震出版社,1993
    [7]国家地震局地壳应力研究所、青海省地震局.东昆仑活动断裂带[M].北京:地震出版社,1999
    [8]马润勇.青藏高原东北缘构造活动及其工程灾害效应.西安:长安大学博士学位论文,2003
    [9]李传友.青藏高原东北部几条主要断裂带的定量研究.中国地震局地质研究所学位论文,2005
    [10]张雪亭.青海省大地构造框架研究.北京:中国地质大学博士学位论文,2006
    [11]宋春晖.青藏高原北缘新生代沉积演化与高原构造隆升过程.兰州:兰州大学博士学位论文,2006
    [12]朱利东.青藏高原北部隆升与盆地和地貌记录.成都:成都理工大学博士学位论文,2004
    [13]青海省地震局工程地震研究所.涩-宁-兰天然气长输管道场地地震安全性评价报告.1999
    [14](英)P.L.汉考克(美)R.S.耶茨,等,侯建军,白太绪,梁海华,李克,等,译校.活断层特性.地震出版社,1992
    [15]李智敏.西宁城市活断层地震构造模型研究.兰州:中国地震局兰州地震研究所硕士学位论文,2005
    [16]周德敏.青藏高原东北缘现今地壳形变的GPS观测研究.北京:中国地震局地质研究所硕 士学位论文,2005
    [17]郭卫英.青藏高原北部主要断裂的卫星热红外影像特征的研究.北京:中国地震局地球物理研究所硕士学位论文,2004
    [18]柴建峰,伍法权,常中华.南水北调西线一期工程区断层活动性及工程地质评价.吉林大学学报(地球科学版),2005,35(1)
    [19]马润勇,席先武,邵铁全,卢全中.青藏高原的递进式隆升机制.地球科学进展,2004,19(增刊)
    [20]彭建兵,马润勇,卢全中,李喜安,邵铁全.青藏高原隆升的地质灾害效应.地球科学进展,2004,19(3)
    [21]张启胜,李滔.青海西部四条隐伏断裂的特征.高原地震,2001,13(4)
    [22]王双绪,张希,张四新,张晓亮,薛富平.青藏高原东北缘现今构造变动与地震活动特征.地球学报,2005,26(3)
    [23]薄万举.青藏高原现今地壳运动的形变特征.Railway technical innovation
    [24]王启耀,蒋臻蔚,彭建兵.全新活动断裂和地裂缝对公路工程的影响及对策.2006年6月
    [25]刘争平.昆仑山地震断层的分布特征及其工程评价.Railway technical innovation
    [26]杨晓平,刘保金,李德庆,孙振国,赵成斌,赵景尧.隐伏断裂的活动时代与影响带宽度分析-利用浅层地震和钻探资料.地震学报,2004,26(增刊):88-95
    [27]彭建兵.中国活动构造与环境灾害研究中的若干重大问题.工程地质学报,2006
    [28]李吉均,等.青藏高原降起的时代、幅度与形式的探讨.中国科学,1979
    [29]李吉均,等.新生代晚期青藏高原强烈降起及其对周边环境的影响.第四纪研究,2001
    [30]李吉均,等.青藏高原降起与环境变化研究.科学通报,1998
    [31]施雅风,等.青藏高原晚新生代降升与环境变化[M].广东:广东科技出版社,1998
    [32]季绍新,余根峰,邢文臣.试论青藏高原岩浆活动史及其与板块构造的关系.火山地质与矿产,2001,22(1)
    [33]张岳桥,陈正乐,杨农.阿尔金断裂晚新生代左旋走滑位错的地质新证据.地震地质,2001,27(1)
    [34]余一欣,汤良杰,马达德,等.柴达木盆地断裂特征研究.西安石油大学学报(自然科学版),2005,20(3)
    [35]张瑞斌,张晓梅,王赞军,杨丽萍.东昆仑断裂带强震构造条件研究.高原地 震,2002,14(1)
    [36]吴珍汉,吴中海,胡道功,彭华,韩金良,周春景.可可西里东部活动断裂的地质特征,地学前缘,2003,10(4)
    [37]马润勇,彭建兵,门玉明,潘爱芳.逆冲断层发育的力学机制研究.话北大学学报(自然科学版),2003,33(2)
    [38]田勤俭,丁国瑜.青藏高原北部第四纪早期断裂活动的新生性变化初步研究.第四系研究,2006,26(1)
    [39]都昌庭,刘旭宙.1999年青海省三次5级以上地震震源机制.高原地震,2000,12(1)
    [40]潘裕生.青藏高原的形成与隆升.地学前沿,1999,6(3)
    [41]张进江,丁林.青藏高原东西向伸展及其地质意义.地质科学,2003
    [42]葛肖虹,任收麦,马立祥,吴光大,刘永江,袁四化.青藏高原多期次隆升的环境效应.地学前缘,2006
    [43]杨丽萍,王小平.初探青海及邻区强震的可公度性.高原地震,2001,13(2).
    [44]刘高,韩文峰,聂德新.青藏高原东北部新构造运动效应.中国地质灾害与防治学报,2001,12(1)
    [45]王萍,卢演俦,陈杰.阿尔金主断裂东端第四纪左行走滑的新证据.地震地质,2005,27(1)
    [46]丁林,潘裕生,等.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.科学通报,1995,40(16):1479-1500
    [47]汪娃利,谢新生.东昆仑活动断裂带强震地表破裂分段特征.地质力学学报,2006,12(2)
    [48]袁道阳,刘小龙,张培震.青海热水-日月山断裂带新活动特征.地震地质,2003,25(1)
    [49]袁道阳,张培震,雷中生,等.青海拉脊山断裂带新活动特征的初步研究.中国地震,2005,21(1):93-102
    [50]吴珍汉,胡道功,吴中海,叶培盛,等.青藏高原中段活动断层运动速度及驱动机理.地球学报,2005,26(2):99-104
    [51]尹光年,沈军,蒋靖祥,等.2000年11月14日东昆仑8.1级地震的构造背景.干旱区地里,2002.25(1)
    [52]England P C and P Molnar.Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet.Nature.1990 344:140-142
    [53]Zhang Qingsong,Li B Y,Yang Y C,et al.Basic characteristic of neotectonic moment of Qinghai-Xizang Plateau.In:Geological and Ecological studies of qinhai-xizang plateau.Beijing:Science Press,1983,103-109
    [54] Yuan Daoyang, Liu Baichi, Zhang Peizhen,et al.The neotectonic deformation and earthquake activity in Zhuanglang river active fault zone of lanzhou. Acta Seismologica Scinica, 2002, 15(4):462-466
    
    [55] Suppe J, Medwedeff D A. Geometry and kinematics of fault-propagation folding. Ecologue Geol.Helv, 2001
    
    [56] Song Tingguang and Wang Xiepei, et al. Structural styles and stratigraphic patterns of syndepositional faults in a contractional setting: Examples from Quaidam basin, northwestern China, 1993,77(1):102-117.
    
    [57] Tapponnier P, Xu Zhiqin, Roger F, et al. Oblique stepwise rise and growth of the Tibet plateau. Science, 2001. 294(23): 1671-1677
    
    [58] Van Der Woerd J, Rverson FJ, Tapponnier P, et al. Holocene left-slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun fault[J].Geology, 1998,26(8): 685-698
    
    [59] Van Der woerd, Ryerson FJ, Tapponnier P et al. Uniform slip-rate along the Kunlun fault: Implication, for seismic and large-scale tectonics[J].Geophys Res Lett, 2000, 27 (16) : 2353-2356
    [60] Van Der Woerd J, Tapponnier P, Rverson FJ et al, Uniform slip-rate along the central 600km of the Kunlun fault, from 26 Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional meophology[J]. Gephvsical, Journal International, 2002,148:356-388.
    
    [61] Lin A, Fu B, Guo J et al.Co seismic strike-slip and rupture length produced by the 2001 Ms Central Kunlun earthquake[J]. Science, 2002, 296:2015-2017

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700