SPD在楼宇内的分布优化配置及与其他开断设备配合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SPD(Surge Protection Device,电涌保护器/浪涌保护器)是在建筑物配电线路中常用的保护装置,其主要作用是抑制雷电和操作过电压,它可以在不切断线路的情况下吸收冲击能量,减小冲击幅值,从而保护其保护范围内的线路和设备。
     本文的研究目的是完成SPD在建筑物内配电线路上的布置优化,并考虑其与开断保护设备的配合。为了研究SPD在建筑物内的布置优化,本文主要研究了建筑物内线路及负载对于冲击的响应。根据线路及负载的冲击响应情况,SPD可以在建筑物内更有针对性的进行布置,这样可以提高SPD的安装效率。通过研究SPD与其他开断器件的配合,可以调整SPD的安装,以减少其他开断器件发生误动作的可能性。
     本文研究了建筑物内的配电线路,通过使用PEEC(Partial ElementEquivalent Circuit,部分元等效电路法)方法,完成了线路在冲击状况下的PEEC方法建模,并通过与现有商业软件的计算结果对比,验证了算法正确性。
     在现有楼宇内雷电研究中,很少的研究会考虑到真实有损大地对于冲击在传输线路上的影响,也还未有研究考虑到受真实有损大地影响的线路在受到感应冲击影响时的状况。因此本文在使用PEEC方法研究楼宇内线路的基础上,进一步增加考虑了大地对于冲击在线路传输中以及相互间感应的影响,建立了考虑有损大地情况下的建筑物线路PEEC模型。通过此模型,可以计算出当雷电冲击侵入到建筑物内的电力线路后,线路对于冲击的响应状况,包括冲击的传输过程以及冲击在线路间感应的过程。
     当线路上有冲击存在时,建筑物中的负载同样会对冲击产生响应并反过来对冲击产生影响,因此,在考虑建筑物内电涌保护器布置的时候,必须要考虑到负载的影响。由于电子类负载(指非电阻电容电感类负载)在建筑物中的大量使用,而这类负载在冲击情况下的模型不能简单使用线性元件等效,因此这类负载在冲击情况下的建模十分有必要。本文选取了建筑物内常用的两种电子类负载(照明用日光灯及开关电源类负载),研究了其在冲击状况下的建模,完成了建模的实验验证,并将模型带入PEEC模型进行计算。
     RCD(Residual Current Device,漏电流保护器),是常用的防止漏电的开断保护器件,一般安装在负载和SPD保护器之间,主要用来防止漏电事故或单相接地事故,同时也能起到一定的防止浪涌冲击的作用。RCD能够在检测到故障发生时迅速切断线路以保护负载,但也存在因为线路的扰动冲击而误动作的可能。雷电冲击可能导致RCD的动作,同时SPD保护之后的剩余冲击也可能导致RCD的误动作,因此,雷击保护为目的的电涌保护器布置优化,还需要考虑SPD与RCD之间的配合。本文研究了RCD在非工频工况下的工作状况,包括非工频正弦电流、非对称电流、冲击电流情况下的动作情况。通过以上研究,可以对SPD的安装提供参考,以保证RCD不会由于SPD保护不当而断开后部电路造成负载停电,同时也减小由于SPD和RCD安装配合失当导致RCD发生误动作的可能性。
     将线路模型和负载模型结合,可以完整的分析雷电从入侵建筑物后传输、感应,直到最后对负载产生影响的过程。在此基础上,加入考虑SPD和RCD之间的配合,即可完成SPD在建筑物内的布置优化。
Surge Protection Device (SPD) is an appliance designed toprotect electrical devices from voltage spikes, SPD attempts to limitthe voltage supplied to an electric device by either blocking or byshorting to ground any unwanted voltages above a safe threshold.
     In this thesis, the purpose is to research on optimize allocation ofSPD in buildings and SPD coordination with other surge protectors.Surge response of transmission line in buildings, loads impact by surgeand SPD coordination with other protectors are researched.
     Transmission line theory is discussed in the thesis. Partial ElementEquivalent Circuit (PEEC) method is used in the discussion for modelingthe electromagnetic behavior of arbitrary three-dimensional electricalinterconnection structures. Numerical calculation of the PEEC is derivedin the thesis and vilified by comparing calculation result with theATP/EMTP software.
     Ground effect is considered in the PEEC model. Measurement of thesoil parameters is discussed and measurement results are used in thePEEC model. PEEC transmission line theory based on Dyadic Green Function (DGF) over real ground is derived. Importance of ground effectis proved due to calculation result comparison between perfect groundsituation and real ground situation. Vertical line and horizontal line modelare derived by the author and SPD installation is discussed in each model.
     Load is another important factor which may have great effect in thesurge transmission. Electric loads are now widely used in buildings,which cannot model with linear elements. Two typical electric loads(ballast and SMPS) are discussed in surge situation. Surge models of thetwo loads are given in the thesis and verified by comparing with testresult of the laboratory experiments.
     Residual Current Device (RCD) is widely used in buildings toprevent accidental electrocution. Besides it can trip when fault situationdetected. Noise tripping of RCD also may happened when surge passthrough. Experimental investigations into operating characteristics ofRCD are done under unbalanced current. The unbalanced current includethee harmonic current, ground fault current, and surge current. A testingsystem is set up in the laboratory, and the minimum values of the currentcausing RCD samples to trip are recorded. The research can help with thecoordination of SPD and RCD.
     Whole surge model of the building is derived and verified bycomparing with the experiment result, which can help with the SPD allocation optimization. Coordination with RCD should also beconsidered when considering the SPD allocation optimization.
引文
[1]刘佼等,全国雷电灾害分析及雷灾经济损失预测,气象与环境科学,2010,第四期
    [2] D. McMenamin and R. Steward,“Risk mitigation of lightning incursion into network equipment viaPhotoVoltaic systems It is not easy being “green”,” in Telecommunications Energy Conference,2008.INTELEC2008. IEEE30th International,2008, pp.1-10.
    [3]“Low-voltage surge protective devices–Part12: Surge protective devices connected to low-voltagepower distribution systems–Selection and application principles” IEC std61643-12,2008-11
    [4]“Protection against lightning electromagnetic impulse-Part1: General principles”, IEC std61312-1-1995.
    [5]“IEEE Guide on the Surge Environment in Low-Voltage (1000V and less) AC Power Circuits,” IEEE StdC62.41.1-2002, pp.0_1-162,2003.
    [6]“IEEE Guide for the Application of Surge-Protective Devices for Low-Voltage (1000V Or Less) ACPower Circuits,” C62.72-2007,2007.
    [7]“IEEE Guide for the Application of Component Surge-Protective Devices for Use in Low-Voltage[Equal to or less than1000V(ac) or1200V(dc)] Circuits,” C62.42-2005,2005.
    [8]“IEEE Standard test Methods for low-Voltage Air Gap Surge-Protective Device Components(Excluding Value and Expulsion Types),” C62.32-2004,2005.
    [9]“IEEE Standard Test Specifications for Surge-Protective Devices for Low-Voltage AC Power Circuits,”C62.62-2000,2000.
    [10]“IEEE Recommended Practice on Characterization of Surges in Low-Voltage (1000V and Less) ACPower Circuits,” IEEE Std C62.41.2-2002, p.0_1,2003.
    [11]“Power transformers–Part3:Insulation levels, dielectric tests and external clearances in air” IEC std60076-3,2000-03
    [12]“Electromagnetic compatibility (EMC)–Part4-5: Testing and measurement techniques–Surgeimmunity test” IEC std61000-4-5,2005-11
    [13] W. Piasecki, et al.,“New approach towards protecting electrical equipment insulation systemsagainst Very Fast Transients,” in Electrical Insulation and Dielectric Phenomena,2007. CEIDP2007.Annual Report-Conference on,2007, pp.89-94.
    [14] J. S. Lai and F. D. Martzloff,“Coordinating cascaded surge protection devices: high-low versuslow-high,” Industry Applications, IEEE Transactions on, vol.29, pp.680-687,1993
    [15] T. Mueller and D. Graff,“The use of surge protection devices in the petroleum/petrochemicalindustry,” Industry Applications, IEEE Transactions on, vol.34, pp.1351-1358,1998.
    [16] R. W. Hotchkiss,“Application of low-voltage SPDs: approach of the IEEE,” in Transmission andDistribution Conference and Exposition,2008.IEEE/PES,2008, pp.1-8.
    [17] V. Murko, et al.,“Coordinating Surge Protective Devices with Metal-oxide Varistors at Direct LightningStroke. Application Note,” ed,2006.
    [18] H. Jinliang, et al.,“Evaluation of the effective protection distance of low-voltage SPD to equipment,”Power Delivery, IEEE Transactions on, vol.20, pp.123-130,2005.
    [19] S. Skuletic and V. Radulovic,“Effective protection distance from cascade coordinated Surge ProtectiveDevices to equipment in low-voltage AC power circuits,” in Universities Power EngineeringConference,2008. UPEC2008.43rd International,2008, pp.1-5.
    [20] F. Martzloff and G. Hahn,“Surge voltages in residential and industrial power circuits,” in Solid-StateCircuits Conference. Digest of Technical Papers.1969IEEE Internationa,1969, pp.116-117.
    [21] F. D. Martzloff,“The Propagation and Attenuation of Surge Voltages and Surge Currents inLow-VOltage AC Circuits,” Power Apparatus and Systems, IEEE Transactions on, vol. PAS-102, pp.1163-1170,1983.
    [22] F. D. Martzloff and H. A. Gauper,“Surge and High-Frequency Propagation in Industrial Power Lines,”Industry Applications, IEEE Transactions on, vol. IA-22, pp.634-640,1986.
    [23] F. D. Martzloff,“Coupling, propagation, and side effects of surges in an industrial building wiringsystem,” in Industry Applications Society Annual Meeting,1988., Conference Record of the1988IEEE,1988, pp.1467-1476vol.2.
    [24] Z. Qi-Bin and Y. Du,“Using EMTP for evaluation of surge current distribution in metallic gridlikestructures,” Industry Applications, IEEE Transactions on, vol.41, pp.1113-1117,2005.
    [25] G. Antonini, et al.,“Hybrid Formulation of the Equation Systems of the3-D PEEC Model Based onGraph Algorithms,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol.57, pp.249-261,2010.
    [26] G. Antonini, et al.,“PEEC modeling of lightning protection systems and coupling to coaxial cables,”Electromagnetic Compatibility, IEEE Transactions on, vol.40, pp.481-491,1998
    [27] A. E. Ruehli,“Equivalent Circuit Models for Three-Dimensional Multiconductor Systems,” MicrowaveTheory and Techniques, IEEE Transactions on, vol.22, pp.216-221,1974.
    [28] S. V. Kochetov, et al.,“PEEC Formulation Based on Dyadic Green's Functions for Layered Media inthe Time and Frequency Domains,” Electromagnetic Compatibility, IEEE Transactions on, vol.50, pp.953-965,2008.
    [29] S. V. Kochetov and M. Leone,“Generalized PEEC method based on dyadic Green's functions in timeand frequency domain,” in Electromagnetic Compatibility-EMC Europe,2008InternationalSymposium on,2008, pp.1-6.
    [30] Y. Kai and W. Ke-Li,“Generalized PEEC analysis for planar circuits with narrow slotted ground,” inAdvanced Packaging and Systems Symposium,2008. EDAPS2008. Electrical Design of,2008, pp.147-150.
    [31] A. E. Ruehli,“An integral equation equivalent circuit solution to a large class of interconnect systems”,PhD thesis, University of Vermont,1972.
    [32] A. E. Ruehli, P. A. Brennan,“Capacitance models for integrated circuit metallization wires”, IEEEJournal of Solid-State Circuit,1975,10(6):530-536.
    [33] A. E. Ruehli, U Miekkala, A Bellen and H Heeb,“Stable time domain solutions for EMC problems usingPEEC circuit models”,1994IEEE International Symp, EMC,1994,371-376.
    [34] Ruehli A E, Miekkala U and Heeb H,“Stability of discretized partial element equivalent EFIE circuitmodels”, IEEE Trans, Antennas and Propagation,1995,43(6):553-559.
    [35] Garrett J, Ruehli A E and Paul C,“Recent improvement in PEEC modeling accuracy”,1997IEEE Symp.EMC.1997.347-352.
    [36] Garrett J E, Ruehli A E and Paul C R,“Accuracy and stability improvements of integral equation modelsusing the partial element equivalent circuit (PEEC) approach”, IEEE Trans. Antennas Propagation.1998.46(12):1824-1832.
    [37] Jonas Ekman, Giulio Antonini, Antonio Orlandi, and Albert E. Ruehli,“Impact of Partial ElementAccuracy on PEEC Model Stability”, IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL.48, NO.1, FEBRUARY2006
    [38] Z. Y. Zong, W. Wu and D. G. Fang,“Simple approach solving low-frequency breakdown problem inMLA PEEC method”, Electronics letters,28th, April,2011, Vol.47No.9
    [39] Jan Garrett, Albert Ruehli and Clayton Paul,“Stability Improvements of Integral Equation Models”.
    [40] IEC std61643-11:“Low-voltage surge protective devices–part11: Surge protective devicesconnetcted to low-voltage power systems–Requirements and test methods”
    [41]中华人民共和国国家标准GB/T18802.1-2005:“低压电涌保护器(SPD)第一部分:低压配电系统的电涌保护器性能要求和试验方法”
    [42] IEEE Std C62.72-2007:“IEEE Guide for the Application of Surge-Protective Devices for Low-Voltage(1000V or Less) AC Power Circuits”
    [43]中华人民共和国国家标准GB/T50057-2010:“建筑物防雷设计规范”
    [44] Qiuqin Sun, Wei Shi, Siew, W.H., Hongshun Liu, Qingmin Li,“The induced overvoltage between UHVAC and DC transmission lines built on the same tower under fault conditions”, UPEC,2009
    [45] Cooray, V., Scuka, V.,“Lightning-induced overvoltages in power lines: validity of variousapproximations made in overvoltage calculations”, IEEE Trans. On Electromagnetic Compatibility,1998
    [46] Zhihui Huang, XIaobo Wang, Shaodong Chen, Yijun Zhang, Wangsheng Dong, Qiyuan yin,“Analysis onthe induced overvoltage generated by near triggered lightning in the AWS power distribution system”,APEMC,2010
    [47] Pooya Taheri, Behzad Kordi, Aniruddha M. Gole,“Parametric Study of Transient ElectromagneticFields Due to Overhead Transmission Lines and Buried Cables in the Vicinity of Lossy Ground”, IEEETrans. On Power Delivery, Vol.26, No.4, OCT2011
    [48] Y. Du, Xinghua Wang, and Mingli Chen,“Circuit Parameters of Vertical Wires above a Lossy Ground inPEEC Models”, IEEE Trans. On Electromagnetic Compatibility, VOL.54, NO.4, AUG2012
    [49] G. V. Keller and F.C. Frischknecht,“Electrical Method in Geophysical Prospecting”, New York:Pergamon Press,1966, ch.1.
    [50] E. I. Parkhomenko,“Electrical Properties of Rocks”, New York: Pergamon Press,1967
    [51] R. J. Lytle,“Measurement of earth medium electrical characteristics; Techniques, results, andapplication”, Tech. Rep. VCRL-51479, Lawrence Livermore Laboratory, Livermore, CA, Nov.12,1973.
    [52] IEEE Std356-2010:“IEEE Guide for measurements of electromagnetic properties of earth media”
    [53] IEEE Std81-1983:“IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth SurfacePotentials of a Ground System”
    [54] King, R.W.P., and Smith, G.S.,“Antennas in Matter: Fundamental Theory, and Applications”,Cambridge, MA: MIT Press,1981.
    [55] Rudy Severns,“Mearuement of soil electrical parameters at HF”
    [56] E. Arbel and L. B. Felsen,“Theory of radiation from sources in anisotropic media, Part1: Generalsources in stratified media,” in Electromagnetic Theory and Antennas, Part1, E. C. Jordan, Ed. NewYork: Macmillan,1963, pp.391–420.
    [57] V. G. Daniele and R. S. Zich,“Radiation by arbitrary sources in anisotropic stratified media,” Radio Sci.,vol.8, pp.63–70, Jan.1973.
    [58] S. M. Ali and S. F. Mahmoud,“Electromagnetic fields of buried sources in stratified anisotropic media,”IEEE Trans. Antennas Propagat., vol.AP-27, pp.671–678, Sept.1979.
    [59] J. K. Lee and J. A. Kong,“Dyadic Green’s functions for layered anisotropic medium,” Electromagn., vol.3, pp.111–130,1983.
    [60] T. Sphicopoulos, V. Teodoridis, and F. E. Gardiol,“Dyadic Green function for the electromagnetic fieldin multilayered isotropic media: An operator approach,” Inst. Elect. Eng. Proc., vol.132, pt. H, pp.329–334, Aug.1985.
    [61] J. S. Bagby, D. P. Nyquist, and B. C. Drachman,“Integral formulation for analysis of integrateddielectric waveguides,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.906–915, Oct.1985.
    [62] D. H. S. Cheng,“On the formulation of the dyadic Green’s function in a layered medium,”Electromagn., vol.6, no.2, pp.171–182,1986.
    [63] C. M. Krowne,“Determination of the Green’s function in the spectral domain using a matrix method:Application to radiators immersed in a complex anisotropic layered medium,” IEEE Trans. AntennasPropagat., vol. AP-34, pp.247–253, Feb.1986.
    [64] N. K. Das and D. M. Pozar,“A generalized spectral-domain Green’s function for multilayer dielectricsubstrates with application to ultilayer transmission lines,” IEEE Trans. Microwave Theory Tech., vol.MTT-35, pp.326–335, Mar.1987.
    [65] L. Beyne and D. De Zutter,“Green’s function for layered lossy media with special application tomicrostrip antennas,” IEEE Trans. Microwave Theory Tech., vol.36, pp.875–881, May1988.
    [66] L. Vegni, R. Cicchetti, and P. Capece,“Spectral dyadic Green’s function formulation for planarintegrated structures,” IEEE Trans. ntennas Propagat., vol.36, pp.1057–1065, Aug.1988.
    [67] R. Kastner, E. Heyman, and A. Sabban,“Spectral domain iterative analysis of single-anddouble-layered microstrip antennas using the conjugate gradient algorithm,” IEEE Trans. AntennasPropagat., vol.36, pp.1204–1212, Sept.1988.
    [68] E. W. Kolk, N. H. G. Baken, and H. Blok,“Domain integral equation analysis of integrated opticalchannel and ridge waveguides in stratified media,” IEEE Trans. Microwave Theory Tech., vol.38, pp.78–85, Jan.1990.
    [69] J. F. Kiang, S. M. Ali, and J. A. Kong,“Integral equation solution to the guidance and leakageproperties of coupled dielectric strip aveguides,”IEEE Trans. Microwave Theory Tech., vol.38, pp.193–203, Feb.1990.
    [70] T. M. Habashy, S. M. Ali, J. A. Kong, and M. D. Grossi,“Dyadic Green’s functions in a planar, stratified,arbitrarily magnetized linear plasma,” Radio Sci., vol.26, pp.701–715, May/June1991.
    [71] S. M. Ali, T. M. Habashy, and J. A. Kong,“Spectral-domain dyadic Green’s function in layered chiralmedia,” J. Opt. Soc. Amer. A, vol.,pp.413–423, Mar.1992.
    [72] S. Barkeshli and P. H. Pathak,“On the dyadic Green’s function for a planar multilayereddielectric/magnetic media,” IEEE Trans. Icrowave Theory Tech., vol.40, pp.128–142, Jan.1992.
    [73] H. J. M. Bastiaansen, N. H. G. Baken, and H. Blok,“Domain-integral analysis of channel waveguides inanisotropic multi-layered media,” IEEE Trans. Microwave Theory Tech., vol.40, pp.1918–1926,Oct.1992.
    [74] S. Barkeshli,“On the electromagnetic dyadic Green’s functions for planar multi-layered anisotropicuniaxial material media,” Int. J. Infrared Millimeter Waves, vol.13, no.4, pp.507–527,1992.
    [75] P. Bernardi and R. Cicchetti,“Dyadic Green’s functions for conductorbacked layered structures excitedby arbitrary tridimensional sources,”IEEE Trans. Microwave Theory Tech., vol.42, pp.1474–1483, Aug.1994.
    [76] S.-G. Pan and I. Wolff,“Scalarization of dyadic spectral Green’s functions and network formalism forthree-dimensional full-wave analysis of planar lines and antennas,” IEEE Trans. Microwave TheoryTech., vol.42, pp.2118–2127, Nov.1994.
    [77] A. Dreher,“A new approach to dyadic Green’s function in spectral domain,” IEEE Trans. AntennasPropagat., vol.43, pp.1297–1302, Nov.1995.
    [78] Krzysztof A. Michalski, Juan R. Mosig,“Multilayered media Green's functions in integral equationformulations”, IEEE Transactions on antennas and propagation, VOL.45, NO.3, March1997.
    [79] Krzysztof A. Michalski, DALIAN ZHENG,“Electromagnetic scattering and radiation by surfaces ofarbitrary shape in layered media. I. Theory” IEEE Transaction on antennas and propagation, VOL.38,NO.3, March1990.
    [80] G.J.Burke and A.J.Poggio,“Numerical Electromagnetic Code (NEC)”, Naval Ocean Systems Center, SanDiego, CA, Tech. doc.116,1980
    [81] Jinliang He,“Effective Protection Distances of Low-Voltage SPD With Different Voltage ProtectionLevels”, IEEE TRANSACTIONS ON POWER DELIVERY, VOL.25, NO.1, JANUARY2010
    [82] Shunchao Wang and Jinliang He,“Discussion on Worst Distance Between SPD and Protected Device”,IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL.53, NO.4, NOVEMBER2011
    [83]庞华基,盛立芳,“雷电波在导线上的传输速度”,第六届中国国际防雷论坛
    [84] S.B. Smith and R.B. Standler,“The effect of surges on electronic appliances,” IEEE Trans. on PowerDelivery, Vol.7, No.3, July1992, pp.1275-1282.
    [85] L.M. Anderson and K.B. Bowes,“The effects of power-line disturbances on consumer electronicequipment,” IEEE Trans. on PWRD-5, No.2, April1990, pp.
    [86] W. Bassi,“Input impedance charactertics and modeling of low-voltage residential installations forlighting studies,” Proc. of the29th Int. conf. on Lightning Protection,23rd-26th June2008, Uppsala,Sweden, pp.3A10/1-12.
    [87] Hans Kristian Hoidalen,“Lightning-induced voltages in low-voltage systems and its dependency onoverhead line terminations,” Proc. of Int. Conf. on Lightning Protection, Sept.14-18,1998,Birmingham pp.287-292.
    [88] Jinlian He, Zhiyong Yuan, Jing Xu, Shuiming Chen, Jun Zou and Rong Zeng,“Evaluation of the effectiveprotection distance of low-voltage SPD to equipment,” IEEE Trans. on Power Delivery, Vol.20, No.1,Jan.2005, pp.123-130.
    [89] S. Skuletic and V. Radulovic,“Effective protection distance from cascade coordinated surge protectivedevices to equipment in low-voltage ac power circuits,” Proc. of the43rd Int. Universities PowerEngineering Conf.,1-4Sept.2008, Padova, Italy, pp.1-5.
    [90] Xiang Luo, Y. Du, X.H. Wang and M.L. Chen,"Tripping characteristics of residual current devices undernon-sinusoidal currents," to be published by IEEE Trans. on lAS.
    [91] K. Billings, Switchmode Power Supply Handbook, McGraw Hill, Boson,1999.
    [92] IEEE Std C62.41.2-2002: IEEE Recommendation practice on characterization of surges in low-voltage(IOOOV or less) AC powercircuits, IEEE Inc., New York,2003.
    [93] J.L. Kotny, X. Margueron, N. Idir,“Coupling inductor models for EMI filters,” Proc. of IEEE IndustrialElectronics Conf.,3-5Nov.2009, pp.4092–4097.
    [94] C. Liew,“Nuisance trippings of residual-current circuit breakers or ground fault protectors of powersources connected to computer and electronic loads,” Journal of Electric Power Systems Research, vol.20, no.1, pp.23–30, December1990.
    [95] BS4293, Specification for residual current-operated circuit-breakers, British Standardization Institute,1983
    [96] IEC61008-1Residual current operated circuit-breakers without integrated overcurrent protection forhousehold and similar uses (RCCBs)–Part1: General rules, International ElectrotechnicalCommission, June2006
    [97] T.M. Lee and T.W. Chan,“The effects of harmonics on the operational characteristics ofresidual-current circuit breakers.” Proceedings of Energy Management and Power DeliveryConference1995(EMPD’95), vol.2, pp.548–553,1995.
    [98] A.M. Featherstone and A.S. Sastrosubroto,“An examination of RCD performance during systemdisturbances (and other relays),” IEE Colloquium on Safeguarding Industrial Plant During PowerSystem Disturbances, London, UK,4Dec1989, pp.3/1-3/6
    [99] S. Czapp,“The effect of earth fault current harmonics on tripping of residual current devices,”International School on Nonsinusoidal Currents and Compensation,10-13June2008, pp.1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700