接地网频域性能及杆塔接地极冲击特性的数值分析及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发、变电站及输电线路的接地装置是维护电力系统安全可靠运行的重要基础设备。随着电力系统的发展,故障、操作和雷电等暂态故障电流对接地系统的影响也越来越大,接地系统面临新的安全问题。高频故障电流作用下接地导体呈现的电感效应以及高幅值冲击电流作用下接地体周围土壤中的火花放电现象是影响接地性能的重要因素,考虑接地装置散流过程中各种因素的影响,对发变电站接地网在故障电流作用下的频域性能和输电线路杆塔接地极在雷电流作用下的动态冲击特性进行准确的数值计算和试验研究,是目前电力系统迫切需要解决的实际难题。
     本文在深入分析国内外对发、变电站接地网频域性能及输电线路杆塔接地装置冲击特性的试验研究和数值计算研究的基础上,首先针对入地故障电流频率较低的常规变电站接地网,阐述了故障散流过程引起的地中电位分布的数值计算原理,建立了考虑土壤中位移电流的计算地中电位分布的标量有限元模型。利用基于弱形式的有限元方程对接地导体和土壤分界面处介质参数突变的问题进行处理;引入空间几何变换方法,解决了接地系统无穷散流空间和有限计算资源之间的矛盾。通过与文献试验数据对比验证了该模型的正确性。然后针对入地故障电流频率较高的气体绝缘变电站,基于电磁场麦克斯韦全波方程,建立了考虑场域中位移电流和感应电流的接地装置高频特性矢量有限元模型。利用基于弱形式的矢量有限元方程处理接地导体与土壤分界面处介质突变的问题;详细推导了空间几何变换方法在矢量有限元分析模型中的应用,解决了无穷散流空间和有限计算资源之间的矛盾;在接地导体与土壤的分界面上使用阻抗边界条件考虑高频故障电流作用下接地导体中的集肤效应,它不仅考虑了接地导体在散流故障电流过程中的作用,同时解决了考虑接地导体集肤效应带来的计算量剧增的问题。采用此模型对简单水平、垂直接地极和接地网建立数值分析模型,与CDEGS计算结果对比验证了该方法的有效性。
     以接地装置高频特性的矢量有限元分析模型为基础,建立了单根水平、单根垂直接地极和水平接地网的数值计算模型,计算得到高频故障电流作用下于单根水平、单根垂直接地极和接地网时,散流过程产生的地中电流场、电位场、沿接地导体漏电流分布规律以及接地导体上电位分布规律与注入电流频率之间的关系特性。
     在重庆大学冲击接地模拟实验室对八种典型接地装置结构的冲击散流规律进行模拟试验研究,得出了各种接地装置结构在冲击电流作用下漏电流沿接地导体的分布规律,系统地分析了接地装置结构、冲击电流幅值、土壤电阻率等因素对冲击散流规律的影响。
     在深入分析冲击散流物理过程中土壤电离现象的基础上,建立了考虑土壤动态电离现象的接地装置冲击特性有限元分析模型。采用空间有限元格式与时域有限差分格式相结合的方法计算接地体冲击散流产生的动态电位分布;在分析大量接地装置冲击特性试验数据及本文冲击散流规律模拟试验结果的基础上,提出采用四分区结构的土壤模型来模拟土壤电离现象的不同程度;将离散土壤单元的电阻率设置为对应时刻该单元电场强度的函数,由时变的空间电场控制土壤电阻率,不需要事先假定土壤火花区域的形状,能够准确地模拟冲击散流过程中土壤参数的分布时变性。并且以此动态有限元模型为基础,对冲击模拟试验中使用的接地装置建立仿真模型,结合试验结果分析了冲击散流规律以及火花放电现象对电力设备和人身安全的影响。
     根据冲击散流规律的模拟试验及数值分析结果,提出高土壤电阻率地区输电线路杆塔采用针刺式接地装置的降阻措施,并应用本文提出的接地装置冲击特性有限元分析方法对星型针刺接地极降低冲击接地电阻的原理进行数值分析,结果表明,通过添加针刺引导冲击电流在接地导体各段平衡散流,可使土壤颗粒间局部空间电场强度畸变加强,促进了火花效应的产生;在实验室进行的冲击接地电阻测量试验结果进一步验证了针刺接地极降低冲击接地电阻的降阻效果。
     以上研究成果为实际接地装置的特性研究和接地工程设计提供理论依据和试验数据,具有重要的指导意义。
The grounding device in the power plant and substation are basic equipment that protect power lines and power apparatus from severe ground faults and lightning currents. The performance of grounding grid affects the safe of power apparatus and staff, and the impulse characteristics of grounding device directly affects the lightning protection performance of power transmission lines. The accurate analysis of the lightning transient performances and the frequency characteristics of grounding devices is the fundament of lightning protection of power system and optimization of the grounding electrode.
     Based on the quasi-static maxwell equation, a finite-element model which takes the displacement current in to account is presented to calculate the response of grounding devices under the fault current with lower frequency in this paper. In this work, open boundaries of earth environment are processed by introducing a spatial transformation; the ill conditioning of the matrix to be solved because of the marked rise in conductivity between ground and copper are resolved by the weak form of finite element method.
     Based on the full wave maxwell equation, a finite-element model which takes the displacement current and the induced current in to account is presented to calculate the response of grounding devices under the fault current with higher frequency in this paper. In this work, open boundaries of earth environment are processed by introducing a spatial transformation too, and the application process of spatial transformation in the vector finite element method is deduced in this work. In order to take the skin effect in the grounding electrode in to account in the vector finite element method, the exact impedance boundary condition is derived out by using the general boundary condition in electromagnetic theory, applying Maxwell equations and considering propagation properties of plane wave. And the exact impedance boundary is used in the interface of grounding conductor and the soil, so the function of grounding electrode on the dispersal of fault current in added in the finite element method, the domain of conductor is not participate in the calculation of finite element modeling at the same time. So the introduction of impedance boundary condition dercrease the amount of calculation. And the frequency characteristic of simple horizontal and vertical grounding rod under fault current with higher frequency is analyzed by the vector finite element modeling.
     Based on the study of grounding performance, this paper makes simulation experimental investigations on the impulse current dispersal regularity of grounding electrodes with various structures, and analyzes the effect of grounding electrode structure, amplitude and soil resistivity on the impulse current dispersal regularity of grounding electrodes.
     This paper presents a numerical method, combined the finite element method in the spatial domain with the finite difference time domain, to calculate the transient impulse response of grounding systems considering the ionization phenomenon. In this numerical method, space-time variable soil resistivity is used to simulate the soil ionization phenomenon where soil resistivity is controlled according to its relationship with the local instantaneous value of the electric field and no a priori hypothesis on the geometrical shape of the ionized region around the electrodes is necessary. The proposed numerical scheme is validated by comparing computed results with experimental results and simulation results in literature. Based on the measurement and simulation results, the impulse response regularity of grounding electrodes is discussed and the effect of ionization on human and installations safety is reported.
     According to the impulse current dispersing experimental results, the tower grounding reduction measures for power transmission line in regions with high soil resistivity are proposed. By using the finite element analysis method, the impulse resistance reduction principle of the star-shaped grounding electrode is analyzed. the simulation results show that the impulse leakage currents on different parts of conductor are balanced by adding spicules, and as a result, it can strengthen local electric field intensity in the space between soil particles and promote the ionization breakdown. Impulse grounding resistance measurement test results in the laboratory further verify the effect on reducing impulse grounding resistance of grounding device with spicules.
引文
[1]何金良,曾嵘.电力系统接地技术[M].北京:科学出版社, 2007.
    [2]李晓丽.变电站接地网冲击特性研究[D].重庆:重庆大学硕士学位论文, 2008.
    [3]张波.变电站接地网频域电磁场数值计算方法研究及其应用[D].保定:华北电力大学博士学位论文, 2003.
    [4]谢广润,电力系统接地技术[M].北京:水利电力出版社, 1991.
    [5] Frank Wenner, A Method of Measuring Earth Resistivity, Bulletin, Washington, D.C.: National Bureau of Standards,1915,12.
    [6] H.B. Dwight, Calculation of Resistances to Ground, AIEE Transactions,1936:1319-1328.
    [7] R. Rudenberg, Grounding Principles and Practice, Part I, II, III, &IV, Electrical Engineering,1945,64(1-4).
    [8] E. D. Sunde, Earth Conduction Effects in Transmission Systems, New York: D. Van Nostrand Company Inc.1949.
    [9] S. J. Schwarz, Analytical Expressions for the Resistance of Grounding Systems, IEEE Trans. Power Apparatus and Systems,1954,73:1011-1016.
    [10] J. Zaborszky, Efficiency of Grounding Grids with Non-uniform Soil, IEEE Trans. Power Apparatus and Systems,1955,74:1230-1233.
    [11] J. Endrenyi, Evaluation of Resistivity Tests for Design of Station Grounds in Non-uniform Soil, IEEE Trans. Power Apparatus and Systems,1963,69:966-970.
    [12] B. Thapar and K. K. Puri, Mesh Potentials in High-voltage Grounding Grids, IEEE Trans. Power Apparatus and Systems,1967,86:249-254.
    [13]陈先禄,刘渝根,黄勇.接地[M].重庆:重庆大学出版社, 2002.
    [14]张金玉,关志成.高电压实验[M].北京:中国电力出版社, 1996.
    [15] R. Kosztaluk, M. Loboda, D. Mukhedkar. Experimental Study Of Transient Ground Impedances [J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(11): 4653-4660.
    [16] M. Ramamoorty, M. M.Babu Narayanan, et al. Transient Performance of Grounding Grids [J]. IEEE Transactions on Power Delivery, 1989, 4(4): 2053-2059.
    [17] Z. StojkoviC, M.S. Savid, J.M. Nahman. Sensitivity Analysis of Experimentally Determined Grounding Grid Impulse Characteristics [J]. IEEE Transactions on Power Delivery, 1998, 13(4): 1136-1142.
    [18] S. Sekioka, H. Hayashida, T. Hara, A. Ametani. Measurements of Grounding Resistances for High Impulse Currents [J]. IEE Proc-Gener. Trans. Distrib, Japan, 1998, 145(6): 693-699.
    [19] Shozo Sekioka, Toshio Sonoda, and Akihiro Ametani. Experimental Study of Current-Dependent Grounding Resistance of Rod Electrode [J]. IEEE Transactions On Power Delivery, 2005, 20(2):1569-1566.
    [20] A. Geri, G. M. Veca, E. Garbagnati, G. Sartorio. Non-linear Behavior of Ground Electrodes under Lightning Surge Currents: Computer Modeling and Comparison with Experimental Results [J]. IEEE Transactions on Magnetic, 1992, 28(2): 1442-1445.
    [21] A. M. Mousa. The Soil Ionization Gradient Associated with Discharge of High Currents into Concentrated Electrodes [J]. IEEE Trans. Power Del., 1994, 9(3): 1669–1677.
    [22] N. Mohamad nor, A. Haddad, H. Griffiths. Determination of Threshold Electric Field Ec of Soil Under High Impulse Currents [J]. IEEE Transactions on Power Delivery, 2005, 20(3): 2108-2113.
    [23] N. Mohamad nor, A. Haddad, H. Griffiths. Characterization of Ionization Phenomena in Soils under Fast Impulses [J]. IEEE Transactions On Power Delivery, 2006, 21(1): 353-361.
    [24] Hideki Motoyama. Electromagnetic Transient Response of Buried Bare Wire and Ground Grid [J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1673-1679.
    [25] Hideki Motoyama. Experimental and Analytical Studies on Lightning Surge Characteristics of a Buried Bare Wire [J]. Electrical Engineering in Japan, 2008, 164(3):35-41.
    [26] Hideki Motoyama. Experimental and Analytical Studies on Lightning Surge Characteristics of Ground Mesh [J]. Electrical Engineering in Japan, 2007, 160(4):16-23.
    [27] Erler J. W., Snowden D. P. High Resolution Studies of the Electrical Breakdown of Soils[J]. IEEE Trans. on Nuclear Science, 1983, NS 30(6): 4564-4567.
    [28]刘继,叶涟源,张学鹏,等.长效化学接地降阻剂接地体大电流冲击特性的研究[J].高电压技术, 1981, (4):1-8.
    [29]文闿成,唐和生,阮世荣.高电阻率土壤中接地体特性的试验[J].电力技术, 1962, (9-10): 30-41.
    [30]王建国,夏长征,文习山.垂直接地体冲击电流作用下接地电阻的测量[J].高电压技术, 2000, 26(5).
    [31] Yanqing Gao, Jinliang He, Jun Zou, et al. Fractal Simulation of Soil Breakdown under Lightning Current [J]. Journal of Electrostatics, 2004, (61):197-207.
    [32]高延庆.土壤冲击击穿机理及接地系统暂态特性研究[D].北京:清华大学博士学位论文, 2003.
    [33] Song Zcqing, He Jingliang, M.R. Raghuveer. Experimental Study on Lightning Breakdown Channels in the Soils [J]. IEE High Voltage Engineering Symp, 1999, 467(2): 426-429.
    [34] Song Zcqing, He Jingliang M.R. Raghuveer. Influence of the Nature of Impulse Current Propagation in Soils on Transient Impedance Characteristics [J]. 2000 Conf. Electrical Insulation and Dielectric Phenomena, 2000, pp: 739–742.
    [35]王保山,万启发,杨迎建,等.长接地棒/极的冲击电流分布特性[J].高电压技术, 1995, 21(1):70-73.
    [36] W. Koch. Grounding Methods for High-Voltage Station with Grounded Neutrals. Electrotechnische Zeitschrift, 1950,71(4):89-91.
    [37] R. K. Keil. The History and Future of IEEE-80, Guide for Substation Grounding. EPRI Workshop on High-Voltage Power System Grounding, Atlanta. GA, May 12-14,1982.
    [38] A. J. McCrocklin, Jr., C. W. Wendlandt. Determination of Resistance to Ground of Grounding Grids. AIEE Trans. PAS, 1952,71:1062-1064.
    [39] H. R. Armstrong. Grounding Electrode Characteristics from Model Tests. AIEE Trans. PAS, 1953,71:1301-1306.
    [40] H. Schmidt. Fundamentals of Measuring Techniques for Model Test of Earthing Arrangements. Electrotechnische Zeitschrift, 1954,75(17):557-559.
    [41] N. Faletti, C. Rossignani, G. Maaman. Some Results of Model Tests on Earthing Installatons for High-Voltage Stations. Energia Elett. (in Italian), 1955,32:1109-1116.
    [42] C. Rossignani, G. Rostagno. Results of Model Tests on the Earthing of Substations, Energia Elett. (in Italian), 1958,35:471-475.
    [43] H. R. Armstrong, L. J. Simpkin. Grounding Electrode Potential Gradients from Model Test. AIEE Trans. on PAS, 1960, 79:618-623.
    [44] B. Thapar, K. K. Puri. Mesh Potential in High Voltage Grounding Grids. IEEE Trans. on PAS, 1967, 86(2): 249-254.
    [45] A. A. Voronia. Cotact Voltages and the Potential of Complex Ground Connections with Homogeneous Soil Model Tests. Electrichestvo (In Russian), No. 7, 1969.
    [46] D. Mukhedkar, Y. Gervais, J. DeJean. Modelling of Grounding Electrode. IEEE Trans. on PAS, 1973, 92(1): 295-297.
    [47] D. Mukhedkar, Y. Gervais, F. Dawalibi. Modelling of Potential Distribution Around a Grounding Electrode. IEEE Trans. on PAS, 1973, 92(5):1455-1459.
    [48] F. Dawalibi, D. Mukhedkar. Optimum Design of Substation Grounding in a Two Layer Earth Structure, Part two: Comparison Between Theoretical and Experimental Result. IEEE Trans. on PAS, 1975, 94(2): 262-266
    [49] E E Oettlh. A New General Estimation Curve for Predicting the Impulse Impedance of Concentrated Earth Electrodes [J]. IEEE Transactions on Power Delivery, 1988, 3(4):2020-2029.
    [50]何金良,陈先禄.输电线路杆塔接地装置冲击特性的模拟原理[J].清华大学学报(自然科学版) , 1994, 34(4): 38-43.
    [51]何金良,曾嵘,陈水明,等.输电线路杆塔冲击接地电阻特性的模拟试验研究[J].清华大学学报(自然科学版), 1999, 39 (5): 5-8.
    [52] Jinliang He, Rong Zeng, Member, Youping Tu, et al. Laboratory Investigation of Impulse Characteristics of Transmission Tower Grounding Devices [J]. IEEE Transactions On Power Delivery, 2003, 18(3):994-1011.
    [53]司马文霞,李晓丽,袁涛,等.不同结构土壤中接地网冲击特性的测量与分析[J].高电压技术, 2008, 34(7): 1342-1346.
    [54] Mazzetti C., Veca G. M. Impulse Behavior of Ground Electrodes [J]. IEEE trans. on power apparatus and systems, 1983, 102(9):3148-3156.
    [55] Gupta B R and Thapar B. Impulse impedance of grounding grids. IEEE Trans. On Power Apparatus and Systems, 1980, 99(6): 2357-2362.
    [56] Carlo M and Giuseppe M V. Impulse behavior of ground electrodes. IEEE Trans. on Power Delivery, 1983, PAS-102(9): 3148-3154.
    [57] Meliopoilos A P and Moharam M G. Transients analysis of grounding systems. IEEE Trans. on Power Apparatus and Systems, 1983, 102(2): 389-399.
    [58] Yaqing Liu, Nelson Theethayi, and Rajeev Thottappillil, An Engineering Model for Transient Analysis of Grounding System Under Lightning Strikes: Non-uniform Transmission-Line Approach, IEEE TRANS. ON POWER DELIVERY, 2005,20(2):722-730.
    [59]辛亮,傅正财,魏本刚.变电站接地网的暂态分析方法综述[J].电网技术, 2007, 31(21): 56-60.
    [60]吴茂林,崔翔.变电站地电位差对屏蔽电缆的电磁干扰分析[J].高电压技术, 2005, 31(3): 53-55.
    [61]郭剑.变电站接地系统冲击特性的全时分析方法研究[D].北京:清华大学博士学位论文, 2005.
    [62] M. Ramamoorty, M. M. B. Narayanan, and S. Parameswaran et al. Transient performance of grounding grids. IEEE Trans. Power Del., vol. 4, no. 4: 2053–2059, Oct. 1989.
    [63] A. Geri,“Behavior of grounding systems excited by high impulse currents: the model and its validation,”IEEE Trans. Power Del., vol. 14, no.3: 1008–1017, Jul. 1999.
    [64] A. Geri and S. F. Visacro,“Grounding systems under surge conditions: comparison between a field model and a circuit model,”in ICLP, Cracow, Poland, Sep. 2–6, 2002.
    [65] A. F. Otero, J. Cidras, and J. L. del Alamo,“Frequency-dependent grounding system calculation by means of a conventional nodal analysis technique,”IEEE Trans. Power Del., vol. 14, no. 3: 873–878, Jul.1999.
    [66] B.R. Gupta, B. Thapar. Impulse Impedance of Grounding Grids [J]. IEEE Trans. on Power Apparatus and Systems, 1980, 99(6):2357-2362.
    [67] Meliopoulos A P, Moharam M G. Transient Analysis of Grounding Systems [J]. IEEE Trans on Power Apparatus and Systems, 1983, 102(2): 389-399.
    [68]夏长征,陈慈萱,文习山.伸长接地体上冲击电流和电压分布特性的研究[J].高电压技术, 2002, 28(5):24-25.
    [69]赵灵,王建国,夏长征,等.考虑火花放电等效半径的输电线路杆塔伸长接地体的冲击接地计算[J].高电压技术, 2003, 39(2):22-24.
    [70]高延庆,何金良,曾嵘.接地网格的雷电冲击特性[J].电工技术杂志, 2002, (12): 9-12.
    [71] Rong Zeng, Xuehai Gong, Jinliang He, et al. Lightning Impulse Performances of Grounding Grids for Substations Considering Soil Ionization[J]. IEEE Transactions on Power Delivery, 2008, 23(2):667-675.
    [72]张波,崔翔,赵志斌,等.计及导体互感的复杂接地网的频域分析方法[J].中国电机工程学报,2003,23(4):77-80.
    [73]张波,崔翔,赵志斌,等.大型变电站接地网的频域分析方法[J].中国电机工程学报,2002,22(9):59-63.
    [74] Leonid Grcev. Computer Analysis of Transient Voltages in Large Grounding Systems [J]. IEEE Transaction on Power Delivery, 1996, 11(2):815-823.
    [75]鲁志伟,文习山,史艳玲,等.大型变电站接地网工频接地参数的数值计算[J].中国电机工程学报, 2003, 23(12):89-93
    [76]张丽萍,袁建生,李中新.变电站不等电位模型数值计算[J].中国电机工程学报,2000,20(1):1-3.
    [77] A. Selby, F. Dawalibi. Determination of Current Distribution in Energized Conductors for the Computation of Electromagnetic Fields [J]. IEEE Transaction on Power Delivery, 1994, 9(2): 1069-1078.
    [78]司马文霞,李晓丽,袁涛.考虑土壤非线性特性的接地网冲击特性分析方法[J].中国电机工程学报,2009,29(16):127-132.
    [79] Grcev L, Dawalibi F. An Electromagnetic Model for Transients in Grounding Systems[J]. IEEE Trans on Power Delivery, 1990, 5(4): 1773-1781.
    [80] L. D. Grcev and M. Heimbach. Frequency Dependent and Transient Characteristics of Substation Grounding Systems[J]. IEEE Trans. Power Del., 1997, 12(1):172-178.
    [81] Markus Heimbach, Leonid D. Grcev. Grounding System Analysis in Transients Programs Applying Electromagnetic Field Approach [J]. IEEE Transactions on Power Delivery, 1997, 12(1):186-193.
    [82] Arnautovski-Toseva V, Grcev L. High Frequency Current Distribution in Horizontal Grounding Systems in Two-Layer Soil[J]. IEEE International Symposium on Electromagnetic Compatibility, Boston, 2003.
    [83] W. Xiong and F. Dawalibi. Transient Performance of Substation Grounding Systems Subjected to Lightning and Similar Surge Currents[J]. IEEE Transactions on Power Delivery, 1992, 9(3): 1412–1420.
    [84] Farid P. Dawalibi, Wei Xiong, Jinxi Ma. Transient Performance of Substation Structures and Associated Grounding Systems[J]. IEEE Transactions On Industry Applications, 1995, 31(3):520-527.
    [85]杨慧娜.大地模型的确定与接地网暂态模拟计算[D].北京:清华大学博士学位论文, 2003.
    [86] Qi Lei, Cui Xiang, Zhao Zhibin, Li Huiqi. Grounding Performance Analysis of the Substation Grounding Grids by Finite Element Method in Frequency Domain. IEEE Trans. on Magntics,vol.43,no.4,April 2007.
    [87]甘艳,阮江军,陈允平.一维有限元与三维有限元耦合法在接地网特性分析中的应用[J].电网技术,2004,28(9):62~66.
    [88] Mladen TRLEP, Anton HAMLER, Marko Jesenik,Bojdan Stumberger. The FEM-BEM Analysis of Complex Grounding Systems. IEEE Trans. on Magnetics, vol. 39, no. 3, May. 2003.
    [89] Anton Habjanic and Mladen Trlep. The Simulation of the Soil Ionization Phenomenon around the Grounding System by the Finite Element Method. IEEE Trans. on Magneitcs, vol. 42, no. 4, Apr 2006.
    [90] Nekhoul B., Guerin C., et al. A Finite Element Method for Calculating the Electromagnetic Fields Generated by Substation Grounding Systems[J]. IEEE Transactions on Magnetics, 1995, 31(3): 2150-2153.
    [91] Anton Habjanic and Mladen Trlep. The Simulation of the Soil Ionization Phenomenon around the Grounding System by the Finite Element Method [J]. IEEE Transactions on Magnetic, 2006, 42(4): 867-870.
    [92] Song Z., Raghuveer M.R., He J. Model for Prediction of Characteristics of Lightning Breakdown Channels in Soil in the Presence of a Buried Cable[J]. IEE Proceedings- Gener. Transm. Distrib., 2003, 150(5): 623–628.
    [93]张榴晨,张松.有限元法在电磁计算中的应用[M].北京:中国铁道出版社, 1996.
    [94]金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社, 1998.
    [95]倪光正,杨仕友,钱秀英,等.工程电磁场数值计算[M].北京:机械工业出版社, 2006.
    [96]王梦禹.电磁学中关于坐标变换的理论研究与实际应用[D].杭州.浙江大学硕士学位论文, 2008.
    [97] A. Stochniol. A General Transformation for Open Boundary Finite Element Method for Electromagnetic Problems[J]. IEEE Transaction on Magnetics, 1992, 28(2): 1679-1681.
    [98]王烨.基于矢量有限元的高频大地电磁法三维数值模拟[D].长沙:中南大学博士学位论文, 2008.
    [99]倪光正.工程电磁场原理[M].北京:高等教育出版社, 2002.
    [100] F. Dawalibi, D. Mukhedkar and D. Bensted, Measured and Computed Current Densities in Buried Ground Conductors [J]. IEEE Trans. on Power Apparatus and Systems, 1981, 100(8):4083-4092.
    [101]黄文武,文习山,谢俊.接地网轴向电流分布的模拟试验[J].高电压技术, 2005, 31(6):76-78.
    [102] Oettle, EE. A new general estimation curve for predicting the impulse impedance of concentrated earth electrodes[J], IEEE Transactions on Power Delivery, 1988, 3(4): 2020-2029.
    [103]何金良,陈先禄.输电线路杆塔接地装置冲击特性的模拟原理.清华大学学报,1993,34(4):38-43.
    [104]陈攀,孙才新,米彦,等.一种用于绝缘子泄漏电流在线监测的宽频带微电流传感器的特性研究[J].中国电机工程学报, 2005, 25(4): 23-27.
    [105] M. Laboda, Z. Pochanke, "Experimental study of electric properties of soil with impulse current injections," in 1985 18th ICLP Munich: 191-198.
    [106] Y. Q. Liu, N. Theethayi, R. M. Gonzalez and R. Thottappillil, "The residual resistivity in soil ionization region around grounding system for different experimental results" in 2003 IEEE International Symposium on Electromagnetic Compatibility: 794-799.
    [107] J. P. Wang, A. C. Liew and M. Darveniza, "Extension of dynamic model of impulse behavior of concentrated grounds at high currents," IEEE Trans. on Power Delivery, vol. 20: 2160-2166, Jul. 2005.
    [108] T. M. Flanagan, C. E. Mallon, R. Denson, et al. Electrical Breakdown Properities of Soil. IEEE Trans. on Nuclear Science, December 1981, 28(6) :4432-4439.
    [109] T. M. Flanagan, C. E. Mallon, R. Denson, et al. Electrical Breakdown Characteristics of Soil. IEEE Trans. on Nuclear Science, December 1982, 29(6):1887-1890.
    [110] A. M. Mousa. The Soil Ionization Gradient Associated with Discharge of High Currents into Concentrated Electrodes [J]. IEEE Trans. Power Del., 1994, 9(3): 1669–1677.
    [111] D. P. Snowdon, J. W. Erler. Initiation of Electrical Breakdown of Soil by Water Vaporization. IEEE Trans. on Nuclear Science, December 1983,30(6):4568-4571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700