变电站接地系统冲击特性的全时分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正确了解接地装置在雷电流作用下的冲击特性是电力系统及建筑物雷电防护的基础。目前国内外现有的研究方法不能同时考虑接地系统暂态响应的时频特性。本文采用时域频域双内插算法合成接地系统的全时域暂态特性,能够有效地处理接地系统的暂态响应的时频特性,改善了以往算法中准确度和效率之间的矛盾。
    首先,本文提出了基于电路理论的扩展不等电位模型法来计算地网暂态的早时响应。该时域计算方法将地网导体间的对地互阻抗考虑进计算模型中,并在此基础上发展了能够考虑土壤电离效应的算法。在将其进一步发展为电路模型后,采用基于电路模型的Bergeron算法进行计算,可完成地网暂态的早时响应计算。
    水平多层土壤中的电流场的计算方法较复杂。根据电流场的边界条件和格林函数表达式通式,本文提出一种计算机自动推导多层土壤格林函数表达式的方法,从而避免了传统方法中需要人工推导公式带来的问题,使多层土壤中电流场的计算更加方便。
    然后本文设计了一维和多维的两阶段自适应采样智能模型拟合算法,提出了基于智能模型拟合算法的接地系统在冲击电流激励下的晚时频域响应计算模型。在不损失计算准确度的前提下,使接地系统暂态计算的频域计算部分的整体效率提高20倍左右,有效地提高了计算速度。
    最后,本文提出了能够兼顾接地系统时变特性和频变特性的暂态全时响应计算模型,并根据接地网暂态计算的特点,建立了将该模型应用于接地系统暂态仿真前的预处理过程。通过与水平接地极和水平接地网的冲击特性试验结果相比较,验证了论文提出的分析方法的准确性。
    同时,本文将提出的方法应用于接地系统雷电暂态特性分析中。通过模拟计算,得出了不同雷电流波形、不同接地网尺寸、不同土壤结构以及不同引流方式等各种因素对接地系统冲击特性的影响规律。
Correctly realizing the lightning transient performances of grounding devices isthe foundament of lightning protections of power system and buildings. At present,the developed methods are still difficult to take into account both the time-variant andfrequency-variant characteristics of the grounding girds. The dissertation proposed amethod based on the Hermite primary function, which interpolates in both the timedomain and frequency domain. It can efficiently handle calculating the transientresponses of grounding grids, and get rid of the contradiction between the precisionand the efficiency to some extent.
    At first, a method called extended unequal potential method is proposed in thisdissertation to obtain correct early time data. It takes into account both the mutualimpedance to ground among grounding conductors and the effect of the ionization inthe soil. The method can be applied with the Bergeron method by transferring thegrounding system into a circuit model.
    The calculations of the current field in multi-layer soil are difficult. According tothe boundary conditions and the general expressions of Green's Functions,a recursivemethod to obtain the exact expressions of Green's Functions in multi-layer earth ispresented in this dissertation. It avoids the error brought by manual deduction andmakes the calculations of the current field in multi-layer soil more precise.
    To the purpose of the full-time response, the late time data are also necessary.One dimensional and multi-dimensional two-stage adaptive sampling methods aredesigned in this dissertation. And then, a method based on the union of the traditionalmethod of moments and the intelligent fitting model is proposed in this dissertation. Itcan accelerate the grounding transient calculation by 20 times without any precisionloss.
    At last, the analysis method of transient full-time response was proposed, whichcan take into account both the time-variant and frequency-variant characteristics ofthe grounding girds simultaneously. According to the particularity of the transientsimulation of grounding systems, a group of preprocesses are constructed for themethod to be applied better in the grounding transient simulation. The experimentalresults verified the precision of the method described in this dissertation.
    Otherwise, the methods discussed in this dissertation were applied to analyze thetransient characteristics of grounding grids. Detailed conclusions about the transientcharacteristics of grounding systems under versatile lightning waveform, grids size,
    soil, and current conducting way were drawn.
引文
[1] Robert J, and Heppe. Computation of potential at surface above an energized grid or other electrode, allowing for non-uniform distribution. IEEE T-PAS, 1979, 98(6): 1978-1989
    [2] Pillai P R and Dick E P. A review on testing and evaluating substation grounding systems. IEEE T-PWRD, 1992, 7(1): 53-61
    [3] Sverak J G, Dick W K, Dodds T H, et al. Safe substation grounding-Part I.IEEE T-PAS, 1981, 100(9): 4281-4290
    [4] Sverak J G, Benson R U, Dick W K, et al. Safe substation grounding-Part II. IEEE T-PAS, 1982, 101(10): 4006-4023
    [5] Otero A F, Cidras J and Garrido C. Frequency analysis of grounding systems. Proc. of 8th International Conference On Harmonics and Quality of Power, 1998, 1: 348-353
    [6] Gupta B R and Thapar B. Impulse impedance of grounding grids. IEEE Trans. on Power Apparatus and Systems, 1980, 99(6): 2357-2362
    [7] Carlo M and Giuseppe M V. Impulse behavior of ground electrodes. IEEE Trans. on Power Delivery, 1983, PAS-102(9): 3148-3154
    [8] Velazquez R and Mukhedkar D. Analytical modelling of grounding electrodes transient behavior. IEEE Trans. on PAS, 1984, 103(5): 1314-1322
    [9] Lorentzou M I and Hatziargyriou N D. Investigation of the effect of mutual coupling of grounding conductors. Electrotechnical Conference, 1998. MELECON 98, 9th Mediterranean, 1: 474-478
    [10] Ramamoorty M, Narayanan M M B, Parameswaran S and Mukhedkar D. Transient performance of grounding grids. IEEE Trans. on Power Delivery, 1989, 4(4): 2053-2059
    [11] Liew A C and Darveniza M. Dynamic model of impulse characteristics of concentrated earth. Proc. IEE, 1974, 121(2): 123-135
    [12] Geri A, Garbagnati E, Veca G M, et al. Non-linear behaviour of ground electrodes under lightning surge currents: Computer modelling and comparison with experimental results. IEEE Trans. on Magnetics, 1992, 28(2): 1442-1445
    [13] 高延庆. 考虑土壤电离的接地系统冲击特性研究:[硕士学位论文]. 北京:清华大学电机系,2001
    [14] Gao Y Q, He J L, Chen S M, et al. Lightning electromagnetic environments of substation considering soil ionization around grounding systems. International Conference on PowerCon, 2002, 4: 2096-2100
    [15] Meliopoilos A P and Moharam M G. Transients analysis of grounding systems. IEEE Trans. on Power Apparatus and Systems, 1983, 102(2): 389-399
    [16] Mazzettie C and Veca G M. Impulse behaviour of grounding electrodes. IEEE Trans. on Power Apparatus and Systems, 1983, 102(9): 3148-3154
    [17] Sunde E D. Earth conduction effects in transmission systems, 2nd edition. New York: Dover publications, 1968
    [18] Menter F E and Grcev L. EMTP-Based model for grounding system analysis. IEEE Trans. on Power Delivery, 1994, 9(4): 1838-1849
    [19] Papalexopoulos A D and Meliopoulos A P. Frequency dependent characteristics of grounding systems. IEEE Trans. on Power Delivery, 1987, 2(4): 1073-1081
    [20] 余绍峰. 考虑时频特性的地网导体的暂态分析:[硕士学位论文]. 北京,清华大学电机系,2003
    [21] Grcev L and Heimbach M. Frequency dependent and transient characteristics of substation grounding systems. IEEE Trans. on Power Delivery, 1997, 12(1): 172-178
    [22] Heimbach M and Grcev L. Grounding system analysis in transients programs applying electromagnetic field approach. IEEE Trans. on Power Delivery, 1997, 12(1): 186-193
    [23] Xiong W and Dawalibi F. Transient performance of substation grounding systems subjected to lightning and similar surge currents. IEEE Trans. on Power Delivery, 1994, 9(3): 1412-1417
    [24] Dawalibi F, Xiong W and Jinxi Ma. Transient performance of substation structures and associated grounding systems. IEEE Trans. on Industry Applications, 1995, 31(3): 520-527
    [25] 曾嵘,陈水明. CDEGS 软件包及其在多层土壤接地设计中的应用. 华东电力,1998,26(6): 29-32
    [26] Dawalibi F and Selbi A. Electromagnetic fields of energized conductors. IEEE Trans. on Power Delivery, 1993, 8(3): 1275-1284
    [27] 张波. 变电站接地网频域电磁场数值计算方法研究及其应用:[博士学位论文]. 华北电力大学,2003
    [28] 杨慧娜. 大地模型的确定与接地网暂态模拟计算:[博士学位论文]. 北京:清华大学,2003
    [29] Nekhoul B, Guerin C, Labie P, et al. A finite element method for calculating the electromagnetic fields generated by substation grounding systems. IEEE Trans. on Magnetics, 1995, 31(3): 2150-2153
    [30] DOMMEL H. W. EMTP theory book, Second Edition. Vancouver: Microtran Power System Analysis Corporation, 1992
    [31] Harrington R F. Field Computation by Moment Methods. New York: Macmillan, 1968
    [32] Giao T N, Sarma M P. Effect of a two layer earth on the electric field near HVDC ground electrodes. IEEE Trans. on PAS, 1972, 91(6): 2356-2365
    [33] Dawalibi F, Mukhedkar D. Optimum design of substation grounding in a two layer earth structure, Part I: Analytical Study. IEEE Trans. on PAS, 1975, 94(2): 252-261
    [34] Dawalibi F, Mukhedkar D. Optimum design of substation grounding in a two layer earth structure, Part II: Comparison between theoretical and experimental results. IEEE Trans. on PAS, 1975, 94(2): 262-266
    [35] Dawalibi F, Mukhedkar D. Optimum design of substation grounding in a two layer earth structure, Part III: Study of grounding grids performance and new electrode configuration. IEEE Trans. on PAS, 1975, 94(2): 267-272
    [36] Dawalibi F, Mukhedkar D. Multi step analysis of interconnected grounding electrodes. IEEE Trans. on PAS, 1976, 95(1): 113-119
    [37] Sverak J G. Optimized grounding grid design using variable spacing techniques. IEEE Trans. on PAS, 1976, 85(1): 362-374
    [38] Heppe R J. Computation of potential at surface above an energized grid or other electrode allowing for non-uniform current distribution. IEEE Trans. on PAS, 1979, 98(6): 1978-1989
    [39] Kouteynikoff P. Numerical computation of the grounding resistance of substations and towers. IEEE Trans. on PAS, 1980, 99(3): 957-965
    [40] Otero A F, Cidras J, Del Alamo J L. Frequency-dependent grounding system calculation by means of a conventional nodal analysis technique. IEEE Trans. on Power Delivery, 1999, 14(3): 873-878
    [41] Cidras J, Otero A F, Garrido C. Nodal frequency analysis of grounding systems considering the soil ionization effect. IEEE Trans. on Power Delivery, 2000, 15(1): 103-107
    [42] Yuan J S, Yang H N, Zhang L P. Simulation of substation grounding grids with unequal-potential. IEEE Trans. on Magnetics, 2000, 36(4): 1468-1471
    [43] 马信山,张济世,王平. 电磁场基础. 北京:清华大学出版社,1995
    [44] 高延庆. 土壤冲击击穿机理及接地系统暂态特性研究:[博士学位论文]. 北京:清华大学电机系,2004
    [45] Wedepohl L M, Wilcox J J. Transit analysis of underground power-transmission systems. Proc.IEE:1973, 120: 253-260
    [46] Saad O, Gaba G, Giroux M A Closed-form approximation for ground return impedance of underground cables. IEEE Trans. on Power Delivery, 1996, 11(3): 1856-1845
    [47] 解广润. 电力系统接地技术. 武汉:水利电力出版社,1996
    [48] 孙为民. 非均匀土壤中发变电站接地系统优化设计研究:[博士学位论文]. 北京,清华大学电机系,2001
    [49] 赵志斌. 分层土壤中点电流源电流场计算的递推算法. 华北电力大学学报,2003,30(1): 22-25
    [50] 袁建生,李仲新. 求解多层媒质中点源电场问题的复镜像. 清华大学学报,1999,39(5): 51-53
    [51] 吴维韩,张芳榴等. 电力系统过电压数值计算. 北京:科学出版社,1989
    [52] Dawalibi F P, Donoso F. Integrated analysis software for grounding, EMF, and EMI. IEEE Trans. on Computer Applications in Power, 1993, 6(2): 19-24
    [53] Vechinski D A. Direct time-domain analysis of arbitrarily shaped conducting or dielectric structures suing patch modeling techniques: [Ph. D. dissertation]. Auburn University, Auburn, AL, 1992
    [54] Rynne P. Instabilities in time marching methods for scattering problems. Electromagn., 1986, 6(1): 129–144
    [55] Tijhuis A G. Toward a stable marching-on-in-time method for two dimensional transient electromagnetic scattering problems. Radio Sci., 1984, 19(5): 1311–1317
    [56] Smith P D. Instabilities in time-marching methods for scattering: Cause and rectification. Electromagn., 1990, 10: 439–451
    [57] Mukhedkar D, Gervais Y, Dawalibi F. Modelling of potential distribution around a Grounding Electrode. IEEE Trans. on PAS, 1973, 92(5): 1455-1459
    [58] Dawalibi F, Mukhedkar D. Transferred earth potentials in power systems. IEEE Trans. on PAS, 1978, 97(1): 90-101
    [59] Dawalibi F, Mukhedkar D. Influence of ground rods on grounding grids. IEEE Trans. on PAS, 1979, 98(6): 2089-2097
    [60] Dawalibe F, Mukhedkar D. Resistance measurement of large grounding systems. IEEE Trans. on PAS, 1979, 98(6): 2348-2354
    [61] Dawalibi F. Measured and Computed Currents Densities in Buried Ground Conductors. IEEE Trans. on PAS, 1981, 100(8): 4083-4091
    [62] EPRI Report, EL-2699. Transmission line grounding. United States: Electric Power Research Institute, 1982
    [63] Grcev L. Computer analysis of transient voltage in large grounding systems. IEEE Trans. on Power delivery, 1993, 11(2): 815-823
    [64] Dawalibi F, Selby A. Determination of current distribution in energized conductors for the computation of electromagnetic fields. IEEE Trans. on Power Delivery, 1994, 9(2): 1069-1078
    [65] 熊邺,方大纲,刘铁军. 电磁场数值计算中的内插和外推. 电波科学学报,2002,17(4):325-328
    [66] 王长清,祝西里. 电磁场计算中的时域有限差分法. 北京:北京大学出版社,1994
    [67] 高本庆. 时域有限差分法. 北京:国防工业出版社,1995
    [68] 李景. 有限元法. 北京:北京邮电大学出版社,1999
    [69] 王秉中. 计算电磁学. 北京:科学出版社,2002
    [70] 谭云华,周乐柱. 三维电大尺寸复杂群目标的单站 RCS 的快速多极子分析. 北京大学学报,2004,40(5): 823-829
    [71] 李继成,张文修,贺西玲. Z-矩阵的预处理迭代方法. 西安石油学院学报. 1999,14(3): 45-46
    [72] 于春阳,汪文秉. 应用空域分解法分析复杂目标的散射特性. 电波科学学报,1995,10(3): 40-45
    [73] Zhang B, Cui X, Zhao Z B. An electromagnetic approach to analyze the performance of the substation's grounding grid in high frequency domain. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2003, 22(3): 756-769
    [74] Liu G and Gedney S D. Perfectly matched layer media for an unconditionally stable three-dimensional ADI-FDTD method. IEEE Trans. on Microwave and Wireless Components Letters, 2000, 10(7): 261-263
    [75] Boag A, Shemer U and Kastner R. Hybrid non-uniform grid based fast global boundary conditions for concave scatterers. Antennas and Propagation Society Symposium, IEEE, 2004, 1: 627-630
    [76] Debliquy O, de Doncker P and Prohoroff S. The use of high-order non-uniform grids in the method of moments applied to electromagnetic scattering. Eleventh International Conference on Antennas and Propagation, 2001, 2: 770-773
    [77] Miller E K. Model-based parameter estimation in electromagnetic Pt. 1. IEEE Trans. on Antennas and Propagation Magazine, 1998, 40(1): 40-52
    [78] Miller E K. Model-based parameter estimation in electromagnetic Pt. 2 IEEE Trans. on Antennas and Propagation Magazine, 1998, 40(2): 51-65
    [79] Miller E K. Model-based parameter estimation in electromagnetic Pt. 3. IEEE Trans. on Antennas and Propagation Magazine, 1998, 40(3): 49-66
    [80] Press W H, Teukolsky S A, Vetterling W T and Flannery B P. Numerical recipes in FORTRAN, Chapter 3. Cambridge University Press, 1992
    [81] Stoer J, Bulirsch R. Introduction to numerical analysis, Chapter 2.2. New York: pringer-Verlag, 1980
    [82] Werner D H, Allard R J. The simultaneous interpolation of antenna radiation patterns in both the spatial and frequency domains using model-based parameter estimation. IEEE Trans. on AP, 2000, 48(3): 383-392
    [83] Chiprout E. and Nakhla M. Asymptotic waveform evaluation and moment matching for interconnect analysis. Boston, MA: Kluwer Academic Publishers, 1994
    [84] Smith W T, Slone R D and Das S K. Recent progress in reduced-order modeling of electrical interconnects using asymptotic waveform evaluation and Pad éapproximation via the Lanczos process. Appl. Comput . Electromagn. Soc. Newslett ., 1997, 12: 46-71
    [85] 童创明,洪伟. 渐近波形估计技术用于介质柱宽角度 RCS 的计算. 电波科学学报,2001,16(1): 72-75
    [86] 汪杰,洪伟. 三维散射体宽角度 RCS 的快速算法. 电波科学学报,2001,16(2): 241-244
    [87] Brittingham J N, Miller E K, and Okada J T. A bi-variate interpolation approach for efficiently and accurately modeling antennas near a half-space. Antennas and Propagation Society International Symposium, 1977, 15: 468-471
    [88] Lehmensiek R and Meyer P. Creating accurate multivariate rational interpolation of microwave circuits by using efficient adaptive sampling to minimize the number of analyses. IEEE Trans. Microwave Theory Tech, 2001, 49(8): 1419-1430
    [89] Lehmensiek R and Meyer P. An efficient adaptive frequency sampling algorithm for model-based parameter estimation as applied to aggressive space mapping. Microwave Opt. Technol. Lett., 2000, 24(1): 71–78
    [90] Marechal Y. Some Meshless Methods for electromagnetic field computations. IEEE Trans. on Magnetics, 1998, 34(5): 3351-3354
    [91] Maurício C C, Jean-Louis C, Maréchal Y, et al. Diffuse-element method and quadtrees: two “ingredients” for an adaptive response surface. IEEE Trans. on magnetics, 2002, 38(2): 1085-1088
    [92] Maurício C C, Jean-Louis C, Maréchal Y, et al. An adaptive method applied to the diffuse element approximation in optimization process. IEEE Trans. on magnetics, 2001, 37(5): 3418-3422
    [93] 茅昕光,林鹤云. 电磁场数值分析的无单元 Galerkin 方法. 东南大学学报(自然科学版),2003,1:1-5
    [94] Maréchal Y, Coulomb J L, Meunier G. Use of the diffuse element method for electromagnetic field computation. IEEE Trans. on magnetics, 1993, 29(2): 1475-1478
    [95] Mauricio C C, Mario L P F, Marechal Y, et al. Optimization of grounding grids by response surfaces and genetic algorithms. IEEE Trans. Magnetics, 2003, 39(3): 1301-1304
    [96] Stoll R L. The Analysis of Eddy Currents. Oxford: Oxford University Press, 1974
    [97] Sommerfeld A. Uber Die Ausbritung der Wellen in der Draftlosen Telegraphe. Annalender Physik, (4th Folge), 1909, 28: 665-736
    [98] 雷银照. 时谐电磁场解析方法. 北京:科学出版社,2000
    [99] Siegel M and King R W P. Electromagnetic fields in a dissipative half-space: A numerical approach. Journal of Applied Physics, 1970, 41: 2415-2423
    [100] Kong J A, Tsang L, Simmons G. Geophysical subsurface probing with radio-frequency interferometry. IEEE Trans. on AP, 1974, 22: 616-620
    [101] Nicol J L. The input impedance of horizontal antennas above an imperfect plane earth. Radio Science, 1980, 15: 471-477
    [102] Rana I E and Alexopoulos N G. Current distribution and input impedance of printed dipole. IEEE Trans. on Ap, 1981, 29: 99-105
    [103] 彭仲秋. Sommerfeld 积分的计算. 成都电讯工程学院学报,1985,4:88-97
    [104] Chow Y L, Yang J J, Fang D G, et al. A closed-form spatial Green's function for the thick microstrip substrate. IEEE Trans. on MTT, 1991, 39: 588-592
    [105] 王建. 广义索末菲积分的离散复镜像算法. 地球物理学报, 1992,35:644-649
    [106] 王建,兰康,彭仲秋. 有耗半空间天线问题中的广义索末菲积分. 电子学报, 1995,23:104-107
    [107] Dawalibi F, Ma J and Southey R D. Behavior of grounding systems in multilayer soils: A parametric analysis. IEEE Trans. on PD, 1994, 9: 334-342
    [108] Philip J D, Philip R. 数值积分. 北京:高等教育出版社,1986,33-129
    [109] Adve R S, Sarkar Y K. Simultaneous time-and frequency-domain extrapolation. IEEE Trans. on Antennas and Propagation, 1998, 46(4): 484-493
    [110] Lo Conte L R, Merletti R, Sandri G V. Hermite expansions of compact support waveforms: applications to myoelectric signals. IEEE Transactions on Biomedical Engineering, 1994, 41(12): 1147-1159
    [111] Rao M M, Sarkar T K, Anjali T and Adve R S. Simultaneous extrapolation in time and frequency domains using hermite expansions. IEEE Trans. on Antennas and Propagation, 1999, 47(6): 1108 –1115
    [112] Tong C, Yuan N C, Li C, Hong W. Simultaneous extrapolation of electromagnetic scattering of multi-wires in time and frequency domains based on Hermite extrapolation. 3rd International Conference on Microwave and Millimeter Wave Technology, 2002: 614-617
    [113] Poularikas A D. The transforms and applications handbook. New York: IEEE Press, 1996.
    [114] Hua Y B, Sarkar Y K. Generalized pencil-of-function method for extracting pole of an EM system from its transient response. IEEE Trans. on AP, 1989, 37(2): 229-234
    [115] IEEE guide for safety in AC substation grounding (Standards style), IEEE Standard 80, 2000
    [116] He J L, Gao Y Q, Zeng R, et al. Effective length of counterpoise wire under lightning current. IEEE Trans. on Power Delivery, 2005, 20(2): 1585-1591

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700