杆塔接地极冲击接地技术及影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
接地技术对电力系统的安全稳定运行有着重要的影响。我国电网正朝着更大规模、更高功率、更加智能的方向发展,这些发展对现阶段电网可靠、安全、有效的运行提出了更高的挑战,因此有必要对输电线路杆塔的接地问题进行深入分析。本文主要研究杆塔接地极布置方式对其冲击接地电阻的影响,获得有效降低杆塔接地极冲击接地电阻的方案,为接地装置在工程设计中提供技术支持。
     本文首先研究接地极冲击接地特性理论及分析方法,利用国际著名的接地工程分析软件CDEGS,分析水平接地极长度对起降阻效果的影响规律。同时分析垂直接地极长度和数量对接地极降阻效果的影响。
     其次,分析接地极长度对Y型接地极降阻效果的影响,随着Y型接地极边长的增加,接地极降阻效果越来越明显,并最终趋于稳定。当增加垂直接地极后,随着垂直接地极长度的增加,工频和冲击条件下的降阻率都呈现出增加的趋势,这种趋势最终趋于稳定。
     再次,分析环型接地极的降阻效果。在工频和冲击条件下,随着辐射接地极长度的增加,接地极降阻效果越来越明显,并最终趋于稳定。在冲击条件下,随着垂直接地极长度的增加,改进接地极的降阻率都迅速的上升,并最终趋于稳定。加垂直接地极后,冲击电流在接地极周围总表现为三维空间的散流,除沿着接地极横向散流外,还会通过垂直接地极向土壤散流。
Grounding technique has important influence to the safe and stable operation of the power system.Power grid in China is moving toward the direction of greater, higher power, more intelligent, The development put forward higher challenge to reliable, safe and effective operation of the present stage grid, So it is necessary to analysis the grounding problem of transmission line tower. This article mainly studies the influence of the grounding electrode layouts to grounding resistance, obtain the scheme of effectively reduce the impulse grounding resistance of tower,provide technical support for the grounding device in the engineering design.
     The impulse theory and analytical method of the grounding electrode was studied in this paper.Using the international famous grounding engineering analysis software CDEGS, the effect of horizontal grounding electrode length to reduction effect was analysised. At the same time, the influence of vertical grounding electrodes length and number to the grounding resistance reduction effect of grounding electrode was analysised.
     Second, the influence of grounding electrode length to reduction effect of Y type grounding electrode was analysised. With the increase of side length of Y type grounding electrode, grounding resistance reduction effect was more and more obvious, and finally tended to be stable. When increasing the vertical grounding electrodes, with the increase of length of vertical grounding electrodes, the power frequency and impulse resistance reduction rate presented increasing trend, this trend tended to be stable finally。
     Again, the typical grounding resistance reduction effect was analysised. Under the condition of power frequency and impulse, with the increase of radiation grounding length, grounding resistance reduction effect was more and more obvious, and finally tended to be stable.Under the impulse current, with the increase of length of vertical grounding electrodes, improved grounding resistance reduction rate were rising rapidly, and finally tended to be stable. After increasing vertical grounding electrodes, the impulse current in grounding electrode always show the three-dimensional space scattered, in addition to flow along the horizontal dispersion, also will flow to the soil through the vertical grounding electrodes.
引文
[1]谢广润,电力系统接地技术[M].北京:水利电力出版社,1991.
    [2]何金良,曾嵘.电力系统接地技术[M].北京:科学出版社,2007.
    [3]樊春雷,吴广宁,李瑞芳,等.高压输电线路绕击跳闸率的研究[J].电瓷避雷器,2009(2):36-39.
    [4]陈国盛,仇炜,李景禄.110kV贵州剑牵线雷害事故分析及防雷措施的探讨[J].电瓷避雷器,2009(5):23-27.
    [5]DL/T 621-1997,交流电气装置的接地[S].北京:中国电力出版社,1998.
    [6]陈先禄,刘渝根,黄勇.接地[M].重庆:重庆大学出版社,2002.
    [7]张金玉,关志成.高电压实验[M].北京:中国电力出版社,1996.
    [8]R. Kosztaluk.M. Loboda,D. Mukhedkar. Experimental Study Of Transient Ground Impedances [J]. IEEE Transactions on Power Apparatus and Systems,1981, 100(11):4653-4660.
    [9]M. Ramamoorty,M. Babu Narayanan, et al. Transient Performance of Grounding Grids[J].IEEE Transactions on Power Delivery,1989,4(4):2053-2059.
    [10]Leonid D. Grcev. Computer Analysis of Transient Voltages in Large Grounding Systems[J].IEEE Transactions on Power Delivery,1996,11(2):815-823.
    [11]S.Sekioka, H. Hayashida, T. Hara, A. Ametani. Measurements of Grounding Resistances for High Impulse Currents[J]. IEE Proc-Gener. Trans. Distrib, Japan,1998,145(6): 693-699.
    [12]Shozo Sekioka, Toshio Sonoda, and Akihiro Ametani. Experimental Study of Current Dependent Grounding Resistance of Rod Electrode[J]. IEEE Transactions On Power Delivery,2005,20(2):1569-1566.
    [13]A. Geri, G. M. Veca, E. Garbagnati, G. Sartorio. Non-linear Behaviour of Ground Electrodes Under Lightning Surge Currents:Computer Modelling and Comparison with Experimental Results[J]. IEEE Transactions on Magnetic,1992,28(2):1442-1445.
    [14]A.M.Mousa.The soil Ionization Gradient Associated with Discharge of High Currents into Concentrated Electrodes[J].IEEETrans.Power Del.,1994,9(3):1669-1677.
    [15]N.Mohamad nor,A. Haddad,H. Griffiths.Determination of Threshold Electric Field Ec of soil Under High ImPulse Currents[J].IEEE Transactionson Power Delivery,2005,20(3): 2108-2113.
    [16]N.Mohamad nor,A. Haddad,H. Griffiths.Characterization of Ionization Phenomena in soil under Fast ImPulses[J].IEEE Transactions On Power Delivery,2006,21(1):353-361.
    [17]Hideki Motoyama.Electromagnetic Transient ResPonse of Buried Bare Wireand Ground Grid[J].IEEE Transactions on Power Delivery,2007,22(3):1673-1679.
    [18]Hideki Motoyama. Experimental and Analytical Studies on Lightuing Surge Characteristics of a Buried Bare Wire [J].Electrical Engineering in Japan,2008,164(3):35-41.
    [19]Hideki Motoyama. Experimental and Analytical Studies on Lightuing Surge Characteristics of Ground Mesh[J].Electrical Engineering in Japan,2007,160(4):16-23.
    [20]ErlerJ. W,Snowden D.P.High Resolution Studies of the Electrical Breakdown of Soils[J].IEEE Trans, on Nuclear Science,1983,NS 30(6):4564-4567.
    [21]刘继,叶涟源,张学鹏,等.长效化学接地降阻剂接地体大电流冲击特性的研究[J].高电压技术,1981,(4):1-8.
    [22]文闿成,唐和生,阮世荣.高电阻率土壤中接地体特性的试验[J].电力技术,1962,(9-10):30-41.
    [23]王建国,夏长征,文习山.垂直接地体冲击电流作用下接地电阻的测量[J].高电压技术,2000,26(5).
    [24]夏长征,陈慈萱.单位长度伸长接地体冲击特性的真型试验[J].高电压技术,2001,27(3):34-35.
    [25]N. Faletti,C. Rossignani,G Maaman.Some Results of Model Testson Earthing Installatons for High-Voltage Stations.Energia Elett.(inltalian),1955,32:1109-1116
    [26]C.Rossignani,G Rostagno.Results of Model Tests on the Earthing of Substations,Energia Elett.(inItalian),1958,35:471-475.
    [27]D. Mukhedkar,Y Gervais.F. Dawalibi. Modelling of Potential Distribution Around a Grounding Electrode.IEEE Trans.on PAS,1973,92(5):1455-1459.
    [28]F. Dawalibi,D. Mukhedkar. Optimum Design of Substation Grounding in a Two Layer Earth Structure,Part two:Comparison Between Theoretical and Experimental Result. IEEE Trans.on PAS,1975,94(2):262-266.
    [29]何金良,陈先禄.输电线路杆塔接地装置冲击特性的模拟原理[J].清华大学学报(自然科学版),1994,34(4):38-43.
    [30]何金良,曾嵘,陈水明,等.输电线路杆塔冲击接地电阻特性的模拟试验研究[J].清华大学学报(自然科学版),1999,39(5):5-8.
    [31]Jinliang He, Rong Zeng, Member, Youping Tu, et al.Laboratory Investigation of Impulse Characteristics of Transmission Tower Grounding Devices[J].IEEE Transactions On Power Delivery,2003,18(3):994-1011.
    [32]A. Geri, G M. Veca, E. Garbagnati, G. Sartorio. Non-linear Behaviour of Ground Electrodes Under Lightning Surge Currents:Computer Modelling and Comparison with Experimental Results[J]. IEEE Transactions on Magnetic,1992,28(2):1442-1445.
    [33]Meliopoulos A P, Moharam M G. Transient Analysis of Grounding Systems[J]. IEEE Trans on Power Apparatus and Systems,1983,102(2):389-399.
    [34]夏长征,陈慈萱,文习山.伸长接地体上冲击电流和电压分布特性的研究[J].高电压技术,2002,28(5):24-25.
    [35]赵灵,王建国,夏长征,等.考虑火花放电等效半径的输电线路杆塔伸长接地体的冲击接地计算[J].高电压技术,2003,39(2):22-24.
    [36]高延庆,何金良,曾嵘.接地网格的雷电冲击特性[J].电工技术杂志,2002,(12):9-12.
    [37]Rong Zeng, Xuehai Gong, Jinliang He, et al. Lightning Impulse Performances of Grounding Grids for Substations Considering Soil Ionization[J]. IEEE Transactions on Power Delivery,2008,23(2):667-675.
    [38]李晓丽.变电站接地网冲击特性研究[D].重庆:重庆大学硕士学位论文,2008.
    [39]Mazzetti C, Veca G. M..Impulse Behavior of Ground Electrodes[J]. IEEE trans, on power apparatus and systems,1983,102(9):3148-3156.
    [40]齐磊,崔翔,赵志斌.复杂接地系统冲击接地特性的数值计算及试验[J].电网技术,2006,30(13):66-69.
    [41]吴茂林,崔翔.变电站地电位差对屏蔽电缆的电磁干扰分析[J].高电压技术,2005,31(3):53-55.
    [42]Menter F E and Greev L.EMTP-Based model for grounding system analysis.IEEE Trans, on Power Delivery,1994,9(4):1838-1849.
    [43]Papalexopoulos A D and Meliopoulos A P,Frequency dependent characteristics of grounding systems.IEEE Trans, on Power Delivery,1987,2(4):1073-1081.
    [44]Sunde E D.Earth conduction effects in transmission system,2nd edition.New York:Dover publications,1968.
    [45]余绍峰.考虑时频特性的地网导体的暂态分析[D].北京,清华大学硕士学位论文,2003.
    [46]Grcev L and Heimbach M. Frequency dependent and transient characteristics of substation grounding systems.IEEE Trans, on Power Delivery,1997,12(1):172-178.
    [47]Heimbach M and Grcev L.Grounding system analysis in transients programs applying electromagnetic field approach. IEEE Trans, on Power Delivery,1997,12(1):186-193
    [48]Xiong W and Dawalibi F. Transient performance of substation grounding systems subjected to lightning and similar surge currents. IEEE Trans, on Power Delivery,1994,9(3):1412-1417.
    [49]Dawalibi F, Xiong W and Jinxi Ma.Transient performance of substation structures and associated grounding systems.IEEE Trans, on Industry Applicayions, 1995,31(3):520-527.
    [50]曾嵘,陈水明CDEGS软件包及其在多层土壤接地设计中的应用.华东电力,1998,26(6):29-32.
    [51]Dawalibi F and Selbi A.Electromagnetic field of energized conductors. IEEE Trans, on Power Delivery,1993,8(3):1275-1284.
    [52]杨慧娜.大地模型的确定与接地网暂态模拟计算[D].北京:清华大学博士学位论文,2003.
    [53]张波.变电站接地网频域电磁场数值计算方法研究及其应用[D].保定:华北电力大学博士学位论文,2003.
    [54]甘艳,阮江军,陈允平.一维有限元与三维有限元耦合法在接地网特性分析中的应用[J].电网技术,2004,28(9):62-66.
    [55]Qi Lei, Cui Xiang, Zhao Zhibin, Li Huiqi. Grounding Performance Analysis of the Substation Grounding Grids by Finite Element Method in Frequency Domain [J]. IEEE Trans. On Magntics,2007,43(4):1181-1184.
    [56]Nekhoul B, Guerin C, et al. A Finite Element Method for Calculating the Electromagnetic Fields Generated by Substation Grounding Systems[J]. IEEE Transactions on Magnetics,1995,31(3):2150-2153.
    [57]Anton Habjanic and Mladen Trlep. The Simulation of the Soil Ionization Phenomenon around the Grounding System by the Finite Element Method [J]. IEEE Transactions on Magnetic,2006,42(4):867-870.
    [58]Song Z., Raghuveer M.R., He J. Model for Prediction of Characteristics of Lightning Breakdown Channels in Soil in the Presence of a Buried Cable[J]. IEE Proceedings-Gener. Transm. Distrib,2003,150(5):623-628
    [59]彭飞.防雷接地中的冲击接地电阻[J].电气技术,2009,(10):72-75.
    [60]杨财伟,司马文霞,袁涛,等.冲击电流下接地极屏蔽效应的试验研究[J].高电压技术,2008,34(12):2609-2615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700