在线圈中心测量磁场垂直分量的频率域电磁测深方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
频率域电磁测深是常用的电磁勘探方法之一。现有的人工源频率域电磁测深(例如CSAMT或MELOS方法),理论上都是以电偶极源或者磁偶极源的公式为基础,要求在离场源比较远、使得偶极子公式能够成立,甚至远区近似公式能够成立的地方进行测量。所测量的信号,与测量点到场源中心的距离的3次方(或更高方次)成反比,非常微弱。至今还没有一种在场源中心进行观测的、近区的频率域电磁测深方法。
     本文是在何继善院士发明的广域电磁法理论框架下,详细开展了在线圈中心(也就是场源中心)进行观测垂直磁场分量的频率域电磁测深方法,在一定频率范围内载流观测线圈中心电磁场的磁场垂直分量Hz的模,或者其虚分量ImHz或实分量ReHz。本研究能够弥补远区人工源频率域电磁测深的不足,结束频率域电磁测深不能在近区观测的历史。
     本文提出的在载流线圈中心观测人工源电磁场的磁场垂直分量的方法,包括3种测量和提取视电阻率的方式。一是观测线圈中心人工源电磁场的磁场垂直分量的模|Hz|提取视电阻率,二是观测线圈中心人工源电磁场的磁场垂直分量的虚分量ImHz提取视电阻率,三是观测线圈中心人工源电磁场的磁场垂直分量的实分量ReHz提取视电阻率。
     与现有的频率域电磁测深方法相比,本研究的创新点是:
     1.研究了载流线圈中心测量磁场垂直分量进行频率域电磁测深的可行性,提出三种进行测深的方法:(1),测量磁场垂直分量的模|Hz|的电磁测深法;(2),测量磁场垂直分量的虚分量ImHz的电磁测深法;(3)测量磁场垂直分量的实分量ReHz的电磁测深法。
     2.测量线圈中心磁场垂直分量的模|Hz|,采用多次迭代、逐次逼近的方法提取视电阻率,打破了频率域电磁测深不能在近区观测的限制,迭代的精度可事先设定,人为掌握,精度高。
     3.通过两个不同频率磁场垂直分量虚分量ImHz或实分量ReHz的双频差值(频散率)提取视电阻率,巧妙地地消去了一次磁场的影响,使得在近区进行频率域电磁测深成为现实。特别是测量虚分量ImHz获得的视电阻率,对地下的几何结构和电性分布变化敏感,异常的幅度和宽度大,尤其低频渐近线对基底电性特征的反映明显。
     4.将何继善院士提出的伪随机多频组合电流移植到本论文研究的方法中,n个频率的激励电流一次性地同时发送、同时接收n个频率的响应电位差,时间省,效率高,抗干扰能力强。
     5.在供电线圈的中心进行近区频率域测量,信号强,观测精度高。现有的其它频率域电磁测深方法(例如CSAMT法或MELOS法),需要在离线圈中心很远的、使远区近似公式或者偶极子公式得以成立的地方进行测量。由于场的强度与观测点到线圈中心的距离的3次方(甚至更高次方)成反比,远离线圈中心的场非常微弱,难以测量准确。本方法直接在线圈中心测量,垂直磁场Hz的信号强大,容易测量准确。可以减少读数叠加的次数,节省读数时间,提高工效。
     本文内容包括五章。第一章绪论,第二章线圈中心频率域电磁场的基本理论,第三章线圈中心频率域电磁测深的基本原理,第四章线圈中心测量磁场垂直分量提取视电阻率的数值模拟与分析,第五章结论与建议。
Frequency domain electromagnetic sounding is one of the commonly-used electromagnetic exploration methods. In theory, existing artificial sources in frequency domain electromagnetic sounding (for example, CSAMT or MELOS method) are based on the source formulas of electric dipole or magnetic dipole source, requiring to make the measurement at a distance that the dipole formula can be established, even the distance as far as where the approximate formulas can be established. The measured signal source is very weak and inversely proportional to the three power (or more) of the distance between the observation point and the source center. Hitherto there is no near-region frequency domain electromagnetic sounding method that conducts the observation at the source center.
     This paper studies the frequency domain electromagnetic sounding method that conducts the observation at coil center (that is, field source center), observing the magnetic field vertical component, or the virtual reality component or components of the model at the electromagnetic coil center in a certain carrier frequency range. This study can make up for the insufficiency of far-region artificial source in frequency domain electromagnetic sounding and puts an end to the history that frequency domain electromagnetic sounding can not conduct observation in near region.
     This paper puts forward a method to observe electromagnetic field vertical component artificial sources in the current-carrying coil center, including three kinds of apparent resistivity measurement and extraction means. The first is the observation of vertical component of the magnetic field apparent resistivity model extraction in the artificial source electromagnetic coil center, the second the observation of the magnetic field vertical component of the imaginary component extraction resistivity in the artificial source electromagnetic coil center, and the third is the observation of magnetic field perpendicular to the artificial source Real component extraction component apparent resistivity in the observed electromagnetic coil center.
     Compared with the existing frequency domain electromagnetic sounding methods, this paper has the innovations points as below:
     1. This papers studies the feasibility of measuring the carrier component of magnetic field perpendicular in the coil center to measure the frequency domain electromagnetic sounding and puts forward three methods for sounding:(1) the electromagnetic sounding of measuring the magnetic field vertical component; (2) the electromagnetic sounding of measuring the vertical magnetic field component of the virtual component; (3) the electromagnetic sounding of measuring the magnetic field vertical component of the real component.
     2. The measurement of the magnetic field vertical component of the coil center model adopts the use of multiple iterations, successive approximation method to make the extraction of the apparent resistivity, breaking the limitation that frequency domain electromagnetic sounding can not be observed in the near regions; the accuracy of iteration can be set in advance, hence to realize human control and high accuracy.
     3. Through two different frequency components of the magnetic field, that is the imaginary or real component of the vertical component, the frequency difference (dispersion ratio) of apparent resistivity can be extracted, hence cleverly eliminating the impact of primary magnetic field and realizing frequency domain electromagnetic sounding in the near area. In particular, the apparent resistivity obtained by measuring the imaginary component is sensitive to the change of the underground geometric structure and electrical distribution and can show large anomalies of the amplitude and width, especially the significant electrical characteristics reflected in the low-frequency asymptotes.
     4. The study methods of this paper adopts the pseudo-random multi-frequency current combination put forward by Mr. He Jishan, to simultaneously send n-potential frequency excitation current and receive n-potential difference of the frequency response, hence saving time and realizing high efficiency and anti-interference ability.
     5. Strong signal and high precision can be realized in near-region frequency domain measurements in the power supply coil center. For other existing frequency domain electromagnetic sounding methods (such as CSAMT or MELOS), the measurement can be realized only when the far dipole approximation formula or dipole formula can be established far from the coil center. Due to the fact that the intensity of the field is inversely proportional to the three power (or more) of the distance between the observation points and the source center, the field far from the coil center is very weak and difficult to be measured accurately. The method put forward in this paper directly conducts the measurement in the coil center, and it is easy to realize accurate measurement because there is strong signal at the perpendicular magnetic field. It can reduce the readings superimposed, save the reading time and improve efficiency.
     This paper includes five chapters. Chapter I is Introduction, Chapter II the basic theory of coil center frequency of electromagnetic field, Chapter III the basic principle of coil center frequency domain electromagnetic sounding, Chapter IV the numerical simulation and analysis on the apparent resistivity extracted from measuring the magnetic field vertical component of the coil center, and Chapter V the conclusion and suggestions.
引文
[1]何继善.广域电磁法和伪随机信号电法.[M]北京:高等教育出版社,2010
    [2]何继善.可控源音频大地电磁法.[M]长沙:中南工业大学出版社,1990
    [3]何继善.频率域电法的新进展.地球物理学进展,2007,22(004):1250-1254
    [4]李金铭.电法勘探方法发展概况.物探与化探,1996,20(004):250-258
    [5]何继善.双频激电法.[M]北京:高等教育出版社,2006
    [6]何继善广域电磁法研究[J]中南大学学报自然科学版,中南大学出版社,2010,41(3):1065-1073.
    [7]何继善等编译.可控源音频大地电磁法[M].长沙:中南工业大学出版社,1999.
    [8]何继善.近区交流电阻率法及其应用[J].中国有色金属学报,1994.12,4(4):1-4.
    [9]何继善.2n系列伪随机信号及应用[J].中国地球物理学会年刊,西安地图出版社,1998.10,199.
    [10]何继善.频率域电法的新进展[J].地球物理学进展,2007,22(4):1250-1254.
    [11]何继善,鲍力知.海洋电磁法研究的现状和进展[J].地球物理学进展,1999.3,14(1):7-39
    [12]何继善,鲍力知.海底无限长水平线电流源电磁场[J].中南工业大学学报自然科学版,中南工业大学出版社,2001,32(6):551-554.
    [13]河北省地质矿产局物探大队.磁偶极源频率测深法[M].北京:地质出版社,1985.
    [14]何继善.电法勘探发展和展望.地球物理学报.1997,40(增刊):308-316
    [15]何继善,鲍力知.海底无限长水平线电源的电磁场.中南工业大学学报,2001,(6):551-554
    [16]考夫曼A A,凯勒G V.大地电磁测深法[M].北京:地质出版社,1987.
    [17]刘振铎,石维熊.垂直磁偶极子电磁频率测深法[J].物探与化探,1980,(5,6).
    [18]马可H.系统理论方法——频谱变换及其应用.冯锡钰译.北京:人民教育出版社,1981
    [19]南京工学院数学教研组.积分变换.北京:人民教育出版社,1978
    [20]牛之琏.时间域电磁法原理[M].长沙:中南大学出版社,2007.
    [21]纳比吉安(Nabighian M N.)主编.勘查地球物理-电磁法[M].赵经祥译.北京:地质出版社,1992.
    [22]任怀宗,师先进.特殊函数及其应用[M].长沙:中南工业大学出版社,1986.
    [23]苏发,何继善.水平载流线圈中心点组合波频域电磁测深视电阻率定义[J].物探与化探,1995.10,19(5):379-384.
    [24]苏发,何继善.近区组合波频域电磁测深视电阻率的一种改进形式[J].物探与化探,1995.12,19(6):456-461.
    [25]苏发,何继善等.双频组合波理论及其在电磁测深领域中的应用[J].中国地球物理学会年刊,地震出版社,1994.8,280.
    [26]苏发,何继善,汪文秉.磁场垂直分量正交部分在近区频率电磁测深中的作用[J].中国地球物理学会年刊,石油工业出版社,1995.9,346.
    [27]苏发,何继善,汪文秉.水平载流回线近区组合波频率电磁测深视电阻率[J].中国地球物理学会年刊,石油工业出版社,1995.9,347.
    [28]苏发,何继善,温佩琳.近区频率域电磁测深研究中的一种数值计算方法[J].中南矿冶学院学报,1994.8,25(5):19-22.
    [29]苏发, 何继善, 温佩琳.双频组合波频率域电磁测深中频比ω2/ω1对测深结果的影响(摘要)[J].中南矿冶学院学报,1994.8,25(5):79-80.
    [30]苏发,汤井田,何继善.水平载流线圈中心点组合波频域率测深研究[J].中南矿冶学院学报,1993.12,24(2):196-200.
    [31]苏发,汤井田,何继善,温佩琳.电磁测深中视电阻率假异常现象分析[J].中国有色金属学报,1995.12,5(4):14-16.
    [32]苏发,汤井田,何继善,温佩琳.源近区频域电磁测深视电阻率的一种数值计算方法[J].中国有色金属学报,1996.3,6(3): 6-10.
    [33]苏朱刘, 胡文宝.中心回线方式瞬变电磁测深虚拟全区祝电阻率和一维反演方法[J].石油物探,2002,41(2).
    [34]汤井田, 何继善.可控源音频大地电磁法及其应用[M].中南大学出版社,2005.12.
    [35]万尼安.电磁测深基础[M].北京:煤炭工业出版社,1979.
    [36]万哲先.代数和编码[M].北京:科学出版社,1980.
    [37]王连祥,方德植等.数学手册[M].北京:人民教育出版社,1979·
    [38]薛琴访.场论[M].北京:中国工业出版社,1964.
    [39]Abramovitz M. Stegun I. A handbook of mathematical functions. New York: Dover Publ Inc,1964
    [40]Goldstein M A, Strangway D W. Audio-frequency magnetitellurics with a grounded-electric dipole source[J], Geophysics,1975,40:669-683.
    [41]He Jishan, Xiong Bin, Bao Li-zhi, Shen Ping, Fu Guo-Hong. A Direct Induced-Polarization Decoupling Scheme by Chop-Wave[J]. Chinese Journal of Geophysics,2006,49(6):1684-1692.
    [42]He Ji-shan, Bao Li-zhi. The electromagnetic field of infinite length wire current source on the sea floor[J]. Journal of Central South university(science and technology),2001,32 (6):551-554.
    [43]He Ji-shan, Bao Li-zhi. The actuality and development of marine electromagnetic method [J]. Progress in Geophysics,1999.3,14 (1):7-39
    [44]Kaufman A A and Keller G V. Frequency and Transient Soundings[M]. Elsevier Science Publishes B.V.,1983.
    [45]Ward S H. Electrical, electromagnetic, and magneto telluric methods[J]. Geophysics,1980,45(11):1659-1666.
    [46]Ward S H. Electromagnetic theory for geophysical applications[M]. Mining Geophysics, Vol. Ⅱ, Theory. Society of Exploration Geophysics,1971,13-196.
    [48]鲍力知.S ommerfeld-Fourier积分索源, 《防灾减灾工程理论与实践》[M].长沙:中南大学出版社,2001,P50-53.
    [49]鲍力知.层状大地表面上水平电流环内外的谐变电磁场[J]中南矿冶学院学报1994(增刊)
    [50]曹昌祺.垂直磁极变频测深的低频特性和高阻层的穿透问题[J]地球物理学报,1981,24(2).
    [51]曹昌祺.水平分层大地的交流视电阻率[J].地球物理学报,1978,21(3).
    [52]曹昌祺.地面导线环的辐射电阻[J].地球物理学报,1978,21(1).
    [53]刘桂芹.简述瞬变电磁法(TEM)的研究现状、进展与问题.物探化探计算技术,2007,29(增刊):108-110
    [54]薛国强,李貅,底青云.瞬变电磁法理论与应用研究进展.地球物理学进展,2007,22(004):1195-1200
    [55]汤井田,何继善.可控源音频大地电磁法及其应用.长沙:中南大学出版社,2005
    [56]Tikhonov A. Determination of the electrical characteristics of the deep strata of the Earth's crust. Dok Akad Nauk,1950,73(2):295-297
    [57]Cagniard L. BASIC THEORY OF THE MAGNETO-TELLURIC METHOD OF GEOPHYSICAL PROSPECTING. Geophysics,1953,18(3):605-635
    [58]陈乐寿,王光锷.大地电磁测深法.北京:地质出版社,1990
    [59]陈乐寿.大地电磁测深一一探测地球深部电性和物质状态的一种有效手段.自然杂志,2009,31(001):39-46
    [60]Zonge K, Hughes L. Controlled source audio-frequency magnetotellurics. Electromagnetic methods in applied geophysics,1991,2(Part B):713-809
    [61]Zonge K, Wynn J. Recent advances and applications in complex resistivity measurements. Geophysics,1975,40(1):851-864
    [62]Zonge engineering and research organization. GDP232Ⅱ. http://www. Zonge.com/grad P322. htm
    [63]Pelton W, Ward S, Hallof P, et al. Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics,1978,43(3):588-609
    [64]赵国泽,陈小斌,汤吉.中国地球电磁法新进展和发展趋势.地球物理学进展,2007,22(004):1171-1180
    [65]嵇艳鞠,林君,王忠.瞬变电磁接收装置对浅层探测的畸变分析与数值剔除.地球物理学进展,2007,22(001):262-267
    [66]嵇艳鞠,林君,于生宝,et al. ATTEM系统中电流关断期间瞬变电磁场响应求解的研究.地球物理学报,2006,49(006):1884-1890
    [67]Stratagem Operation Manual. EMI ElectroMagnetic Instruments, Inc.,2007
    [68]郭建强,武毅Stratagem^TM EH-4电导率成像系统简介及应用.物探与化探,1998,22(006):458-464
    [69]朱晓颖.大地电磁法应用和进展.中国地球物理学会第22届年会论文集,2006:
    [70]刘国栋.频率域电磁法仪的最新进展.第8届中国国际地球电磁学讨论会论文集,2007:
    [71]林品荣,赵子言.分布式被动源电磁法系统及其应用.地震地质,2001,23(002):138-142
    [72]魏文博.我国大地电磁测深新进展及瞻望.地球物理学进展,2002,17(002):245-254
    [73]程德福,王君,李秀平,et al混场源电磁法仪器研制进展.地球物理学进展,2004,19(004):778-781
    [74]邓明,李哲,魏文博,et al带远参考测量方式的海底大地电磁同步采集技术.地质与勘探,2003,39(005):77-80
    [75]邓明,魏文博.海底大地电磁信号采集的技术难点.现代地质,2002,16(001):94-99
    [76]邓明,魏文博.海底天然大地电磁场的探测.测控技术,2003,22(001):5-8
    [77]杜刚,魏文博,邓明,et al海底大地电磁数据采集器高精度应急时钟源的设计.物探与化探,2004,28(004):303-306
    [78]魏文博,邓明.我国海底大地电磁探测技术研究的进展.地震地质,2001,23(002):131-137
    [79]陆其鹄,彭克中,易碧金.我国地球物理仪器的发展.地球物理学进展,2007,22(004):1332-1337
    [80]陆其鹄,孙进忠.发展技术,增强基础——地球物理仪器国际化与地球物理技术在工程上的应用研讨会综述.地球物理学进展,2004,19(004):726-729
    [81]滕吉文.中国地球物理仪器和实验设备研究与研制的发展与导向.地球物理学进展,2005,20(002):276-281
    [82]滕吉文.中国地球物理仪器的研制和产业化评述.石油物探,2006,45(003):209-216
    [83]陈儒军.伪随机多频电磁法观测系统研究:[博士学位论文].长沙:中南大学,2003
    [84]Matzander U. ADU-07Operating Manual. Metronix Measurement Instruments and Electronics Ltd.,2007
    [85]GDP-32Ⅱ Manual. Zonge Engineering &Research Organization, Inc.,2002
    [86]System 2000.net User Guide. Phoenix Geophysics Limited.,2006
    [87]刘国栋:GMS-07综合电磁法仪.In电磁法勘探仪器.北京:北京欧华联科技有限责任公司;2009
    [88]ZONGE GGT-30 GEOPHYSICAL TRANSMITTER MAINTENANCE and REPAIR MANUAL. Zonge Engineering & Research Organization, Inc.,2001
    [89]T-200 HIGH POWERED CURRENT SOURCE. http://www.phoenix-geophysics.com/products/transmitters/t-200/
    [90]滕吉文.当代中国地球物理学向何处去.地球物理学进展,2006,21(002):327-339
    [91]何继善.双频道激电法研究EM.长沙:湖南科学技术出版社,1989
    [92]何继善.2n系列伪随机信号及应用中国地球物理年会年刊.西安:西安地图出版社,1998:
    [93]何继善,柳建新.伪随机多频相位法及其应用简介.中国有色金属学报,2002,12(002):374-376
    [94]何继善.伪随机三频电法研究.中国有色金属学报,1994,4(001):1-7
    [95]罗维斌.伪随机海洋可控源多道电磁测深法研究:[博士学位论文].长沙:中南大学,2007
    [96]考夫曼A,凯勒G频率域和时间域电磁测深.1987
    [97]朴化荣.电磁测深法原理.北京:地质出版社,1991
    [98]何继善.一种主动源频率域电法勘探方法.中国专利,00113439.6,2001-12-5
    [99]何继善.一种地电场伪随机地电响应测量装置及方法.中国专利,200510031324.2,2005-10-19
    [100]何继善.一种全区电偶源频率域电磁测深方法及装置.中国专利,200810031069.5,2008-9-10
    [101]裴婧.广域电磁接收机硬件设计与实现:[硕士学位论文].长沙:中南大学,2010
    [102]蒋奇云.广域电磁测深法仪器研究:[博士学位论文].中南大学,2010
    [103]余云春.广域电磁法一维正反演:[硕士学位论文].中南大学,1010
    [104]佟铁刚.E-Hz广域电磁方法研究:[博士学位论文].中南大学,2010
    [105]赵国泽:地震-火山研究中电磁法研究的新进展.In中国地震学会成立20周年纪念文集.1999
    [106]白宜诚,左桓,崔燕丽.WDD型伪随机多功能电法发送机研制.物探与化探,2004,28(006):536-539
    [107]何继善,蒋奇云,宾亚新.伪随机信号发送机.中国专利,200920259157.0,2009-12-3
    [108]苏发.组合波近区频率域电磁测深研究:[博士学位论文].中南工业大学,1996
    [109]陈儒军.智能电法勘探观测系统-设计与实现:[博士后研究报告].中南大学,2007
    [110]陈儒军,刘石,蒋奇云.高可靠性大功率电法勘探发送机研究.中国地球物理学会第二十三届年会论文集.2007:
    [111]张友山,何继善.DF一1微机程控多功能大功率发送机的研制.物探与化探,1995,19(002):142-147
    [112]Qiyun J, Jishan H, Ping S, et al. The hardware design of a mine resistivity tomography instrument. IEEE,2009:235-238.
    [113]汤井田,公劲喆,罗维斌.基于CPLD的逆重复m序列伪随机信号发生器.工程地球物理学报,2008,5(002):141-147
    [114]于生宝,王忠,嵇艳鞠.GPS同步瞬变电磁探测系统设计.电子测量与仪器 学报,2005,19(004):39-42
    [115]刘石,陈儒军,颜良,et al. IPM在电法发送机上应用时的死区时间选择.地球物理学进展,2006,21(001):314-318
    [116]刘石,陈儒军,颜良,et al基于IPM的电法勘探发送机逆变器系统.物探与化探,2006,30(5):
    [117]杨德刚,赵良炳.死区时间的三个要素及无死区控制.电力电子技术,1999,33(003):40-43
    [118]曲学基,曲敬铠,于明扬.电力电子整流技术及应用.北京:电子.Y-.tk出版社,2008
    [119]王云亮,周渊深,舒志兵.电力电子技术.北京:电子工业出版社,2004
    120]王兆安,黄俊.电力电子变流技术.北京:机械工业出版社,2004
    [121]张立.现代电力电子技术基础.北京:高等教育出版社,1999
    [122]Arrillaga J, Watson N. Power system harmonics. Wiley,2003
    [123]Wakileh G. Power systems harmonics:fundamentals, analysis, and filter design. Springer Verlag,2001
    [124]王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998
    [125]黄海宏,王海欣,张毅,et al. PWM整流电路的原理分析.电气电子教学学报,2007,29(004):28-30
    [126]徐小品,黄进,杨家强.瞬时功率控制在三相PWM整流中的应用.电力电子技术,2004,38(002):30-31
    [127]姚为正,王兆安.三相大功率PWM整流电路的研究.湖南工程学院学报:自然科学版,2001,11(001):1-4
    [128]陈坚.电力电子学.北京:高等教育出版社,2002
    [129]陈坚.电力电子学:电力电子变换和控制技术.高等教育出版社,2004
    [130]林飞,杜欣.电力电子应用技术的MATLAB仿真.北京:中国电力出版社,2008
    [131]蔡圣清,刘海霞.桥式整流电路的波形问题.宁夏工程技术,2004,3(004):327-328
    [132]易娜,唐雄民,彭永进.不可控整流回路参数优化设计的研究.电力电子技术,2007,41(001):90-91
    [133]DD435N data sheet. Infineon Technologies AG,2005
    [134]刘凤君.现代逆变技术及应用.北京:电子工业出版社,2006
    [135]曲学基,曲敬铠,于明扬.逆变技术基础与应用.北京:电子工业出版 社,2007
    [136]FF400R33KF2C data sheet. Infineon Technologies AQ2003
    [137]周志敏,周纪海,纪爱华IGBT和IPM及其应用电路.北京:人民邮电出版社,2006
    [138]郝润科,杨一波.绝缘栅双极型晶体管(IGBT)驱动及保护电路的研究.上海理工大学学报,2004,26(003):283-285
    [139]蒋怀刚,李乔,何志伟IGBT模块驱动及保护技术.电源技术应用,2003,6(004):4-8
    [140]盛祖权,张立IGBT模块驱动及保护技术.电焊机,2000,30(011):6-13
    [141]田健,郭会军.大功率IGBT瞬态保护研究.电力电子技术,2000,34(004):29-30
    [142]Dual scale driver 2SD315AI-33 for CT-Concept Technology Ltd.,2002
    [143]Jun C. Features and Applications of 2SD315AI-33 for Power Devices [J]. Electronic Component & Device Applications,2004,10:
    [144]蒋晓春,陈洛忠.高压IGBT集成驱动模块2SD315AI-33的应用研究.国外电子元器件,2003,11:
    [145]周志敏,纪爱华.高效功率器件驱动与保护电路设计及应用实例.北京:人民邮电出版社,2009
    [146]冯艳虹.IGBT逆变桥无源无损缓冲电路的研究:[硕士学位论文].华北电力大学,2004
    [147]高燕,刘先刚,张国安.无源无损缓冲器的设计与分析.电源技术应用,2003,6(007):39-41
    [148]李中华IGBT无损吸收网络的设计.现代电子技术,2003,17:17
    [149]邓焰,叶浩屹.完全的无源软开关功率逆变器研究.电工技术学报,2002,17(001):40-46
    [150]冯勇,叶斌IGBT逆变器吸收电路的仿真分析与参数选择.电力机车技术,1999,(002):12-14
    [151]余建祖.电子设备热设计及分析技术(第2版).北京:北京航空航天大学出版社,2008
    [152]赵淳殳.电子设备热设计.北京:电子工业出版社,2009
    [153]李春阳,徐景秋.热管散热器在新型变流装置中的应用.机车电传动,2005,(002):14-18
    [154]陶生桂,董东甫.热管散热器在机车变流装置中的应用.内燃机车,2002,(007):17-19
    [155]张洪国.热管散热技术在发电机大型整流柜上的应用.东北电力技术,2007,28(010):43-44
    [156]洪峰,单任仲,王慧贞,et al.一种逆变器损耗分析与计算的新方法.中国电机工程学报,2008,28(015):72-78
    [157]谢勤岚,陈红.PWM逆变器中IGBT的损耗计算.中南民族大学学报:自然科学版,2003,22(001):39-41
    [158]许德伟,朱东起,黄立培,et al电力半导体器件和装置的功率损耗研究.清华大学学报:自然科学版,2000,40(003):5-8
    [159]张明元,沈建清,李卫超,et al.一种快速IGBT损耗计算方法.船电技术,2009,29(001):33-36
    [160]Calculation of major IGBT operating parameters. Infineon Technologies AG,1999
    [161]散热器的选配与安装.In散热器使用手册.株洲南车时代电气股份有限公司;2008
    [162]Franco S.基于运算放大器和模拟集成电路的电路设计.西安:西安交通大学出版社,2004
    [163]Lathi B. Linear systems and signals. Oxford University Press Oxford,2005
    [164]王文.精密相干检测的瞬时数据采集系统研究:[硕士学位论文].中南大学,2002
    [165]张友山,王鹤,王文.精密相干检测法研究.中南工业大学学报(自然科学版),2003,34(1):
    [166]陈儒军,罗维炳,何继善,et al高精度多频电法数据采集系统.物探与化探,2003,27(005):375-378
    [167]裴婧,蒋奇云.基于AD7762的广域电磁接收机采集器设计.地球物理学进展,2010,25(3):1110-1114
    [168]冈村廸夫.OP放大电路设计.北京:科学出版社,2003
    [169]铃木雅臣.高低频电路设计与制作.北京:科学出版社,2003
    [170]马场清太郎.运算放大器应用电路设计.北京:科学出版社,2004
    [171]远坂俊昭.测量电子电路设计——模拟篇.北京:科学出版社,2005
    [172]625Ksps 24-Bit 109dB Σ-AADC With On-Chip Buffer AD7762 data sheet. Analog Device inc.,2006
    [173]Evaluation Board for AD7760/AD7762/AD7763 using Blackfin ADSP-BF537 EZ-KIT Lite EVAL-AD7760/AD7762/AD7763EB operation manual. Analog Device inc.,2006
    [174]Rylov S, Bunz L, Gaidarenko D, et al. High resolution ADC system. IEEE Transactions on Applied Superconductivity,1997,7(2):2649-2652
    [175]Tretter S. Communication System Design Using DSP Algorithms:With Laboratory Experiments for the TMS320C6713 DSK. Springer Verlag,2008
    [176]林林,侯春萍,闫浩,et al基于TMS320C6713和FPGA的高速实时采集系统的设计与实现.电子技术应用,2006,32(011):113-115
    [177]陆徐平,杨吴冰,李渝曾.基于TMS320C6713 DSK的高精度数据采集系统.电气传动自动化,2007,29(004):46-48
    [178]宋.基于DSP-TMS320C6713控制系统的最小系统板的设计.
    [179]TMS320C6713 Floating-Point Digital Signal Processor data sheet. Texas Instruments,2004
    [180]Cong X. Analysis and Application of the Timing of Connection Between DSP and SDRAM. Computer & Digital Engineering,2008,11:
    [181]Instruments T. TMS320C6000 DSP External Memory Interface (EMIF) Reference Guide. Literature Number:SPRU266D,2005:
    [182]Synchronous DRAM MT48LC64M8A2 data sheet. Micron Technology, Inc.,2000
    [183]TPS54316/TPS54312 data sheet. Texas Instruments Incorporated,2005
    [184]TPS3106 data sheet. Texas Instruments Incorporated,2007
    [185]Qiyun J, Jing P, An Z, et al. Design of the real-time data acquisition and transmission system for the Qinghai-Tibet Railway particular detection ground penetrating radar. Real Time Conference IEEE,2009:407-410.
    [186]W5100 Datasheet. WIZnet Co.,2006
    [187]Eady F. iEthernet Bootcamp:Get Started with the W5100. CIRCUIT CELLAR, 2007,208(001):34-37
    [188]Yi W, Shuang L, Wei Z, et al. Image collection and transmission system based on hardwired protocol stack W5100.
    [189]Mude V, Ukalkar A. Wireless Communication and Network. Computer Vision and Information Technology:Advances and Applications:467
    [190]付国红.频率域激发极化斩波去耦关键技术与理论研究:[博士学位论文].长沙:中南大学,2007
    [191]Seuret A, Michaut F, Richard J, et al. Networked control using GPS synchronization. IEEE,2006:6.
    [192]任强,李尚柏.基于FPGA的GPS同步时钟装置的设计.微计算机信息, 2007,23(7):
    [193]左国青,罗维斌,李飞,et al基于GPS时间信号的电法发送机与接收机时间同步设计.物探与化探,2006,30(002):158-161
    [194]TL16C752B data sheet. Texas Instruments Incorporated,1999
    [195]Chaoji J, Xupeng W. Universal asynchronous serial port design for DSP based on TL16C752B [J]. Electronic Measurement Technology,2009,7:
    [196]Wei C, Yuan-zhi C. Serial Communication Between DSP and PC with TL16C752B. International Electronic Elements,2004,4:
    [197]陈伟,陈远知.用TL16C752B实现DSP和PC机的串行通信.国外电子元器件,2004,(004):50-54
    [198]TMS320C6000 Programmer's Guide. Texas Instruments Incorporated,2002
    [199]刘家兵,刘涛,王宗义, et al.基于TMS320C6713的Flash烧写及BootLoad程序设计.应用科技,2008,35(008):48-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700