ICF用纳米金属铜、银和铝材料的制备、微结构表征和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用自悬浮定向流方法制备金属Cu、Ag和Al纳米粉体和真空手套箱技术进行隔绝空气防氧化装料,然后在惰性气体保护下由可控制精密液压机进行冷(高)压和真空温压技术分别制备出相对密度分别为96.7%、98.1%和98.5%左右的纳米Cu、Ag和Al块体材料,对压制过程的工艺技术、纳米晶体材料的微观结构和性能进行了深入系统的研究,得到如下主要结果:
     (1)采用自悬浮定向流法制备金属Cu纳米粉体。在10%He和90%Ar的混合气流中和在Ar气气流中制备的纳米Cu粒子形貌呈球形、平均粒度分别为45nm左右和60nm;纳米Cu粒子表面Cu和O元素的原子比为94.88:5.12,有少量氧化亚铜和氧化铜的混合物存在,但在其(包括热分析后的残留物)表面中未发现Ar和N元素。
     (2)在He气和Ar气流中制备的纳米Ag粉的平均粒径分别为15nm和80nm;在He气流中制备的粒径小些,颗粒基本为球形。熔点为959.7℃,比粗晶银的熔点(961.93℃)低2.23℃。
     (3)在Ar气流中制备的纳米Al粉的平均粒度为50nm的球形金属纳米Al粉,放置半年后含氧量(Wt%)为8.2%。在Ar气流中,新纳米铝粉的熔点为649.7℃。在纳米铝粉中未发现Ar元素存在;而在N_2气流中进行热分析后的纳米铝粉残余物中发现有N元素,说明纳米铝粉在热分析的加热过程中与N发生了化学反应。
     (4)对于冷压法制备金属纳米晶体Cu样品而言,压力对最终样品的密度影响很大,密度随着压力的升高而增大。材料的热稳定性好,晶粒度未退火时为19.9nm,微应变为0.233%。200℃退火三小时后,晶粒长大不明显,约为30.5nm,微应变为0.18%。。正电子湮没测试表明材料中的微观缺陷主要是单空位及空位团,大空隙的含量很少,随着压制压力的增大,材料中的空位团的相对含量增加,单空位减少,微空隙基本不变。
     (5)冷压法制备金属纳米晶体Cu样品的显微硬度为1.55~1.90GPa,约为常规粗晶Cu材料的3~4倍;电阻率在室温下约为1.56×10~(-7)Ω·m,是粗晶Cu在室温下电阻率(0.167×10~(-7)Ω·m)的9倍。纳米Cu块体材料作靶的激光转换成X射线(Ka线)的转换效率在一激光强度为3×10~(18)W/cm~2时,比常规Cu材料高5倍。有较好的应用前景。
     (6)冷压法制备的金属纳米晶体Al、Ag的样品在室温下显微硬度分别为2.11、1.26GPa。分别是粗晶Al的14倍,粗晶Ag的2.5倍。它们的熔点分别为645.9℃和955.9℃,表现出纳米材料低熔点的特点。室温下纳米晶体Ag的电阻率为1.475×10~(-7)Ω·m,是粗晶银在室温下的电阻率(1.59×10~(-8)Ω·m)的9倍。
     (7)用真空温压法成功制备了相对密度分别为96.15%、99.66%、97.9%的纳米金属Cu、Ag和Al块体材料,压力增大,延长保压时间,提高压制温度,均有利于其密度的提高。它们的显微硬度分别为3.8GPa、1.2GPa、1.65GPa,是相应普通粗晶材料的8倍、3倍和5倍,体现了纳米金属块体材料的高硬度特性。
     (8)纳米金属铜块体材料具有较好的热稳定性,在1.5GPa和200℃下压制的样品的平均晶粒度为25.3nm、微应变为0.047%。样品的正电子湮没平均寿命τ为257.07ps,比未抽真空冷压法的(221.70ps)增加36ps。说明真空温压对纳米块体铜的微观结构有影响;其微观缺陷尺寸有所增大。
     (9)目前,我们制备的纳米晶体材料已经在ICF物理实验中得到初步的应用,本项目获2006年度军队科技进步三等奖。
In this thesis, nano-particles of Cu, Ag and Al were synthesized byflow-levitation method and filled into the mold at vacuum gloves chestunder the atmosphere of Ar in order to prevent oxidation. Subsequently,the nano-sized metal particles were compacted by use of exact hydraulicpress with cold-compaction and vacuum-warm-compaction technologyand nanocrystalline Cu, Ag and Al were prepared with relative density of96.7%, 98.1% and 98.5% respectively. The technology of preparation、microstructure and properties of such as-prepared nanocrystalline metalsmaterials were studied systematically and at close range. The results wereobtained as follows:
     (1) nano-particles of Cu were synthesized by flow-levitation method.The nano-particles prepared in Ar and mixture of 10%He and 90%Arwere globose with average grain size of 45 nm and 60 nm respectively.On the surface of the Cu particles, there were mixture of Cu_2O and CuOand the atom ratio of Cu and O was 94.88:5.12, but the element of Ar andN were not found in the particles(include the residue after thermalanalyses).
     (2) The average grain size of nano-particles of Ag prepared in Heand Ar airflow were 15 nm and 80 nm respectively and the former issmaller. The particles were globose and the melting temperature was959.7℃, which was lower than the coarse grained Ag by 2.23℃.
     (3) The average grain size of globose nanoparticles of Al prepared inAr air flow was 50 nm. The content of O was 8.2% after preserved forhalf a year. The melting temperature of newly prepared nano-particleswas 649.7℃in Ar atmosphere. The element of N was found in theresidue after thermal analyses. But the element Ar was not found. Thisresult indicated that nano-particles of Al could have combined with N_2during the heat process of thermal analyses.
     (4) As far as nanocrystalline Cu synthesized by cold-compactionconcerned, pressure had a profound influence upon the density and thedensity increased with higher pressure. The as-consolidatednanocrystalline Cu showed high thermal stability during the annealing process. The average grain size and microstrain of un-annealing specimenwere 19.9 nm and 0.233%. After annealing at 200℃for three hours, thatbecame 30.5 nm and 0.18%. The PAS analysis results showed that themost of the defects in the specimen after press was vacancies andvacancy-clusters; the amount of micro-voids is small. During theconsolidation, the amounts of vacancy-clusters growed while the amountof vacancies decreased and the amounts of micro-voids remainedunchanged.
     (5) The microhardness of the nanocrystalline Cu prepared bycold-compaction was 1.55~1.90GPa, exceeded that of coarse-grained Cuby the factors of 3~4. The electricl resistivity of nanocrystalline Cu wasabout 1.56×10~(-7)Ω·m, which was about 9 times larger than that of thecoarse-grained Cu sample at room temperature. ICF simulationexperiment indicated that conversion efficiency of X-ray conversedfrom laser of as-prepared nanocrystalline Cu was 5 times higher thanthat of coarse-grained Cu. Nanocrystalline materials have brilliantfuture for application.
     (6) The microhardness of cold compacted nanocrystalline Al and Agwere 2.11GPa and 1.26GPa, which were higher than their coarse-grainedcounterparts by a factor of 14 and 2.5, respectively. The meltingtemperature of as-prepared nanocrystalline Al and Ag were 645.9℃and955.9℃, which showed lower melting temperature of nanocrystallinematerials. The electrical resistivities of the nanocrystalline Ag at roomtemperature are 1.475×10~(-7)Ω·m and 1.5×10~(-7)Ω·m, which are larger thanthe coarse grainedAg (1.59×10~(-8)Ω·m) by a factor of 9.
     (7) With vacuum-warm-compaction method, nanocrystalline Cu, Ag,Al were prepared with relative densities of 96.15%, 99.66%, 97.9%,respectively. The microhardness of this three were 3.8 GPa, 1.25 Pa and1.65 Pa, which are higher than their coarse-grained counterparts by afactor of 8,3,and 5,respectively. It showed the property of highmicrohardness of nanocrystalline metallic material.
     (8) The nanocrystalline Cu showed high thermal stability. Theaverage grain size and microtrain of specimen of nanocrystalline Cu were25.3 nm and 0.047%, when compacted by vacuum warm-compacting method under 1.5 GPa and at 200℃for 1 h, respectively. The averagepositron annihilation lifetime r was 257.07ps, which was larger thanthat of un-vacuum-cold-compacted specimen by 36ps. This indicated thatthe microstructure of nanocrystlalline metals had changed during thecourse of vacuum-warm-compaction and at last, the dimension of themicro-vice became larger.
     (9) The nanocrystalline metals synthesized in this way had beenapplied primarily in physical experiment at present. This project has wonthe third-class Award of progress in Science and technology of PLA in2006.
引文
[1] 曹茂盛.纳米材料导论.哈尔滨:哈尔滨工业大学出版社.2001.1-3
    [2] Birringer R, Gleiter H, Llein H P and Marquardt P. Nanocrystalline materials: an approach to a novel solid structure with gas-like isorder?[J] Phy Lett, 1984,102A(8):365-369
    [3] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2002.1-349
    [4] 许并社.纳米材料及应用技术.北京:化学工业出版社.2004.30-33
    [5] Kubo R J.Phys.Soc.Jpn. 1962, 17, 975
    [6] Cavicchi R E, Silsbee R H.Coulombs suppression of tunneling rate from small metal particles[J]. Phys.Rev.Lett, 1984, 52:1453
    [7] Halperin W P. Quantum size effects in metal particles[J]. Rev.of Mordern Phys, 1986,58:533-606
    [8] Zhang Zhi kun,Gui Zuolin,Chen Kezheng, et al. Structure of nano-conductive fibers. Chinese Science Bulletin, 1997, 42:1535-1537
    [9] 张立德,牟季美.开拓原子和物质的中间领域.纳米微粒与纳米固体.物理,1992,21(3):167-173
    [10] 李宇农,何建军,龙小兵.金属纳米粒子研究进展.稀有金属与硬质合金,2003,31(4):45-50
    [11] Ruslan Z, Valiev. Structure and mechanical properties of ultrafine-grained metals. Matel. Sci. Eng., 1997,234-236(A): 50-66
    [12] 楚广,唐永建,楚士晋.纳米Al粉的结构和性能表征[J].含能材料,2006,14(3):227-230
    [13] 刘海飞,王梦雨,贾贤赏.纳米金属粉末的应用[J].矿冶,2004,13(3):65-67
    [14] 李颖,宋武林,谢长生.纳米铝粉在固体推进剂中的应用进展[J].兵工学报,2005,26(1):121-125
    [15] 黄辉,黄勇,李尚斌.含纳米级铝粉的复合炸药研究[J].火炸药学报,2002,25(2):1-3
    [16] 江炎,张金春,王杰.纳米材料的性能与应用—金属及其合金.兵器材料科学与工程,2001,24(6):64-68
    [17] 蒲健,肖建中.大块纳米晶材料的制备、性能及应用前景.金属功能材料,2000,7(1):11-15
    [18] 刘珍,梁伟,许并社,等.纳米材料制备方法及其研究进展[J].材料科学与工艺,2000,8(3):103-108.
    [19] 韦建军,李朝阳,唐永建.自悬浮定向流法制备纳米铜微粒及其结构表征[J]强激光与粒子束,2003,15(4):359-362
    [20] 温传庚,王开明,李晓奇,等.液相沉淀法制备纳米铜粉[J].鞍山科技大学学报,2003,26(3):176-178.
    [21] 翟庆洲等,纳米材料研究进展Ⅰ纳米材料结构与化学性质[J].化学研究与应用,1998,10(3):226-229
    [22] Van Womerghem J, Mφrup S, Koch C J W, et al. Formation of ultra-fine amorphous alloy particles by reduction in aqueous solution [J].Nature, 1986,322:622-623
    [23] 严红革等.金属超微粉末制备技术中的几个问题[J].材料导报,1997,1(1):16-20
    [24] 张志梅,韩喜江,孙淼鑫.纳米级铜粉的制备[J].精细化工,2000,17(2):69-71
    [25] 廖戎,周大利,张王志名内米铜粉的制备研究[J].四川有色金属,2003,2:28-33
    [26] 陈宏,旷亚非,周海晖等.化学镀方法制备纳米级铜粉及镍-磷粉[J].电镀与精饰,2002,24(3):1-4
    [27] 温传庚,王开明,李小奇等.液相法制备纳米铜粉[J].鞍山科技大学学报,2003,26(3):176-178
    [28] 肖寒,王瑞,余磊等.还原法制备纳米级铜粉[J].贵州师范大学学报(自然科学版),2003,21(1):4-6
    [29] 黄钧声,任山.纳米铜粉研制进展[J].材料科学与工程,2001,19(2):76-79
    [30] Kear B H, Chang W, Skandan G S, et al. Nanocomposite Ceramic Pow der Production by Laser-Induced Gas-Phase Reactions [J]. Nanostruct. Mater, 1993, 3: 25~29.
    [31] 尾崎义治,贺集诚一郎著,赵修建,张联盟译.纳米微粒导论.武汉:武汉工业大学出版社,1991,121-123
    [32] Yan D. Synthesis and Fabrication of Nanostructured Materials [J]. Journal of Inorganic Materials, 1995,10(3): 1~6.
    [33] 林金谷,邹炳锁,王月菊,等.用超声化学法产生超细非晶态铁微粒[J].科学通报,1995,40(5):1370~1374.
    [34] 殷亚东,张志成.纳米材料的辐射和成法制备[J].化学通报,1998(12):21-24
    [35] 张喜梅,陈玲,李琳,等.纳米材料制备研究现状及其发展方向[J].现代化学工业,2000,20(7):13~16.
    [36] Xu B S, Tanaka S I. Control of Nanoscale Interphase Boundaries by an Electron beam [J]. Materials Science Forum, 1996(207)"137~140
    [37] Hageue D C, Mayo M J. Effect of Crystallization and Phase Transformation in Nanocrystalline TiO_2[J]. Nanostructured Materials, 1993, 3(3): 61~67.
    [38] Shingu P H, Huang B, Hishitani S B. Large Clusters and Colloids Metals in the Embryonic State [J]. Chem. Rev, 1992, 9 (2): 1709~1711
    [39] 张燕红..超细(纳米级)颗粒材料的制备(二)[J].稀有金属,1998,22(1):60-71
    [40] Ding J.,Tsuzuki T, Mc Cormick P G ,et al. Ultrafine Cu particles prepared by mechanochemical process. [J]. J. of Alloys and Compounds, 1996, 234(2): 11-13
    [41] Gleiter H. Nanocrystalline materials [J]. Prog Mater Sci. 1989, 33: 223-315
    [42] Youngdahl C J, Weertman J R, Hugo R C, et al. Deformation behavior in nanocrystalline copper [J]. Scripta Metal Mater, 2001, 44: p1475—1478
    [43] 周宇松,吴希俊,许国良,李冰寒,张鸿飞,杜黎光,李宗全.大尺寸纳米铜和银的制备及其微观缺陷与力学性能[J].中国有色金属学报,2000,10(4):465-469
    [44] Shen T D, Ge W Q, Wang K Y, et al. Structural disorder and phase transformation in graphite produced by ball milling [J]. NanoStruct Mater 1997, 7 (4): p717-726
    [45] Tan L K, Li Y. Structures, properties and responses to heat treatment of Cu-Y alloys prepared by mechanical alloying [J]. Journal of Alloys and Compounds 1998, 278: p201-208
    [46] 张振忠 宋广生 杨根仓.块状金属纳米材料的制备技术进展及展望[J].兵器材料科学与工程,1999,23(3):46-51
    [47] Lu K, Wei W D, Wang J T. The mechanism of crystalline Ni_(88)P_(12) [J]. Scripta Metal Mater, 1990, 24: 2319-2321.
    [48] Natter H, Schmelzer M, Hempelmann R. Nanocrystalline nickel and nickel-copper alloys: Synthesis, characterization, and thermal stability[J]. J Mater Res 1998, 13 (5): p1186-1197
    [49] Wang Ning, Wang Zhirui, Aust K T, et al. Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique[J]. Mater Sci Eng 1997, A237: p150-158
    [50] Cai B, Kong Q P, Lu L, et al. Interface controlled diffusional creep of nanacrystalline pure copper[J]. Scripta Mater 1999, 41 (7): p755-759
    [51] 王轶,姚可夫,翟桂东.块体纳米晶材料制备的研究进展[J].热加工工艺,2003,2:48-50
    [52] Valieve R Z, Islamgaliev R K, and Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Prog. Mater. Scie 2000, 45: p104-189
    [53] Valiev R Z, Koznikov A V, Mulyukov R R. Structure and properties of ulltrafine-grained materials produced by severe plastic deformation[J].Mater. Sci.Eng., 1993,A 168:141-148.
    [54] 田春霞.金属纳米块体材料制备加工技术和应用[J].材料科学与工程,2001,19(4):127-129
    [55] Valiev R Z,Islamgaliev R K,Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J].Process in Materials Science,2000,45:103-189.
    [56] Karch J, Birringer R, Gleiter H. Ceramics ductile at low temperature [J]. Nature 1987, 330:556-558
    [57] Wang Yinmin, Chen Mingei, Zhou Fenghua, et al. High tensile ductility in nanostructured metal [J]. Nature, 2002, 391: 912-914.
    [58] Weertman. J R .Hall-Petch strengthening in nanocrystalline metals[J]. Meter Sci Eng, 1993, A 166:161-167
    [59] Nieman G W and Weertman J R, Siegel R W. Mechanical behavior of nanocrystalline Cu and Pd[J]. J Mater Res, 1991, 6(5): 1012-1027
    [60] Youngdahl C J, Weertman J R, Hugo R C ,et al. Deformation behavior in nanocrystalline copper[J]. Scripta Mater, 2000, 44:1475-1478
    [61] Hughes G D, Smith S D, Pandei C S, et al. Hall-Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel [J]. Scripta Metal, 1986, 20:p93-97
    [62] Nieman G W, Weertman J R , R W Siegel. Microhardnes of nanocrystalline palladium and copper produced by inert gas condensation [J]. Scripta Metall, 1989, 23:2013-2018
    [63] Chokshi A H, Risen A , Karch J, et al. On the validity of the Hall-Petch relationship in nanocrystaline materials [J]. Scripta Metall, 1989, 23: 1679-1684
    [64] K Lu, W D Wei, and J T Wang. Microhardness and fracture properties of nanocrystaline Ni-P alloy[J]. Scripta Metall, 1990, 24: 2319-2323
    [65] Fougere G E, Weertman J R, Siegel R W ,et al. Grain-size dependent hardening and softening of nanocrystalline Cu and Pd[J]. Scripta Metall, 1992, 26: 1879-1883
    [66] Suryanarayanan R, Frey Clair A, Sastry Shankar M L ,et al. Mechanical properties of nanocrystalline copper produced by solution-phase synthesis[J]. J Mater Res, 1996, 11(2): 439-448
    [67] Carl J Youngdahl, Sanders P G, ,Eastman J, et al. Compressive yield strengths of nanocrystalline Cu and Pd.[J] Scripta Mater, 1997, 37(6): 809-813
    [68] Wu X J, Du L G, Zhang H F, et al. Synthesis and tensile property of nanocrystalline metal copper.[J] Nanost Mater, 1999, 12: 221-223
    [69] L He and E Ma, Full-density nanocrystalline Fe-29Al-2Cr intermetallic consolidated from mechanically milled powers.[J] J Mater Res, 1996, 11(1): 72-80
    [70] Jiang Honggang, ZhuY, Theodore Butt, Dairyl P ,et al. Microstructure evolution,microhardness and thermal stability of HPT-processed Cu.[J] Mater Sci Eng, 2000, A 290(2): 128-138
    [71] Chang H, Altstetter C J, Averback R S. Characteristics of nanophase TiAl produced by inert gas condensation.[J] J Mater Res, 1992, 7(11): 2962-2970
    [72] El-Sherik A M, Erb U, Palumbo G. Deviations from Hall-Petch behavior in as-prepared nanocrystalline nickel.[J] Scripta Metall Mater, 1992, 27:1185-1188
    [73] Hansen N and Ralph B. The strain and grain size dependence of the flow stress of copper.[J] Acta Metall Mater, 1982, 30: 411-417
    [74] Gertsman V Y, Hoffmann M, Gleiter H, et al. The study of grain size dependence of yield stress of copper for a wide grain size range. [J] Acta Metall Mater, 1994, 42(10): 3539-3544
    [75] Nieman G W, Weertman J R, and R W Siegel. Tensile strength and creep properties of nanocrystalline palladium. [J] Scripta Metall Mater, 1990, 24:145-150
    [76] Gertsman V Y, Birringer R, Valieve R Z ,et al. On the structure and strength of ultrafined copper produced by severe plastic deformation. [J] Scripta MetallMater, 1994,30:229-234
    [77] Champion Y, Guerin-Mailly S, Bonnentien J L ,et al. Fabication of bulk nanostructured materials from metallic nanopowders: structure and mechanical behavior.[J] Scripta Mater, 2001,44:1609-1613
    [78] Wang Y M, Ma E, Chen M W. Ehanced tensile ductility and toughness in nanostructured Cu [J]. Appl Phy Lett, 2002, 80(13):2395-2397
    [79] Lu L, Wang L B, Ding B Z ,et al. High-tensile ductility in nanocrystalline copper[J]. J Mater Res, 2000, 15(2): 270-273
    [80] Agnew S R ,Elliott B R, Youngdahl C J ,et al. Microstructure and mechanical behavior of nanocrystalline metals[J]. Mater Sci Eng, 2000, A285: 391-396
    [81] Wei Q, Jia D, Ramesh K T ,et al. Evolution and microstructure of shear bands in nanostructured Fe.[J] Appl Phy Lett, 2002, 81(7): 1240-1242
    [82] Yinming Wang, Mingwei Chen, Fenghua Zhou ,et al. High tensile ductility in a nanostructured metal.[J] Nature, 2002,419(31): 912-915
    [83] Sanders P G, Eastman J A, and Weertman J R. Elastic and tensile behavior of nanocrystalline copper and palladium [J]. Acta mater, 1997,45(10): 4019-4025
    [84] Sanders P G, Youngdahl C J, and Weertman J R. The strength of nanocrystalline metals with and without flows.[J] Mater Sci Eng,1997, A 234-236: 77-82
    [85] B Cai, Q P Kong, and L Ku et al. Interface controlled diffusional creep of nanocrystallline pure copper.[J] Scripta Mater, 1999,41(7): 755-759
    [86] Lu L, Sui M L, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature [J]. Science, 2000, 287: 1463-1466
    [87]Y M Wang, K Wang, D Pan, et al. Microsample tensile testing of nanocrystalline copper.[J] Scripta Mater, 2003, 48: 1581-1586
    [88]A A Nazarov, A E Romanov and R Z Valiev. On the nature of high internal stresses in ultrafine grained materials.[J] Nanostr Mater, 1994,4(1): 93-101
    [89]S Ranganathan, R Divakar and V S Raghunathan. Interface structures in nanocrystalline materials[J]. Scripta Mater, 2001,44: 1169-1174
    [90]Ning Wang, G Palumbo, and Zhirui Wang et al. On the persistence of four-fold triple line nodes in nanostructured materials [J]. Scripta Metall Mater, 1993,28: 253-256
    [91]G Palumbo, U Erb , K T Aust, et al. Triple line disclination effects on the mechanical behavior of materials[J]. Scripta Metall Mater, 1990,24: 2347-2350
    [92] V Y Gertsman, R Birringer, and R Z Valiev et al. On the structure and strength of ultrafine-grained copper produced by severe plastic deformation [J]. Scripta Metall Mater, 1990,.30: 229-234
    [93] N Wang, Z Wang, U Erb, et al. Room temperature creep behavior of nanocrystalline nickel produced by an eletrodeposition technique[J]. Mater Sci Eng, 1997, A237:150-158
    [94] T D Shen, C C Koch, and T Y Tsui et al. On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu-Ni alloys prepared by mechanical milling/alloying [J]. J Mater Res, 1995, 10:2892-2896
    [95] Hyoung Seop Kim. A composite model for mechanical properties of nanocrystalline materials[J]. Scripta Mater, 1998, 39(8): 1057~1061
    [96] 刘勤.金属的超塑性.上海:上海交通大学出版社,1989.44~56
    [97] Cai B, Kong Q P, and Lu L, et al. Interface controlled diffusional creep of nanocrystalline pure copper [J]. Scripta Mater, 1999, 41:755~759
    [98] Schiφtz J, Francesco D, Di Tolla, et al. Softening of nanocrystalline metals at very small grain size [J]. Nature, 1998, 391:561-563
    [99] Swygenhoven H V. Grain boundaries and dislocations [J]. Science, 2002, 296: 66-67
    [100] T G Nieh and J Wadsworth. Hall-Petch relation in nanocrystalline solids [J]. Scripta Metall Mater, 1991, 25:955-958
    [101] Hans Cinrad, Jagdish Narayan. On the grain size softening in nanocrystalline materials [J]. Scripta Mater, 2000, 42:1025-1030
    [102] M B Bush ,H SKim. On the modeling of ultrafine grained materials [J]. Mater Sci For, 1999, 313-314: 437-442
    [103] V I Zubov. Microscopic theory of bulk and surface atomic properties of solids and nanoparticles [J]. Nanost Mater, 1995, 5(5): 571-576
    [104] R O Scattergood and C C Koch. A modified for Hall-Petch behavior in nanocrystalline materials[J]. Scripta Metall Mater, 1992,27:1195-1200
    [105] Lu L,Wang L B,Ding B Z, and Lu K. High-tensile ductility in nanocrystalline copper[J]. J Mater Res. 2000, 15(2): 270-273.
    [106] Wang Y M, Ma E, and Chen M W. Enhanced tensile ductility and toughness in nanostructured Cu [J]. Appl Phys Lett, 2002, 80: 2395-2397.
    [107] McFadden S X , Mishra R S,Mukherjee A K. Analysis of tensile superplasticity in nanomaterials [J]. Mater.Sci.Form. 1999, 304-306:31-38.
    [108] McFadden S X.,Mishra R S ,Valiev R Z ,et al. Low-temperature superplasticity in nanostructured nickel and metal alloys [J]. Nature, 1999, 398: 684-686.
    [109] Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Prog Mate Scie, 2000, 45: 103-189.
    [110] Jakob Schiotz, Francesco D, Di Tolla, et al. Softening of nanocrystalline metals at very small grain size [J]. Nature, 1998, 391:561-563
    [111] Swygenhoven H V, Caro A. Plastic behavior of nanophase Ni: a molecular dynamics computer simulation [J]. Appl Phys Lett, 1999, 47: 1652-1654.
    [112] Schi(?)tz J, Vegge T, Di Tolla F D, et al. Atomic-scale simulation of the mechanical deformation of nanocrystalline metals [J]. Phys Rve, 1999, B71, 11971-11983.
    [113] Sun Xiangcheng,Reglero.Microhardness of bulk high density nanocrystalline copper obtained by hot compaction[J].Materials Chemistry and Physics,2000,63:82-87
    [114] Chokshi A H, Rosen A, Karch J, Gleiter H. On the validity of the Hall-Petch relationship in nanocrystalline materials [J]. Scripta Metal Mater, 1989, 23: 1679-1684.
    [115] Murayama M, Howe J M, Hidaka H, et al. Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe [J]. Science, 2002, 295: 2433-2435.
    [116] Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure, J. Appl. Phys, 1988,64:6044-6046
    [117] 王琦,杨丽颖,刘飚.纳米晶材料的研究及其进展.中国粉体技术,2002,8(5):37-41
    [118] Siegel R W, Hahn H.Current trends in the Physicals of Materials [M]. Singapore: World Science, 1987.33-79
    [119] Trudean M L, Dignard-Bailey L, Schulz R., et al. Oxidation of nanocrystalline FeTi hydrogen storage compounds[J]. Nanostructured Materials, 1992, 1(6): 457-464
    [120] 居志兰,戈晓岚,许晓静.块体纳米材料的研究现状与发展思路.江苏大学学报(自然科学版),2002,23(4):47-51
    [121] 梁忠友.纳米材料的性能及应用展望[J].陶瓷研究,1999,14(01)14~15
    [122] 卢柯,卢磊.金属纳米材料力学性能的研究进展[J].金属学报,2000,36(08)785~789
    [123] 刘珍,梁伟,许并社,等.纳米材料制备方法及其研究进展[J].材料科学与工艺,2000,8(3):103~108.
    [124] 杨明川,徐坚,孙秀魁,等.蒸发法制备Ni—Ti纳米非晶合金粒子[J].金属学报,1994,30B(18):255~258
    [125] 唐永建,朱正和.等温环境中激光惯性约束聚变冷冻靶丸内部液氢层分布[J].物理学报,1999,048(012):2208~2212
    [126] Cook R. Production and Characterization of Doped Materials for Inertial Confinement Fusion Experiment [J]. J Vac Sci Techno, 1994, A12 (4): 1275~1280
    [127] Bieg K W. Summary Abstract: Metal Loaded Poly-p-Xylylene [J]. J Vac Sci Techno, 1981, 18(4): 1231~1235
    [128] Hauer A, Cowan R D. Absorption Spectroscopy Diagnosis of Pusher Conditions in Laser-Driven Implosion [J]. Phys. Rev., 1986,A34:411-416
    [129] 刘珍,梁伟,许并社,市野濑英喜.纳米材料制备方法及其研究进展[J],材料科学与工艺,2000;8(03):104~105
    [130] 杨明川,徐坚,孙秀魁,魏文铎,胡壮麒.蒸发法制备Ni-Ti纳米非晶合金粒子[J],金属学报,1994;30B(18):255~258
    [131] 赵凯华,陈熙谋.电磁学,北京:高等教育出版社,1998.355~356
    [132] 陈惟蓉,黄天麟,王以炳.电磁学.北京:清华大学出版社,1994.218~219
    [133] 吕长荣,刘晓军,高红.电磁学.哈尔滨:哈尔滨工业大学出版社,2000.105-113
    [134] [6]Guo L H, Li H, Fabrication and characterization of thin nano-hydroxyapatite coatings on titanium. Surf. Coat,Tech, 2004,185:268-274
    [135] 郑化桂,李成韦,刘元晖,等.金属铜胶体的表面修饰与氧化研究[J].中国科技大学学报,1998,28(6):722-725
    [136] Burda C, Green T, Landes C,et al. Optical spectroscopy of nanophase material. New York: Wiley, 2000.44-98
    [137] Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer, 1995.33-41
    [138] Na Sun, Zhi-Xin Guo , Liming Dai , Hexakisaddu ,et al .C60-Ag nanocomposite: fabrication and optical limiting effect[J].Chemial Physical Letters, 2002,356(12): 175~180.
    [139] Marie Paule Pileni,Optical properties of nanosized particles dispersed in colloidal solutions or arranged in 2D or 3D superlattices[J]. New J.Chem., 1998:693-702
    [140] S.H. Cho et al. Growth behavior and optical properties of metal-nanoparticle dispersed dielectric thin films formed by alternating sputtering[J],Thin Solid Films, 2004: 68-73
    [141] 熊家炯.材料设计.天津:天津大学出版社,2002.162
    [142] 王岚.纳米材料的热化学研究:[博士学位论文].大连:中国科学院大连化学物理研究所,2001.
    [143] 刘伟,邓晓燕,张志煜.纳米铜粒子的热稳定性研究[J].理化检验-物理分册,2004,40(2):64-67.
    [144] 刘世宏,王当憨,潘承璜.X射线光电子能谱分析.北京:科学出版社,1988.75-76
    [145] 李志杰,曲家惠,左良,等.金属纳米粉材料的研制[J].东北大学学报(自然科学版),2004,25(3):244-246.
    [146] Westcott S L, Oldenburg S J, Lee T R, et al. Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle[J]. Langmuir, 1998, 14:5396-5401.
    [147] 宁远涛,赵怀志.银.长沙:中南大学出版社,2005.57-58
    [148] 孙秀愧,丛洪淘,徐坚,等.纳米晶AL的制备及拉伸性能[J].材料研究学报,1998,12(6):645-650.
    [149] 李志杰,曲家惠,左良,等.金属纳米粉材料的研制[J].东北大学学报(自然科学版),2004,25(3):243-246.
    [150] 范敬辉,张凯,吴菊英,等.纳米铝粉的活性分析及寿命预测[J].含能材料,2004,12(4):239-242.
    [151] Baschung B,Grune D.Combustion of Enegetic aterials[M].Newyork:Begell House Inc.,2002.219-225
    [152] Nieh T G and Wadsworth J. Hall-Petch relation in nanocrystalline solids[J]. Scripta Metal Mater 1991, 25: p955—958
    [153] 钱滨,姚可夫,石伟,刘庄.正交设计法分析工艺参数对转子锻件调质变形的影响[J].热处理.2001.(1):9~13
    [154] 金良超.正交设计与多指标分析.北京:中国铁路出版社,1988.
    [155] 孔晓丽,刘勇兵,曹占义,杨晓红.表面覆纳米Cu-Zn层的铜基复合材料[J].中国有色金属学报,2002,12(4):688~692
    [156] 吴志方,曾美琴.纳米晶材料的晶粒长大[J].金属功能材料,2005,12(3):33-37
    [157] 王景成.关于纳米晶材料微结构的正电子湮没研究[J].钢铁研究,1995,5:55-58
    [158] Suryanarayanan R, Frey Claire A, Shankar Sastry M L. Mechanical properties of nanocrystalline copper produced by solution-phase synthesis [J]. J Mater Res, 1996, 11 (2): 439-448.
    [159] 周辉,高愈尊,金孝刚,等.纳米银块体材料的制备及其结构表征[J].中国有色金属学报,2003,13(5):1108-1111
    [160] Qian L H, Lu Q H, Kong W J, et al. Electrical resistivity of fully-relaxed grain boundaries in nanocrystalline Cu[J]. Scripta Mater, 2004,50:1407-1411
    [161] 丛洪涛.纳米铝基复合材料的制备、结构表征及其力学性能:[博士学位论文].沈阳:中国科学院金属研究所,2003.77-79
    [162] 楚广,罗江山,刘伟,等.纳米Cu固体材料的X射线衍射与正电子湮没研究[J].强激光与粒子束,2006,18(1):160-164.
    [163] 楚广,刘伟,杨天足,等.纳米金属铜靶材的微结构与性能研究[J].中国有色金属学报,2006,16(10):1787-1792
    [164] Qin X Y, Wu J U and Zhang L D. Microhardness of nanocrystalline silver[J].Nanost Mater, 1995,5:101-110.
    [165] Kizuka T, Ichinose H and Ishida H. Structure and hardness of nanocrystalline silver[J]. J Mater. Sci, 1997,32(6): 1501-1507
    [166] Farhat Z N, Ding Y, Northwood D O, and Alpas A T. Effect of grain size on friction and wear of nanocrystalline aluminmum[J]. Mater Sci Eng A, 1996, 205:302-313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700