三维复杂槽型铣刀片切入破损理论及其应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重型机械、汽车、电站设备等是我国的支柱行业,其大型、复杂零部件的制造是企业生产的核心技术,大型、复杂零部件大多采用难加工材料,这些材料的特点是高硬度、高强度、高韧性,因此,加工时刀具破损严重,刀具使用寿命及生产效率很低。尤其是在FMS、CIMS等自动化生产中,刀具破损已成为关键技术及难题之一。经大量文献查询,以往有关切入破损机理研究都是针对平前刀面铣刀片进行的,对三维复杂槽型铣刀片切入破损机理研究很少有报道。近年来,三维复杂槽型铣刀片大量应用于机械加工的各个行业,但是理论研究严重落后于实际应用,三维复杂槽型铣刀片的应用和开发缺乏理论基础。
     因此,本论文深入研究三维复杂槽型波形刃铣刀片的运动切入接触理论;推导三维复杂槽型波形刃铣刀片九种切入类型的判别数学模型;建立不同切入类型刀片的冲击破损寿命累积分布函数优选数学模型;进行三维复杂槽型波形刃铣刀片切入类型的仿真研究;通过优化开发出三维复杂槽型刀片和先进刀具产品,解决生产中刀具严重破损的问题。
     基于模拟实验与数学分析,进行了三维复杂槽型波形刃铣刀片前刀面方程的推导、前刀面运动方程的推导、接触线方程的推导、交线方程的推导和切削域形貌方程的推导,从而形成三维复杂槽型波形刃铣刀片切入接触理论。
     提出了三维复杂槽型波形刃铣刀片九种新的切入接触形式,引入前刀面接触角变化量δ,从而建立了三维复杂槽型波形刃铣刀片九种切入类型判别数学模型。
     建立了不同切入类型刀片的三维复杂槽型波形刃铣刀片冲击破损寿命累积分布函数数学模型,得出刀片冲击破损寿命的概率分布服从威布尔概率分布函数的结论,优选出三维复杂槽型波形刃铣刀片切入破损类型,最佳的切入类型为U型,其余依次为V型、T型、S型。
     进行了三维复杂槽型波形刃铣刀片切入类型的仿真研究。基于UG平台,利用UG提供的开发环境,结合UG/Open API及VC++编程软件,开发出三维复杂槽型波形刃铣刀片切入类型仿真系统,根据不同切入参数,采用实体建模技术,对三维复杂槽型波形刃铣刀片切入状态进行计算机模拟。
     进行了三维复杂槽型刀片优化技术的研究。针对不同工件材料、刀具材料、加工条件、负载情况,采用实验室试验和现场试验相结合的方法,通过切入方式、切削力、切屑形状、切削寿命、失效形式、刀片材质等优化分析,建立三维复杂槽型铣刀片优化模型,优化切入方式、刀片槽型与几何参数以及刀片材质,开发出系列三维复杂槽型刀片。
The industry of the heavy machinery, automobiles and the power station equipment has become the pillar of our country. The manufacture of the huge and complex parts is the core technology of the manufactory. Most of their materials are difficult-to-cut materials. The characteristic of these materials is high in rigidity, strength and toughness. Therefore, the disrepair of the cutting tools is severe when machining. Both the cutting tools life is short and their efficiency of production is low. The disrepair of cutting tools is one of the key technigues and is a problem as well, particularly in automatization production of FMS、CIMS. Looking up a great deal of literature, the study of the cut-in disrepair is all about the flat-groove milling insert. And the study of mechanism of the cut-in disrepair for 3D complex groove milling insert seldom reported. In recent years, a great deal of 3D complex groove milling insert has been applied to the machining industry. But, the study of the theory is droped behind the practice. The theory base on the application and development of the 3D complex groove milling insert should be enhanced.
     This paper described the moving contact theory of the 3D complex groove wave-edge milling insert. The mathematical model of nine kinds of cut-in style discriminant for the 3D complex groove wave-edge milling insert is deduced. The excellent mathematical model of the cumulate function of impacting disrepair life is founded on various cut-in styles. The simulation system of waved-edge milling insert cut-in style is studied. The milling inserts and cutting tools with 3D complex groove are developed. Thus, the disrepair problems of cutters are solved.
     Based on mathematical analysis and simulation experiment, the front face equation, the front face moving equation, the cut-in contact equation, the join line equation and the shape of cutting field equation for 3D complex groove wave-edge milling insert are deduceded. And the contact theory of 3D complex groove wave-edge milling insert is formed.
     The nine new kinds of contact forms of the 3D complex groove wave-edge milling insert is put forward. The changing quantityδof contact angle of the front face is imported. Thereafter, the mathematical model of thr nine kinds of cut-in style discriminant for the 3D complex groove wave-edge milling insert is established.
     The mathematical model of the cumulate function of impacting disrepair life is founded on various cut-in styles. That conclusion of the cumulate function of impacting disrepair life obey to the function of Weibull is reached. The cut-in style of the 3D complex groove wave-edge milling insert is choosen for best. The excellent cut-in style is the U style, and the V style, T style and S style are followed in order.
     The simulation system of waved-edge milling insert cut-in style is studied. Based on UG platform, under UG offered environment, with UG/Open API and VC++ software, the waved-edge milling insert cut-in simulation system is created. According to various parameters, by using modeling technology, the process of waved-edge milling insert cut-in can be simulated. The new method for studying 3D complex groove milling insert cut-in disrepair has been given.
     Based on the mechanics and materials science, optimization technique of 3D complex groove wave-edge milling insert is studied. Various workpiece materials, cutter materials, processing conditions and loading, through experiment both in laboratories and in factorier, by analyzing cutting force, chip shape, cutting life, failure form and insert material, optimization model of stress field for 3D complex groove milling insert is developed. The insert groove and geometric parameters, together with material are optimized. The series of 3D complex groove milling insert are developed.
引文
[1]吴元昌.世界切削刀具品种及刀具材料的变化.世界制造技术与装备市场,2006,(2):6-7.
    [2]孙善乾.金属切削技术及刀具发展现状.赤峰学院学报(自然科学版),2007,(1):3-6.
    [3]戚正风,任瑞铭.国内外刀具材料发展现状.金属热处理,2008,(1):29-31.
    [4]杨学桐.我国机械工业和机床工具行业形势分析.工具技术,2008,(1):3-4.
    [5]戚正风,任瑞铭.国内外刀具材料发展现状.金属热处理,2008,(1):29-31.
    [6]于启勋.涂层刀具的新进展.机械工人(冷加工),2007,(9):33-38.
    [7]许辉,陈顺民,祝新发.涂层技术在制造业中的应用.热处理,2007,(2):34-37.
    [8]艾兴.坚持自主创新 加速发展和应用先进加工技术提高加工制造水平.世界制造技术与装备市场,2006,(1):43-47.
    [9]达世亮.汽车工业切削与刀具技术现状.工具技术,2004,38(9):38-42.
    [10]中国机床工具行业加速国际化进程势在必行.工具技术,2008,(1):3-7.
    [11]刘洁华,杨雁.金属切削刀具技术现状及其发展趋势展望.中国机械工程,2001,12(7):835-838.
    [12]孙有社,尤伦超.国内外刀具材料的发展与应用前景.机械工程师,2002,3:10-12.
    [13]李玉圃.为呈现一个更完美的金属切削世界.工具技术,2008,(1):5-7.
    [14]骆红云,梁淑卿,韩莲英.国内外新型刀具材料的发展现状.吉林工学院学报,2001,22(1):56-58.
    [15]杜国臣,陈营.氮化硅陶瓷刀具的切削性能及其应用.工具技术,2003,(9):36-40.
    [16]Hoshi,T.and Okushima,K.Optimum Diameter and Positions of a Fly Cutter for Milling Steel at Light Cuts.Trans.ASME,1965,87:442.
    [17]Loladze,T.N.Nature of Brittle Failure in Interrupted Cutting.Annals of CIRP,1975,24(1):13.
    [18]Pekelharing,A.J.The Exit Failure in Interrupted Cutting.Annals of CIRP,1978,24(1):5.
    [19]Shaw,M.C.Fracture of Metal Cutting Tools.Annals of CIRP,1979,28:19-21.
    [20]Kramaruddin,A.G.B.Tool Life in Interrupted Cuttting.Dissertation,University of Manchester,Institute of Science and Technology,1984:9-11.
    [21]Lee.Y.M,Sampath.W.S and Shaw.M.C.Tool Fracture Probability of Cutting Tools under Different Exiting Conditions.ASME,1984:168-170.
    [22]Tsuyoshi Asai,Seiji Nakatani.Study on the Early Fracture of Carbide Tools.Annals of the CIRP,1980,1(29):20-28.
    [23]Nakamura,Shimesu.Influence of Disengage Angle upon Initial Fracture of Tool Edge.Bulletin of the Japan Society of Precision Engineering,1985,1(9):57-61.
    [24]李振加.铣削过程刀具破损原因的探讨.机械工程学报,1993,29(4):93-96.
    [25]赵云振,党庆波.硬质合金刀具断续切削破损原因的探讨.煤炭技术,1998,1(3):48-50.
    [26]陶福春,云志新.硬质合金刀具断续切削切出破损原因的探讨.哈尔滨理工大学学报,1999,1(4):8-10.
    [27]李淑娟,阴敬盛.端铣削刀齿切出过程解析.太原重型机械学院学报,2001,22:18-20.
    [28]Das.M.K.and Tobias.S.A.The Pelation between the Stastic and the Dynamic Cutting ofMetals.Int.J.Mach.Tools Des.Res,1967,1(7):63-69.
    [29]Nigm.M.M,Sadek.M.M.and Tobias.S.A.Determination of Dynamic Cutting Coefficients from Steady State Cutting Data.Int.J.Mach.Tool Des.Res.1(17):19-37.
    [30]D.W.Wu,C.R.Liu.An Analytical Model of Cutting Dynamics.Part 1:Model Building.Journal of Engineering for Industry,1981,1(107)5:29-31.
    [31]黄斌,李兆前,艾兴.断续切削时动态切削力的研究.山东电力高等 专科学校学报,1998,1(6)47-49.
    [32]Boston,O.W.,and Gillbert,W.W.Influence on Tool Life and Power of Nose Radius,Charmfer,and Peripheral Cutting Edge Angle When Face - Milling a 4000 - psi Cast Iron.Trans.ASME,1947,69:117-124.
    [33]Zorev,N.N.Machine Steel with a Carbide-Tripped Tool in Interrupted Heavy-Cutting Conditions.Russian Eng.J,1963,43:43-47.
    [34]Hoshi,T.,and Okushima,K.Tool Fracture in Face Milling Operation.Annals of CIRP,1967,1:309.
    [35]Braiden,P.M.,and Dugdale,D.S.Failure of Carbide Tools in Intermittent Cutting.ISI Preprint,126,BISRA-ISI Conference,Scaiborough,1970:14-16.
    [36]Bhatia,S.M.,and Pandey,P.C.Thermal Cracking of Carbide Tools During Intermittent Cutting.Wear,1978,51:210-211.
    [37]Wu,H.,Mayer,J.E.Analysis of Thermal Cracking of Carbide Tools in Intermittent Cutting.Journal Engineering for Industry,Transactions of the ASME,1979,101:159-164.
    [38]Kunio,Uehara.Fundamental Approach to the Thermal Crack of Cermet Cutting Tools.Annals of the CIRP,Vol.30,Manuf Technol,Gen Assem of CIRP,1981:47-51.
    [39]Chakraverti,G.and Pandey,P.C.Thermal Cracking of Carbide Tools during Interrupted Cutting.Japan Soc of Precision Engineering,1984:209-214.
    [40]KaKino,Yoshiaki,Shoda,Minpei.Study on the Generation of Thermal Crack of Cutting Tool.Japan Soc of Precision Engineering,1984:161-166.
    [41]Wang Z.Y.,Sahay C.Tool Temperature and Crack Development in Milling Cutters.Internation Journal of Machine Tools and Manufacture,1996,36:129-140.
    [42]#12
    [43]#12
    [44]#12
    [45]李澎东,刘国新,于彦波.断续切削中的刀具热破损.哈尔滨科学技术大学学报,Vol.16,1992:14-20.
    [46]斯廷智,刘宁.Al2O3基复合陶瓷抗热震研究.硬质合金,2003,20:237-241.
    [47]谭光宇,李振加.复杂槽型铣刀片三维温度场分析及其模糊综合评价.机械工程学报,2004:12-15.
    [48]董丽华,李振加.波形刃铣刀片切削机理研究.哈尔滨理工大学学报,1999,14:13-15.
    [49]孙伟军,李振加.面铣刀切入方式的判别式推导.哈尔滨理工大学学报,2005,10:33-35.
    [50]张文彬,计时鸣.人工神经网络在刀具磨损检测中的应用.机床与液压,2004,(1):44-46.
    [51]寇自力.超硬刀具的发展与应用.工具技术,2000,(8):23-25.
    [52]沈旭东.新型切削刀具的发展及应用.发明与创新,2006,(7):33-38.
    [53]黄秀珍.变切削参数加工中盘铣刀的破损状态监控.沈阳工业大学,2002,(3):47-50.
    [54]韩荣第,吴健.绿色切削技术探讨.工具技术,2006,(12):53-58.
    [55]蒋嵘,吴晨曦.超硬材料加工技术发展现状及趋势.佛山陶瓷,2003,(12):28-30.
    [56]师汉民.金属切削理论及其应用新探.华中科:技大学出版社,2008:19-20.
    [57]M.Kronenberg.Analysis of Initial Contact of Milling Cutter and Work in Relation to Tool Life.Transactions of the ASME,1946:39-40.
    [58]M.Kronenberg.Initial Contact of Milling Cutter and Work-piece.MACHINERY,1945:149-156.
    [59]Optiz.H,Beckhaus H.Influence of Initial Contact on Tool Life when Face Milling High Strength Materials.Annals of CIRP,1970:19-22.
    [60]于彦波等.硬质合金刀具断续切削破损理论.华中理工大学出版社,1989:1-4.
    [61]于彦波,王志勇.端铣刀切入破损机理的研究.哈尔滨科技大学学报,1987(3):49-56.
    [62]林树兴.面铣刀前刀面接触点计算的新方法.渝州大学学报, 1995,12(1):26-31.
    [63]胡映宁,王成勇.小直径铣刀铣削淬硬钢切入过程的动力学仿真研究.机械强度,2005,27(6):782-789.
    [64]R.Werheim,A.Satron and A.Ber.Modifications of the Cutting Edge Geometry and Chip Formation in Milling.Annals of the CIRP.1994,43(1):63-68.
    [65]The Association for Manufacturing Technology.IMTS96:What's in the Mix for 96.Cutting Tool Engineering.1996,48(5):4-11.
    [66]T.Hoshi.Development of High-performance Machining Technologies.International Conference on Machining Technology in Asian & Pacific Regions.Guangzhou,1993:24-30.
    [67]刘战强,李兆前,艾兴.硬质合金刀具寿命分布规律的研究.硬质合金,1995,12(1):7-10.
    [68]N.Alfrli,The Efferfs of the Fracture Chipping and Wear of Cemented Carbide Tools on the Determination of the optimun Metal-Cutting Coneitions.Annals of the CIRP.1981,30(1):68-81.
    [69]B.Ghahramani,Z.Y.Wang,C.Sahay,K.P.Rajurkar.Analysis of Initial Contact and Tool Fracture in the Milling Process.Machining Science and Technology,1999,3(1):9-23.
    [70]P.Lee,Y.Altintas.Prediction of Ball-end Milling Forces From Orthogonal Cutting Data.Int.J.Mach.Tools & Manufact,1996,36(9):1269-1290.
    [71]伊兵.粗加工模块式端铣刀及其破损机理的研究.哈尔滨科技大学硕士论文,1989,(1):19-24.
    [72]董丽华,李振加.铣刀片应力场分析.工具技术,1999,33:15-18.
    [73]星光一.金属切削技术.中国农业机械出版社,1981:135-168.
    [74]臼井英治,高希正.切削磨削加工学.机械工业出版社,1982:2-6.
    [75]#12
    [76]孙善乾.金属切削技术及刀具发展现状.赤峰学院学报(自然科学版),2007,(1):52-63.
    [77]冯鸣,陈永洁,倪兰.刀具破损机理国内外研究概况及发展趋势.硬质合金,2007,(1):57-60.
    [78]Shaw,M.C.Fracture of Metal Cutting Tools.Annals of CIRP,1979,28(1):19-21.
    [79]Kramaruddin,A.G.B.Tool Life in Interrupted Cuttting.Dissertation,Universityof Manchester,Institute of Science and Technology,1984:33-40.
    [80]沈旭东.新型切削刀具的发展及应用.发明与创新,2006,(7):59-61.
    [81]刘晓明,杨平.加工中心刀具破损实时监控技术的研究.组合机床与自动化加工技术,2005,(4):39-41.
    [82]Hoshi,T.and Okushima,K.Tool Fracture in Face Milling Opera-tion.Annals of CIRP,1967,15(1):309.
    [83]刘亚俊,万珍平,李菊欢,汤勇.刀具磨损过程中切削力动态分量信号分形维数的变化规律研究.工具技术,2004,(6):64-70.
    [84]李娟,徐宏海,袁海强.切削力测量技术现状及其发展趋势分析.现代商贸工业,2007,(6):54-60.
    [85]陈恩平.切削力经验公式的试验研究.燕山大学学报,2004,(4):44-50.
    [86]李四化,郑明.截断情况下线性回归模型中回归系数的经验似然.复旦大学学报(自然科学版),2004,(3):76-88.
    [87]魏立力.基于指数分布寿命特征检验的Bayesian停止判别法则.2003中国现场统计研究会第十一届学术年会论文集(上),2003:33-40.
    [88]魏宗舒.概率论与数理统计教程.高等教育出版社,1999:350-400.
    [89]白新桂.数据分析与试验优化设计.清华大学出版社,1986:240-360.
    [90]UGS Corp.UGS' Technomatix Suite Improves Accuracy Of Factory Designs.CAD/CAM Update,2006,18(8):3-6.
    [91]赵海霞,陈桦.基于UG的可转位槽铣刀的设计与加工.工具技术,2006,40(7):52-54.
    [92]李振加,融亦鸣,张中民.波形刃铣刀片的开发及其铣削力数学模型.机械工程学报,2000,36(10):42-45.
    [93]B.Mur(?)ec,F.(?)u(?).Integral model of selection of optimal cutting conditions from different databases of tool makers.Journal of Materials Processing Technology,2003,133(2):158-165.
    [94]N.Matthew,R.Stones.Accessing PostgreSQL from C Using Embedded SQL.Apress,2005:21-52.
    [95]秦成德,周先华.基于ADO接口和VC++的数据库应用系统开发.皖西学院学报,2003,19(2):90-92.
    [96]Z.Z.Li,M.Zheng and Z.J.Wu.A solid model-based milling process simulation and optimization system integrated with CAD/CAM.Journal of Materials Processing Technology,2003,138(7):513-517.
    [97]J.Toussaint,K.Cheng.Web-based CBR(case-based reasoning) as a tool with the application to tooling selection.International Journal of Advanced Manufacturing Technology,2006,29(2):24-34.
    [98]谢晓方,姜震.一种结合CLIPS和VC++开发专家系统的方法.计算机系统应用,2004,(12):61-63.
    [99]姜彬.数控切削加工工艺参数优化的研究.哈尔滨理工大学硕士学位论文,2001:13-44.
    [100]Klocke F.,Krieg T.Coated tools for metal cutting features and applications.Annals of the CIRP,1999,48(2):24-34.
    [101]Z.Y.WANG.Cryogenic machining of hard-to-cut materials.Wear,2000,(2):168-175.
    [102]余东海,王成勇,张凤林.刀具涂层材料研究进展.工具技术,2007,(6):70-73.
    [103]张荆门.硬质合金工业的进展.粉末冶金技术,2002,(03):23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700