大型加氢筒节粗加工刀具设计与切削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
型切削的特点是被加工件的尺寸和重量都很大(最大可达几百吨),因此重型切削加工用立式车床回转直径可达到10余米。与普通切削加工相比,重型切削具有装夹困难、切削深度大、切削速度低、进给速度慢等特点,因此重型切削的加工周期长、刀具的使用寿命短、换刀频率快。
     首先,本文介绍了大型加氢筒节毛坯粗加工过程出现的问题,阐述了研究重型车刀的意义,综述了国内外刀具的研究现状,并介绍了本文所做的主要工作。
     其次,本文对大型加氢筒节材料2.25C-1Mo-0.25V钢进行切削加工性研究。通过切削对比实验,将2.25Cr-1Mo-0.25V钢分别与45钢、不锈钢1Cr18Ni9Ti在相同切削条件下就它们的切削力、切削温度和切屑折断难易程度等方面进行对比。根据实验结果,提出新型重型车刀的设计思路及遵循的原则。
     再次,对目前的刀具材料种类、性能进行介绍分析。通过刀具材料间的性能对比以及刀具材料与筒节材料在化学、物理和力学三方面的匹配性分析研究,优选出了适合新型重型车刀的基体材料。
     接着,在确定刀具基体材料的基础上,对重型车刀的结构参数进行计算、优化设计,其中包括:刀片尺寸、刀具切削刃形、刀具角度等。最终确定新型重型车刀的总体设计方案。
     最后,将新型重型车刀与工厂原用车刀就刀具切削性能、刀具寿命和破损程度等方面进行对比实验,验证设计的正确性与可行性,并总结出最佳切削参数。
The characteristics of the heavy-duty cutting are that both the size and the weight of the parts are large (up to several hundred tons), as a result, the diameter of gyration of the large scale vertical lathe is about 10 meters. Compared with ordinary cutting, there are characteristics of difficult being clamped, big cutting depth, slow cutting speed and slow feed rate in the heavy cutting process. Therefore, the processing cycle of heavy cutting is long, tool life is short and the frequency of changing tool is fast.
     First, the problems appearing in heavy cutting process are introduced in the paper, and the significance of researching the heavy-duty turning tool is explained. And then the research status at home and abroad is summarized, and the main work of this article is also introduced.
     Second, the machinability of the material of the hydrogenated cylindrical shell which is 2.25Cr-1Mo-0.25V steel is researched in this article. Through the comparing cutting experiment, the cutting force, cutting temperature and the difficult and easy level of the chips’being broken which are among 2.25Cr-1Mo-0.25V steel, 45 steel and 1Cr18Ni9Ti stainless steel under the same cutting conditions are compared. According to the results, both the design idea of the new-style turning tool and the principle should be followed are put forward.
     Third, both the type and the performance of tool materials are introduced and analyzed. By analyzing and researching their performance and the chemical compatibility, physics compatibility and mechanics compatibility between the tool materials and shell material, the matrix material of turning tool is optimized.
     Fourth, on the basis of determining the tool’s matrix material, the structural parameter of the heavy-duty turning tool was calculated and designed, and the tool size, shape of cutting edge and cutter angle and so on were included. Then whole design scheme of new-type heavy-duty turning tool was determined finally.
     Lastly, in order to verify the correctness and feasibility of the design, the cutting performance, tool life and the degree of damage of the new-type and original turning tools were compared in cutting experiment. And the optimal cutting parameters were summarized.
引文
[1] Jean Lessard, Jean-Fran?ois Morin, Jean-Fran?ois Wehrung, etc. High Yield Conversion of Residual Pentoses into Furfural via Zeolite Catalysis and Catalytic Hydrogenation of Furfural to 2-Methylfuran [J]. Topics in Catalysis, 2010, 53(15-18): 1231-1232.
    [2] R. R. Shiriyazdanov, E. A. Nikolaev, P. E. Bulyukin, etc. Modernization of the Hydrogenation Unit for Acetylene in the Hydrogen Chloride Flow within A Reactor Producing Vinyl Chloride [J]. Chemical and Petroleum Engineering, 2008, 44(9-10): 489-490.
    [3]周立华.加氢反应器筒节粗车粗车刀具的改进[J].工具技术,2007,41(9):94-95.
    [4]张景利,何耿煌,李文涛等.大型锻造件筒节切削加工性及提高切削效率措施[J].机械工程师,2010,(5):139-140.
    [5] Peng-fei Liu, Jin-yang Zheng, Li Ma, etc. Calculations of Plastic Collapse Load of Pressure Vessel Using FEA [J]. Journal of Zhejiang University-Science A, 2008, 9(7): 900-901.
    [6] I. A. Frumkin, V. I. Kozlov, A. V. Kuznetsova, etc. Preparation of A High Pressure Vessel for High Temperature Service [J]. Chemical and Petroleum Engineering, 1966, 2(7): 479-480.
    [7]程程,顾玉萍,赵桂梅等.大型轴类锻件切削性及粗加工增效措施研究[J].工具技术,2010,11(44):67-68.
    [8] V. V. Ivanov, K. A. Tolkachev. Selecting A Hard Alloy for Machining Gray Iron [J]. 2010, 30(5): 510-511.
    [9] S. A. Gorchakova. Influence of Carbon on the Phase Composition, Structure, and Properties of Type R6M5 Powder Metallurgy High-Speed Steel [J]. Metal Science and Heat Treatment, 1984, 26(3): 210-211.
    [10] Vincent Dessoly, Shreyes N. Melkota, Christopse Lescalier. Modeling and Verification of Cutting Tool Temperatures in Rotary Tool Turning of Hardened Steel [J]. International Journal of Machine Tools&Manufacture, 2004, (44): 1463-1470.
    [11]蒋文德,朱从容,李建邦等. PCBN刀具材料的发展及其在铣削加工中的应用[J].工具技术,2001,36(10):38-39.
    [12]王丽仙,葛昌纯,郭双全等.粉末冶金高速钢的发展[J].材料导报,2010,24(z1):459-460.
    [13] Sung Jung Heo. Environmentally Conscious Hard Turning of Cemented Carbide Materials on the Basis of Micro-Cutting in SEM: Stressing Four Kinds of Cemented Carbides with PCD Tools [J]. Journal of Mechanical Science and Technology, 2008, 22(7): 1383-1384.
    [14]顾冰,张毅,顾祖慰.重型可转位数控刀具的研制与应用[J].工具技术,2001,35(7):43-44.
    [15] W. F. Sales, L. A. Costa, S. C. Santos, etc. Performance of Coated, Cemented Carbide, Mixed-Ceramic and PCBN-H Tools When Turning W320 Steel [J]. The International Journal of Advanced Manufacturing Technology, 2007, 41(7-8): 660-661.
    [16] Bin Li, Jianxin Deng and Ze Wu. Effect of Cutting Atmosphere on Dry Machining Performance with Al2O3/Zrb2/Zro2 Ceramic Tool [J]. The International Journal of Advanced Manufacturing Technology, 2009, 49(5-8): 459-460.
    [17]邓建新,冯益华,艾兴.高速切削刀具材料的发展、应用及展望[J].机械制造,2002,40(1):11-12.
    [18] Maokai Gong, Louise Scott, Yingping Xiao, etc. A Rapid Development Model for Meta-CASE Tool Design [J]. Conceptual Modeling-ER '97, 1997, 1331: 464-465.
    [19]李永红.工业用钢2.25Cr-1Mo与2.25Cr-1Mo-0.25V的性能对比分析[J].机械研究与应用,2006,19(4):44-45.
    [20]周泽华.金属切削原理[M].上海:上海科技出版社,1993:11-12.
    [21] Liu Erliang, Zhang Chao, Zhang Huiping. Study on the Chip-Breaking Behavior under the Concept of Equivalent Parameters for Complicated Groove Insert in 45 Cutting Steel [J]. Key Engineering Materials, 2009, (407-408): 778-782.
    [22]韩荣第,于启勋.难加工材料切削加工[M].北京:机械工业出版社,1996:40-41.
    [23]李洪林,李波,胡恒宁等.刀具涂层技术的最新发展状况[J].工具技术,2010,44(4):3-4.
    [24]肖诗钢.刀具材料及其合理选择[M].北京:机械工业出版社,1981:3-4.
    [25]曲存景,韩荣第,王扬.自回转车刀的结构参数分析与研究[J].哈尔滨工业大学学报,1999,31(1):78-79.
    [26] H. A. Kishawy, C. E. Becze, D. J. Mcintosh. Tool Performance and Attainable Surface Quality during the Machining of Aerospace Alloys Using Self-propelled Rotary Tools [J]. Journal of Materials Processing Technology, 2004, (152): 266-271.
    [27]肖民.振动切削对难切削材料加工及提高刀具使用寿命的研究[J].航空制造技术,2009,(13):48-19.
    [28]成海毅.车刀磨损的特点[J].机械工程师,2009,(3):30-31.
    [29]姜学耘,谢国如.高速切削在难加工材料中的应用[J].机械工程与自动化,2010,(4):202-203.
    [30]刁军臣.硬质合金刀具粘结破损机理及其规律的研究[D].哈尔滨:哈尔滨科学技术大学,1994:11-12.
    [31]周建涛,邓建新,张辉等.硬质合金刀具车削Cr12Mn5Ni4Mo3Al不锈钢的试验研究[J].制造技术与机床,2010,(2):88-89.
    [32]孙有社,尤伦超.国内外刀具材料的发展及应用前景[J].机械工程师,2002,(3):10-11.
    [33]刘战强.先进刀具设计技术:刀具结构、刀具材料与图层技术[J].航空制造技术,2006,(7):39-40.
    [34] Ranga Komanduri. Advanced Ceramic Tool Materials for Machining [J]. Sadhana, 1998, 13(1-2): 119-120.
    [35]王丽利.添加TiC、TiN及Mo对硬质合金组织和性能的影响[D].合肥:合肥工业大学,2010:8-9.
    [36]储开宇. 21世纪刀具材料的发展与应用[J].制造技术与机床, 2010,(7):64-65.
    [37] V. N. Protasov, Ya. A. Kaminskii and I. V. Fedorov. Selection of Tool Material for Machining Wear-Resistant Polymer Coatings [J]. Chemical and Petroleum Engineering, 1976, 12(7): 643-644.
    [38]李兆前,艾兴.硬质合金断裂力学参数的实验研究[C].第三届全国疲劳学术交流会,桂林,1986:47-48.
    [39]易勇,熊继,李懿.硬质合金抗弯强度及其分散性的研究[J].工具技术,2002,36(10):17-18.
    [40]王明胜.超细晶WC-10Co硬质合金的制备与性能研究[D].北京:北京工业大学,2008:15-16.
    [41] Z. Y. Shi, Z. Q. Liu and C. M. Cao. Modelling of Hard Turning: Effect of Tool Geometry on Cutting Force [C]. Proceedings of The 36th International Matador Conference, China, 2010: 227-228.
    [42]吴孔友.机夹可转位车刀的结构、几何参数及切削性能分析[J].工具技术,2006,40(6):49-50.
    [43]彭如恕.成形车刀刃形精确设计通用算法理论解析[J].机械设计与制造,2000,(4):56-57.
    [44]许张琦,许伟达.刀具的锋利刃口对铝铸件表面加工的影响[J].制造技术与机床,2008,(9):40-41.
    [45] B. O. M. Axelsson, ?. S. Lundberg, J. A. Gr?nlund. Studies of the Main Cutting Force at and near A Cutting Edge [J]. European Journal of Wood and Wood Products, 2009, 51(2): 43-45.
    [46]任帅民. PCBN刀具断续切削时负倒棱参数的研究[D].大连:大连理工大学,2009:2-3.
    [47] Zhang Hongtao, Liu Peide, Hu Rongsheng. The Computer Prediction of the Shear Angle in Metal Cutting Process [C]. The International Conference on Performance Engineering, Beijing, China, 1988:26-30.
    [48]杨利民,沈小燕.聚晶金刚石刀具后角对加工表面质量的影响[J].制造技术与机床,2000,(11):53-54.
    [49] Dilbag Singh, P. Venkateswara Rao. A Surface Roughness Prediction Model for Hard Turning Process [J]. The International Journal of Advanced Manufacturing Technology, 2007, 32(11): 1115-1116.
    [50]樊宁,陈明,郭培全.刀具前角对加工残余应力的影响分析[J].组合机床与自动化加工技术,2009,(5):100-101.
    [51]张基岚.机夹可转位刀具手册[M].北京:机械工业出版社,1994:9-10.
    [52] Dirk Biermann, Alexander Baschin. Influence of Cutting Edge Geometry and Cutting Edge Radius on the Stability of Micromilling Processes [J]. ProductionEngineering, 2009, 3(4): 375-376.
    [53]余金伟,廖友军.数控车床刀尖高度对零件加工精度的影响[J].机床与液压,2009,37(5):205-206.
    [54]袁哲俊.金属切削刀具[M].上海:上海科学技术出版社,1984:11.
    [55]徐万春.切削工具的设计[M].台湾:徐氏基金会出版社,1970:103-105.
    [56] J.P. Choi and S.J. Lee. Efficient Chip Breaker Design by Predicting the Chip Breaking Performance [J]. The International Journal of Advanced Manufacturing Technology, 2001, 17(7): 489-490.
    [57] Guosheng Su and Zhanqiang Liu. An Experimental Study on Influences of Material Brittleness on Chip Morphology [J]. The International Journal of Advanced Manufacturing Technology, 2010, 51(1-4): 87-88.
    [58] Uday A. Dabade, S. S. Joshi, N. ramakrishnan. Analysis of Surface Roughness and Chip Cross-Sectional Area while Machining with Self-propelled Round Inserts Milling Cutter [J]. Journal of Materials Processing Technology. 2003, (132): 305~312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700