大型丝杠的旋风铣削加工工艺优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬铣削加工(即旋风铣削加工)是二十世纪中后期产生的一种新型切削加工方式,因其高效、优质、低耗、清洁等优势成为切削加工的主流方式,被广泛地运用到螺纹及丝杠的切削加工中。本文以提高大型丝杠的旋风铣削加工精度为目的,通过理论建模与有限元仿真的方法研究大型丝杠的旋风铣削加工过程,并对其加工工艺进行优化。
     针对大型丝杠刚度低的问题,建立了多支撑下的大型丝杠的旋转动力学模型,且在建模的过程中考虑丝杠旋转速度,丝杠自重对大型丝杠旋转动力学研究的影响。运用有限元仿真技术与MATLAB中的遗传算法工具箱对支撑布局进行优化。
     对大型丝杠的旋风铣削加工工艺优化的方法进行了研究。由于粒子群算法收敛速度快、核心程序简单、涉及学科知识少等优点,重点研究了粒子群算法并编写了粒子群算法程序。针对粒子群算法存在的缺陷,提出了基于随机方向法的粒子群算法(RDM-PSO)来弥补该缺陷。通过测试函数分析及与其它文献对比,对基于随机方向法的粒子群算法的算法性能进行了研究,并将其运用到大型丝杠的支撑布局再优化中。
     建立了大型丝杠旋风铣削加工的瞬时切削厚度模型,刀-屑接触长度模型,并基于高速切削加工理论,建立了大型丝杠旋风铣削加工的切削力理论模型,同时通过有限元切削仿真,得到不同旋风铣削加工参数,不同刀具结构下的旋风铣削力、表层残余应力、切屑形态等。
     建立大型丝杠在沿轴向移动的断续旋风铣削力作用下的动力学模型,通过使用wilson-θ法求解此模型得到不同旋风铣削工况下的大型丝杠的动力学响应,同时在ABAQUS中,对大型丝杠旋风铣削加工模型进行模态动态分析得到大型丝杠的动力学响应,且在MATLAB数值模拟与有限元模态动态分析的过程中,考虑大型丝杠的旋转速度、自重,铣刀盘的轴向进给速率,断续旋风铣削力,夹紧力对大型丝杠动力学响应的影响。
     最后,将大型丝杠在沿轴向移动断续旋风铣削力作用下的动力学响应值作为目标函数,使用基于随机方向法的粒子群算法与MATLAB遗传算法工具箱对旋风铣削加工参数进行优化。
Hard whirling is a new manufacturing method which is discovered by the middle of 20 century. It is famous for its high quality, high efficiency, low-consuming, clearness, and has been intensively used in screw and ball screw manufacturing. In this article, we aim at improve the machining accuracy of large ball screw. Meanwhile, we use theoretical modeling and finite element analysis to optimize the manufacturing process.
     Firstly, in order to increase the rigidity of large ball screw, we build the dynamic equation of large ball screw under supports, taking consider of rotating speed and gravity of large ball screw, and use Genetic Algorithm toolbox in MATLAB and Finite element analysis to optimize the layout of supports.
     Secondly, do research about the method to optimizing manufacturing process which is called optimization algorithm. Because Particle Swarm Optimization algorithm has fast convergence efficiency, simple procedure, little subject involved and so on, so in this article we are mainly focus on it, what's more, we improve the performance of Particle Swarm Optimization algorithm through adding Random Direction Method into it, and we use RDM-PSO to optimize the layout of supports again.
     Thirdly, modeling the minimum chip thickness, the instantaneous chip thickness and tool-work contact length, and theoretically build the whirling force model according to high speed metal cutting theory, meanwhile study whirling force, surface residual force, chip shape under different whirling condition and the structure of cutter through metal cutting simulation in ABAQUS.
     Fourthly, build the dynamic equation of rotating large ball screw under axially moving interrupted whirling force, solving this equation and doing dynamic modal analysis of large ball screw under whirling in ABAQUS to get ball screw's deflection, taking consider of the rotating speed and gravity of ball screw, axially moving interrupted whirling force and clamping force.
     Finally, we consider the deflection of ball screw under axially moving interrupted whirling force as objection function, and use RDM-PSO and GATO to optimize the whirling parameter.
引文
[1]付宝萍,田茂林.旋风硬铣削在滚珠丝杠加工中的应用.金属加工,2010年第6期
    [2]T. N. SHIAU, E. C. CHEN, K. H. HUANG, W. C. HSU. Dynamic Response of a spinning Timoshenko Beam with General Boundary Conditions under a Moving Skew Force Using Global Assumed Mode Method, JSME International Journal, Series C, Vol.49, No.2, (2006):401-410
    [3]Huajiang Ouyang, Minjie Wang. Dynamics of a Rotating Shaft Subject to a Three-Directional Moving Load [J]. Journal of Vibration and Acoustics, Vol.129, JUNE (2007):386-389.
    [4]Y. M. Huang, M. L. Yang, Dynamic analysis of a rotating beam subjected to repeating axial and transverse forces for simulating a lathing process[J], International Journal of Mechanical Sciences 51 (2009):256-268
    [5]T.N. Shiau, K.H. Huang, F.C. Wang, K.H. Chen, C.P. Kuo. Dynamic response of a rotating ball screw subject to a moving regenerative force in grinding, Applied Mathematical Modeling 34 (2010):1721-1731
    [6]T.N. Shiau et al, Dynamic response of a rotating multi-span shaft with general boundary conditions subjected to a moving load [J]. Journal of Sound and Vibration 323 (2009):1045-1060
    [7]A. V. Phan, G. Cloutier, J. Mayer, A finite element model with closed-form solutions to work Piece deflections in turning. International Journal of Production research,1999, 37:4039-4051.
    [8]J. Mayer, A. V. Phan, G. Cloutier. Prediction of diameter errors in bar turning:A computationally effective model. Applied Mathematical Modelling.2000,24:943-956
    [9]A. V. Phan, L. Baron, J. Mayer. Finite element and experimental studies of diameter errors in cantilever bar turning. Applied Mathematical Modelling.2003,27:221-232
    [10]L. Carrino, G. Giorleo, W. Polini, et al. Dimensional Errors in Longitudinal Turning Based on the Unified Generalized Mechanics of Cutting Approach. International Journal of Machine Tools & Manufacture.2002,42:150-152.
    [11]R. Azouzi, M. Guillot. On-line Prediction of Surface Finish and Dimensional Deviation in Turning Using Neural Network Based Sensor Fusion. International Journal of Machine Tools & Manufacture.1997,37(9):1201-1217
    [12]K.A. Risbood, U.S. Dixit, A.D. Sahasrabudhe. Prediction of Surface Roughness and Dimensional Deviation by Measuring Cutting Forces and Vibrations in Turning Process. Journal of Materials Processing Technology.2003,132:203-214
    [13]C.K. Chen, Y.M. Tsao. A stability analysis of turning a tailstock supported flexible work-piece, International Journal of Machine Tools & Manufacture 46 (2006) 18-25
    [14]Y. M. HUANG, K. K. CHANG. Stability analysis of a rotating beam under a moving motion-dependent force, Journal of Sound and Vibration (1997)202(3),427-437
    [15]郭建亮.细长轴类工件车削加工的研究.哈尔滨工业大学博世论文,2006年5月
    [16]范胜波.虚拟数控车削加工质量预测系统的研究.天津大学博士学位论文,2005:38-45
    [17]吴昊,杨建国,张宏韬,王秀山.精密车削中心热误差鲁棒建模与实时补偿.上海交通大学学报,第42卷第7期,2008年7月
    [18]崔伯第.细长轴车削参数优化及尺寸误差监测系统研究.哈尔滨工业大学博世论文,2008年8月
    [19]武文革,庞思勤,常兴.可逆向车削细长轴加工误差的力学分析.北京理工大学学报,第24卷,第2期,(2004):109-112
    [20]谭立新.五轴联动旋风铣削机床切削运动仿真及误差补偿研究.中南大学硕士学位论文,(2007):4-5
    [21]李小忠.高速切削有限元仿真及加工参数优化的研究.南京理工大学硕士学位论文,2007年7月
    [22]张贇,董长双.基于MAT LAB粒子群算法的切削用量优化.机械工程及自动化,第2期(总第165期),2011:119-121
    [23]SHI Y H, Eberhart R C.A modified particle swarm optimizer [A]. IEEE International Conference on Evolutionary Computation[C]. Anchorage, Alaska, May4-9,1998
    [24]朱小六,熊伟丽,徐保国.基于动态惯性因子的PSO算法的研究[J].计算机仿真,2007,24(5):154-157
    [25]雷开友.粒子群算法及其应用研究[D].西南大学博士学位论文,2006.06
    [26]沈艳,郭兵,古天祥.粒子群优化算法及其与遗传算法的比较.电子科技大学学报,第34卷,第5期,2005:696-699
    [27]Eberhart R.C. Shi Yuhui. Particle Swarm Optimization:Developments, Applications and Resources 2001
    [28]CLERC M. The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[C]//Proc of the ICEC. [S.I.]; IEEE Press,1999:1951-1957
    [29]Ting-Yu Chen, Tzu-Ming Chi, On the improvements of the particle swarm optimization algorithm [J], Advances in Engineering Software 41 (2010) 229-239
    [30]Chen DeBao, Zhao ChunXia, Particle swarm optimization with adaptive population size and its application, Applied Soft Computing 9 (2009) 39-48
    [31]倪庆剑,邢汉承,张志政,王蓁蓁,文巨峰.粒子群优化算法研究进展.模式识别与人工智能,第20卷第3期,(2007):349-357.
    [32]SUN Jun, FENG Bin, XU Wen-bo. Particle swarm optimization with particles having quantum behavior[C]//Proc of congress on evolutionary computation.2004:325-331
    [33]窦全胜,周春光,马铭.粒子群优化的两种改进策略[J].计算机研究与发展,2005,42(5):897-904
    [34]Settles M, Soule T. Breeding Swarms:a GA/PSO hybrid//Proc of the Genetic and Evolutionary Computation Conference. Washington, USA,2005:161-168
    [35]Bo Liu, Ling Wang, Yi-Hui Jin, Fang Tang, De-Xian Huang. Improved particle swarm optimization combined with chaos. Chaos, Solitons and Fractals 25 (2005) 1261-1271
    [36]彭鑫,马林华,工俊攀,苏强.双种群变异粒子群算法.计算机工程与应用,2010,46(18),35-37
    [37]纪震,周家锐,廖惠连,吴青华.智能单粒子群算法.计算机学报,第33卷,第3期,(2010):556-561.
    [38]彭正中.大跨度造桥机静力及稳定性分析.石家庄铁道学院,硕士学位论文,2005.02
    [39]胡海岩主编.机械振动基础[M].北京航空航天大学出版社,2005
    [40]常学峰,李迎.基于粒子群算法的长丝杠旋风铣削参数优化[J].煤矿机械,第32卷第11期,(2011):134-136
    [41]李炳宇,萧蕴诗,汪镭.PSO算法在工程优化问题中的应用[J].计算机工程与应用,2004,18,74-76
    [42]孙靖民,梁迎春.机械优化设计[M].机械工业出版社,1990
    [43]刘海江,黄炜.基于粒子群算法的数控加工切削参数优化.同济大学学报(自然科学版),第36卷第6期,2008年6月。
    [44]Wei Chu, Xiaogang Gao, Soroosh Sorooshian, Handling boundary constraints for particle swarm optimization in high-dimensional search space. Information Sciences 181 (2011)4569-4581
    [45]P. L. B. Oxley. The mechanics of machining[M]. Ellis Horwood Limited,1989.
    [46]Y.Huang, S.Y.Liang. Cutting forces modeling considering the effect of tool thermal property application to CBN hard turning. International Journal of Machine Tools & Manufacture 43 (2003):307-315
    [47]惠记庄.采用回归分析法建立切削力经验公式.西安公路交通大学学报,1996,16(4):102-105
    [48]陈涛.淬硬钢GCrl5精密切削过程的建模与加工表面完整性预测.哈尔滨理工大学博士学位论文,(2009):16-22
    [49]艾兴.高速切削加工技术[M].北京国防工业出版社,2003.
    [50]Domenico Umbrello, Jiang Hua, Rajiv Shivpuri. Hardness-based flow stress and fracture models for numerical simulation of hard machining AISI 52100 bearing steel. Materials Science and Engineering A 374 (2004) 90-100.
    [51]王宇,刘亦智,岳彩旭,刘献礼,翟元盛.淬硬钢GCrl5斜角切削过程的有限元分析.制造技术与机床,第5期,(2008):88-91
    [52]左健民,胡艳艳,汪木兰,费树岷,顾雪艳.基于JC模型的Ti6A14V切屑成形有限元模拟与分析.机床与液压。第37卷第11期,(2009):7-10
    [53]芮执元,李川平,郭俊锋,冯瑞成.基于Abaqus/explicit的钛合金高速切削切削力模拟研究.机械与电子,2011年第4期
    [54]李海波,张弘弢,董海,李嫚.基于切削力的PCBN复合片表面摩擦系数研究.金刚石与磨料磨具工程[J].总第163期,第1期.(2008):61-63
    [55]Edward B. Magrab等著,高会生等译. MATLAB原理与工程应用[M].电子工业出版社,2006
    [56]师汉民等著.机械振动系统:分析、测试、建模、对策[M].华中科技大学出版社,2004
    [57]石亦平,周玉蓉ABAQUS有限元分析实例详解[M].机械工业出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700