头盔伺服系统的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对现有分辨率和对比度高、视场角大、专业级立体显示的头盔显示器一般在使用过程中会出现运动不便,定位跟踪干扰大,有沉重感、束缚感和异物感等问题,本文以高精度与短延迟跟踪、低工作负荷的功能需求为目标,从提高头盔显示器佩戴舒适性的角度出发,提出了一种主要由6URHS并联机构和传统头盔显示器组成的新型虚拟现实设备——头盔伺服系统(Helmet Mounted Display with6DOF Parallel Manipulator,以下简称HMDPM),并对该系统的若干关键技术进行了研究,具体有以下几个方面:
     1、执行机构的尺寸优化设计及原型样机研制。作为系统的运行执行机构,并联机构的结构尺寸将会直接影响到系统的运动特性。本文首先通过对实测数据进行量化与修正处理,得到了描述头部运动范围的六维超椭球体和头部运动速度、精度的极限数值,明确了执行机构尺寸优化的性能指标;其次,对各性能指标进行了归一化处理,定义了相应的子目标函数,建立了尺寸优化问题的数学模型,并提出了基于Centroidal Voronoi Tesselations(CVT)的非线性最小二乘法对优化问题进行了解算。计算结果显示,CVT的使用可以使参数初始值均匀覆盖整个参数空间,可在保持非线性最小二乘法原有优势的同时,提高算法的全局搜索能力,提供多组非劣解;再次,在执行机构的结构设计方面,提出了穿越式的驱动支链设计方案,减小了自身结构尺寸和安装占用空间,通过悬挂安装驱动支链保证了穿越式方案的实施,实践证明,机构的使用效果达到了设计目标;最后,按照最优方案完成了执行机构的设计研制。
     2、执行机构的运动学与动力学分析。分析了6URHS并联机构关节空间与任务空间之间的运动学关系;对螺母单独进行了动力学分析,推导了驱动支链的动力学方程,采用牛顿——欧拉法建立了部件级、细粒度的6URHS并联机构动力学模型;采用Simulink的Simmechanics模块建立了6URHS并联机构的虚拟样机,进行了开环动力学响应实验,实验结果显示数学模型与虚拟样机的动力学响应基本一致,数学模型的准确度与虚拟样机相仿。对6UPS并联机构模型与6URHS并联机构模型进行了能量转化分析,分析结果证明,考虑螺母的动力学特性,建立6URHS并联机构的动力学模型具有较高的必要性。
     3、系统重要未知参数的辨识。针对含头盔显示器的动平台质量、重心位置等参数具有时变不确定性的特点,本文重点对非线性系统的在线辨识算法进行了研究,通过理论分析和文献资料阅读,归纳、总结了部分辨识方法的优、缺点;结合待辨识参数和执行机构动力学模型,给出了用于参数辨识的系统状态空间模型和观测函数;通过在线辨识仿真,对比分析了连续-离散扩展卡尔曼滤波(CDEKF)算法和连续-离散无味卡尔曼滤波(CDUKF)算法的辨识速度、精度和稳定性,仿真结果显示CDUKF在这三方面均要优于CDEKF;采用CDUKF对HMDPM的动平台参数进行了在线辨识实验,实验结果显示CDUKF能对参数的阶跃变化作出快速响应,辨识误差较小,且阶跃变化越小,CDUKF的响应速度和辨识精度就越高。
     4、系统控制策略。针对系统的设计功能,提出了HMDPM的主动柔顺控制策略(ACCSH);并对策略涉及的内容——运动轨迹规划和控制器设计进行了研究。鉴于螺旋副存在自锁问题,根据六自由度并联机构任务空间与关节空间的运动学关系,结合6UPS与6URHS各自驱动支链的运动特点,提出了基于6UPS并联机构驱动支链动力学模型和力传感器反馈数据的头部运动预测方法,该方法通过对头部运动的预测实现了对执行机构动平台运动轨迹的规划;针对系统设计功能之二——减小头盔显示器与使用者头部间的广义接触力,本文基于系统动力学模型,设计了带有惯性项与非线性项补偿的控制器;通过仿真与实验,对主动柔顺控制策略用于HMDPM控制的可行性与效果进行了验证,实验结果显示主动柔顺控制策略可以在实施精确位置跟踪的同时,有效地减小广义接触力,从而达到减小系统使用者工作负荷的系统设计目标。
     5、系统软件设计及其运行环境。按照功能划分,采用模块化的方法对系统软件架构进行了设计,基于Visual Studio实现了指令模块等17个功能模块,并根据任务需求将各模块有机结合,开发完成了系统管理软件、头部运动预测软件、在线辨识软件、系统控制软件以及动力学与运动学计算软件;基于C++Builder开发了系统管理软件的可视化操作界面,基于OpenGL设计了用于动态显示6URHS并联机构运动状态的虚拟样机,方便了测试实验的开展,保证了实验的安全性;基于Windows XP和RTX8.1搭建了系统软件的运行环境,设计了服务器(Windows)——客户端(RTX)的上、下位机控制架构,实现了HMDPM的480Hz的高频率实时控制。
     6、系统性能测试。构建了头盔伺服系统的原型样机,实现了系统硬件、软件的联合调试;采用仿真与实验相结合的方法,对HMDPM的设计功能实施效果和系统动力学响应等特性进行了研究。建立了有、无金属物体干扰两种跟踪性能测试实验环境,采用惯性陀螺测量了动平台的位姿信息,对电磁跟踪器与HMDPM的静、动态跟踪精确度、抗干扰能力和稳定性进行了对比,实验结果证实了HMDPM的良好跟踪性能;提出了基于动力学模型与力反馈数据的广义接触力计算方法,为通过实验手段验证ACCSH的实施效果提供了便利。参考了报告《AGARDAR-144》和《MIL-STD-1558》中关于飞行模拟机动感模拟平台的运动测试规范,设计了HMDPM运动特性极限等测试项目,完成了相关实验,并对实验结果进行了分析说明。
At present, there are some disadvantages, such as bad ability of anti-jamming, increasement ofhuman working load in application of a kind of professional helmet mounted display which has highcontrast, big enough angle of field. A novel helmet mounted display----helmet mounted display witha6URHS parallel manipulator (HMDPM) which can solve problems above by mean of parallelmanipulator is proposed, and several principal researches on improving system funciton are developedin this paper.
     Firstly, a dimensional design and its corresponding methodology for6URHS is investigated whilecharacteristics of head motion are considered as design criterions. A metod that descripts scale of headmotion by six-dimensional hyperellipsoid is investigated, and the characteristics of head motion inflight training are summarized based on datum from many experiments. In practice, design criterionsare classified into compulsory requirements and relaxable requirements, and the objective functionsregarding the kinematic performances of the6URHS are defined according to all criterions, while themathematical model of optimization is established in accordance with the principle of nonlinear leastsquares. The paper presents a novel methodology--modified nonlinear least squares based onCentroidal Voronoi Tesselations(CVT)--which initializes the design parameters with CVT and solvesthe optimization problem by means of the nonlinear least squares method, thus obtaining severalfeasible solutions The numerical simulations show that each design solution satisfies all thecompulsory criterions and the new method has a better ability for global optimization. Additionally,the best solution is determined by taking into account the optimization of relaxable requirements--dexterity in workspace, and the feasibility of the new method is further verified by analyzing thepartial indices of the optimal mechanism. The prototype machine is manufactured according to theoptimal scheme.
     Secondly, the kinematic analysis for manipulator of6URHS is developed, and the kinematicrelationship between leading screw, nut and platform is derived. Dynamic analysis of leg is carried outusing Newton-Euler method, and the Newton-Euler equations of whole leg and corresponding partsincluding nut are established respectively, and then the closed-form dynamic equation of6URHSparallel manipulator is established. Virtual machine, dynamic models of6URHS are buildedrespectively by SIMULINK and M file, and some comparison experiments about dynamic responseare developed, the results of experiments show that the veracity of the dynamic models of6URHS isas the same as virtual machine’s. Additionally, it is proved that it is essential to established6URHSdynamic model considering the dynamic characteristics of nut.
     Thirdly, the parameter identification and cooresponding methodology of HMDPM platformincluding helmet is studied. Requirments about parameter identification method being fit for HMDPMare summarized in accordance with system construction and operation. Continuous-discrete extensionkalman filter and hybrid unscented kalman filter which are modified based on extension kalman filterand unscented kalman filter respectively to be used in identification of continuous-discrete hybridsystem are developed; Some contrastive analysises are done by mean of simulation, and results showthat continuous-discrete unscented kalman filter is more excellence than Continuous-discreteextension kalman filter on computation velocity and accuracy. Taking advantage ofcontinuous-discrete unscented kalman filter, the real value of platform parameters are obtained, and contrastive analysis betweent actual value and CAD mdel value of platform parameters is carried out,the reasons resulting in difference between actual value and model value are investigated, and anslysisresults show that the difference is the reflection of reality and continuous-discrete unscented kalmanfilter has qualification to identify parameters of HMDPM platform online.
     Forthly, an active compliance control strategy and its kernels for HMDPM are investigated. Themethodology of predicting head motion based on force feedback and dynamic model of extensible legof parallel manipulator is proposed to plan trajectory. Based on the relationship between the length ofextensible leg and the position and orientation of platform, the information of head motion ispredicted by means of sensor datum and solution of dynamic model of extensible leg, and then it isused to be the desired trajectory of HMDPM position control. The inertia term and nonlinear term ofHMDPM dynamic model are calculated, and the compensations of them are considered in design ofHMDPM controller so that the generalized contact force between head and helmet will be controlledeasily while tracking control of head is progressing. The SimMechanics module in MATLAB isadopted to construct human-robot interactive model of HMDPM, and the feasibility of novel controlstrategy is verified by developing some related numerical simulations. The simulations show that headmotion will be predicted rapidly and exactly using the presented method, the stiffness of HMDPM andgeneralized contact force are reduced evidently by compensating inertia term and nonlinear term inHMDPM controller while tracking control of head is conducted well, and user’s comfort is enhancedobviously. Method to calculate generalized contact force which is based on system dynamic modeland force feedbacks is developed, and is applicated in experiment to test the effience of activecompliance control strategy, experiment results show that both system stiffness and generalizedcontact force can be decreased by making use of active compliance control strategy, and humanworking load is reduced simultaneously. Quantized analysis of influence that have resulted fromdifferent experiment condition is done, and the impersonality of experiment is approved to be well.
     Fifthly, system softwares operation environment is established by combining RTX and WindwosXP, then the instantaneity and performance of system are promoted and the frequency of system canattain500~1000HZ. Based on Visual Studio, system softwares such as system management software,prediction of head motion software, online identification software and so on, are developed bymodularizing system functions, and the graphic user interface of system management software andvirtual machine showing kinematic status of6URHS are also developed respectively adopting C++Builder and OpenGL, so it is possible to evaluate the reliability and efficiency of methods beforeadoption in practice. Thereby, the security of system will be improved and hardwares can be protectedfrom damage which is due to unexpected case, and then the practicability of softwares is approved tobe fine.
     Finally, Some comparison experiments are developed and carried out to test the tracking precision,stability and ability of anti—jamming of traditional electromagnetic tracker and HMDPM, and theresults show that the former is better than the latter on all three test aspects in two test environmentswhich are classified by metal object existence, and there is a serious meansurement distortion forelectromagnetic tracker in metal object environment. Several test items that are designed to analyzesystem performance are constituted in accordance with report 《AGARDAR-144》和《MIL-STD-1558》.
引文
[1]魏迎梅,栾悉道.虚拟现实技术.北京:电子工业出版社,2005.
    [2] McDowall, I., M.Bolas, S.Pieper. Implementation and integration of a CounterbalancedCRT-Based Stereoscopic Display for Interactive Viewpoint Control in Virtual EnvironmentApplications, proceedings of stereoscopic displays and applications, SPIE Vol,1256,1990:136-146.
    [3] Mead. Gimbal-Mounted virtual Reality Display System, U.S. Patent6,128,004,2000.
    [4]魏迎梅,栾悉道.虚拟现实系统——接口、应用与设计.北京:电子工业出版社,2004.
    [5] Burdea, Grigore. virtual reality technology. New Jersey: John Wiley and Sons, Inc,2003.
    [6] Ascension. Flock of Birds Real-Time Motion Tracker, company brochure, AscensionTechnology Co., Burlington. VT,1998.
    [7] Burdea, G., P. Coiffet. La Realite Virtuelle. Pairs: Hermes,1993.
    [8] Welch G., Bishop L. Vicci, S., et al. High Performance Wide-Area Optical Tracking, presence,2001,10(1):1-21.
    [9] Foxlin, E., M. Harrington. Constellation: A Wide-Range Wireless Motion Tracking System forAugmented Reality and Virtual Set Applications, proceedings of SIGGRAPH’98, Orlando:ACM,1998:371-378.
    [10] Volodymyr, Kindratenko. Calibration of electromagnetic tracking devices, Virtual Realigy:Research, Development, and Applications,1999.4:139-150.
    [11]张求知,刘建业.电磁式跟踪器磁场畸变的姿态校正技术,南京航空航天大学学报,2007.39(6):711-715.
    [12] Gabriel, Zachmann. Distortion Correction of Magnetic Fields for Position Tracking, ComputerGraphics International1997(CGI'97), Hasselt and Diepenbeek, Belgium,1998:213-220.
    [13]蒋新胜,王永风.虚拟现实跟踪系统的研究,解放军理工大学学报,2003.4(1):79-82.
    [14]徐彤,王涌天.用于人机交互的交流式电磁跟踪系统的研究,北京理工大学学报,2000.20(5):544-549.
    [15]刘越,王涌天.用于人机交互的交流式电磁跟踪系统的研究,系统仿真学报,2002.14(9):1154-1160.
    [16] Merlet, J. P.. Optimal design of robots. Online Proceedings of Robotics: Science and Systems.Boston: The MIT Press,2005:8-15.
    [17] Merlet, J. P.. DEMOCRAT: A Design Methodology for the Conception of Robot with parallelArchitecture. Proceedings of the International Conference on Intelligent: Robots and Systems.Grenoble: IEEE.1997:1630-1636.
    [18] Merlet, J. P.. Parallel robots(second edition). Sophia-Antiplis: Springer,2006.
    [19] Merlet, J. P.. The necessary of optimal design for parallel machines and a possible certifiedmethodology. Proceedings of the second International Colloqium of the CollaborativeResearch Center562: Robotic Systems for Handing and Assembly. Braunschweig: TechnicalUniversity Braunschweig and German Aerospace Centre,2005:7-20
    [20] F. Hao, Merlet, J. P.. Multi-criteria optimal design of parallel manipulators based on intervalanalysis. Mechanism and Machine Theory,2005,40:157-171.
    [21] Xin-Jun Liu, Jinsong Wang. A new methodology for optimal kinematic design of parallelmechanisms. Mechanism and Machine Theory,2007,40:1210-1224.
    [22]金振林,高峰.新型并联机床全域力/运动传递各向同性与其结构尺寸关系.机床与液压,2002.1:38-40.
    [23]杨育林,樊少帅.自动倾斜器不旋转环操纵机构等效并联机构尺寸优化分析.机械工程学报,2008.46(7):48-56.
    [24] Tang Xiaoqiang, Li Tiemin, Wang Jinsong, etc. Dimensional design theory and methodologyof6-DOF scissor parallel manipulator. Chinese Journal of Mechanical Engineering.2004.17(1):6-11.
    [25] O. Altuzarra, A. Hernandez. Multiobjective optimum design of a symmetric parallelschonflies-motion generator. Journal of Mechanical Design.2009.131:1-11.
    [26]王伟,谢海波.一种基于固有频率分析的液压6自由度并联机构参数优化方法.机械工程学报,2006.42(3):77-82.
    [27] Ottaviano.E, Ceccarelli.M. Optimal design of CaPaMan (Cassino Parallel Manipulator) with aspecified orientation workspace. Robotica,2002.20(2):159-166.
    [28] Cecarelli M. An optimum design of parallel manipulators: Formulation and experimentalvalidation.1st International Colloquium on Collaborative Research Center562: RoboticSystems for Handing and Assembly. Braunschweig: Technical University Braunschweig andGerman Aerospace Centre,2002:47-63.
    [29]曹玉刚,张玉茹.6-RSS型并联机构的工作空间分析与参数优化.机械工程学报,2008.44(1):19-24.
    [30]刘玉旺,余晓流.并联机构工作空间及参数优化研究.机械科学与技术,2006.25(2):184-188.
    [31]赵云峰,程丽,赵永生.3-UPS/S并联机构运动学分析及机构优化设计.机械设计,2009.26(1):46-49.
    [32]夏禹,黄海. Hexapod平台参数设计优化.航空学报,2008.29(5):1168-1173.
    [33] Marc Arsenault, Roger Boudreau. Synthesis of planar parallel mechanisms while consideringworkspace, dexterity, stiffness and singularity avoidance. Journal of Mechanical Design.2006.128:69-78.
    [34]陈水赠.6-SPS并联机器人研究及其结构参数优化.南京:南京理工大学机械工程学院,2007.
    [35]陈在礼,陈学生.用遗传算法解具有给定工作空间的并联机构综合问题.中国机械工程,2002.13(3):187-190.
    [36]余晓流,高文斌.基于遗传算法的2自由度并联机构的优化设计.机械设计,2009.26(8):56-58.
    [37]陈静,刘强.基于遗传算法的新型2-DOF并联机构的优化设计.机械设计,2008.25(2):21-23.
    [38] Zhang Yifeng, Yao Yu. Inverse kinematic optimal design of6-DOF parallel manipulators.Journal of Harbin Institute of Technology,2008.15(1):18-22.
    [39] Chen Hua, Chen Weishan. Optimal design of Stewart platform safety mechanism. ChineseJournal of Aeronautics,2007.20(1):370-377.
    [40]孙凡国,黄伟.基于粒子群算法的并联机构结构参数优化设计.机械设计与研究,2006.22(3):16-18.
    [41]杨维,李岐强.粒子群优化算法综述.中国工程科学,2004.6(5):87-94.
    [42] Ryan I. Rostad, Clarence E. Rash, Joshua K. Brily, el at. Analysis of Head Motion inRotary-Wing Flight Using Various Helmet-Mounted Display Configurations. USAARL,Report No.2003-07, Fort Rucker,AL: U.S.Army Aeromedical Research Laboratory,2003.
    [43] S. K. Advani, M. A. Nahon. Optimization of Six-Degree-of-Freedom Motion Systems forFlight Simulators. Journal of Aircraft,1999.36(5):819-826.
    [44] Sunjoo Kan Advani. The kinematic design of flight simulator motion-bases. Toronto:International Center for Research in Simulation,Delft University of Technology,1998.
    [45]黄真,孔令富,方跃法.并联机构机构学理论及控制.北京:机械工业出版社,1997:165-167.
    [46] Merlet, J. P. Designing a parallel manipulator for a specific workspace. The InternationalJournal of Robotics Research,1997,16(4):545-556.
    [47] Cecarelli M. An optimization problem approach for designing both serial and parallelmanipulators. Proceedings of MUSME2005---2nd International Symposium on MultibodySystems and Mechatronics. Uberlandia: MuSMe,2005:01-15.
    [48] Jean-Pierre Merlet. Workspace---oriented methodology for designing a parallel manipulator.Proceedings of the1996IEEE International Conference on Robotics and Automation.Minnesota: IEEE,1996:3726--3731.
    [49] Qiang Du, Vance FABER, Max Gunzburger. Centroidal voronoi tessellations: Applications andalgorithms. Society for Industrial and Applied Mathematics,1999.41(4):637-646.
    [50] Qiang Du, Tak-Win Wong. Numerical studies of MacQueen’s k-means algorithm forcomputing the Centroidal voronoi tessellations. Computers and Mathematics with Applications,2002.44:511-523.
    [51]冀翠莲,周慎杰,田蕴,等.基于质心Voronoi结构的布点算法及应用.机械工程学报,2008.44(1):168-172.
    [52] Bhaskar Dasgupta, T.S. Mruthyunjaya. The Stewart platform manipulator: a review.Mechanism and Machine Theory,2000.35:15-40.
    [53] Rasim Alizade, Cagdas Bayram. Structural synthesis of Parallel manipulators. Mechanism andMachine Theory,2006.39:857-870.
    [54] Iegao Wang. A new approach for the dynamic analysis of parallel manipulators. MultibodySystem Dynamics,1998.2:317-334.
    [55]郭祖华.6-UPS型并联机构的刚体动力学模型.机械工程学报,2002.38(11):53-57.
    [56] Wu JianXin, Yang XiaoJun. Dynamic Analysis and Optimization of Parallel Manipulator.2009International Conference on Artificial Intelligence and Computational Intelligence.Shanghai:IEEE,2009:199-203.
    [57] Wang Jinsong, Wu Jun, Wang Liping, et al. Simplified strategy of the dynamic model of a6-UPS parallel kinematic machine for real-time control. Mechanism and Machine Theory,2007,42:1119-1140.
    [58]徐鹏,王代华. Simulink环境下的Stewart平台的动力学仿真.仪器仪表学报,2004.25(4):118-122.
    [59]杨宇.飞行模拟器动感模拟关键技术研究.哈尔滨:哈尔滨工业大学,2010.
    [60]吴军,李铁民,关立文.飞行模拟器运动平台的计算力矩控制.清华大学学报,2006.16(36):1405-1408,1413.
    [61]延皓.基于液压六自由度平台的空间对接半物理仿真系统研究.哈尔滨:哈尔滨工业大学,2007.
    [62]张立新,汪劲松,王立平.加速度运动条件下6-UPS型并联机床刚体动力学模型简化研究.机械工程学报,2003.39(11):117-122.
    [63]郭洪波,刘永光,李洪人.六自由度Stewart平台动力学模型的特性分析.北京航空航天大学学报,2007.33(8):940-944.
    [64] H B Guo, H R Li. Dynamic analysis and simulation of a six degree of freedom Stewartplatform manipulator. Proc. IMechE, Part C: J. Mechanical Engineering Science,2006.220(1):61-72.
    [65] Khalifa H. Harib, M.S. Dynamic modeling, identification and control of stewartplatform-based machine tools. Ohio: The Ohio State University,1997.
    [66] Wu JianXin, Yang XiaoJun. Dynamic Analysis and Optimization of Parallel Manipulator.2009International Conference on Artificial Intelligence and Computational Intelligence. Shanghai:IEEE,2009:199-203.
    [67]傅绍文,姚郁,王晓晨.电动Stewart仿真平台动力学建模与惯性参数辨识.系统仿真学报,2007.19(9):1909-1912.
    [68] Wang Jinsong, Wu Jun, Wang Liping, et al. Simplified strategy of the dynamic model of a6-UPS parallel kinematic machine for real-time control. Mechanism and Machine Theory,2007.42:1119-1140.
    [69]李鹭扬,吴洪涛,朱剑英. Gough-Stewart平台高效动力学建模研究.机械科学与技术,2005.24(8):887-889.
    [70]吴培栋. Stewart平台的运动学与逆动力学的基础研究.武汉:华中科技大学,2008.
    [71]杨宇,郑淑涛,韩俊伟.基于动力学的Stewart平台振动控制策略研究.农业机械学报,2010.41(6):20-24.
    [72] J. Gallardo, J.M. Rico, A. Frisoli, et al. Dynamic of parallel manipulators by means of screwtheory. Mechanism and Machine Theory,2003.38:1113–1131.
    [73]刘国军,郑淑涛,韩俊伟. Gough–Stewart平台通用动力学反解分析.华南理工大学学报,2011.39(4):70-75.
    [74]杨灏泉,吴盛林,曹健,等,考虑驱动支链惯量影响的Stewart平台动力学研究.中国机械工程,2002.13(12):1009-1012.
    [75]吴东苏.轻型飞行模拟器运动平台先进控制技术研究.南京:南京航空航天大学,2007.
    [76] Khalifa H. Harib, Dynamic modeling, identification and control of stewart platform-basedmachine tools. Ohio: Ohio University,1997.
    [77] Dasgupta B, Mruthyunjaya T S. A Newton-Euler formulation for the inverse dynamics of theStewart platform manipulator, Mechanism and Machine Theory,1998.33(8):1135-1152.
    [78] Dasgupta B, Mruthyunjaya T S. Closed-form dynamic equations of the general Stewartplatform through the Newton-Euler approach. Mechanism and Machine Theory,1998.33(7):993-1012.
    [79] Wang Yao. Symbolic Kinematics and Dynamics Analysis and Control of a General StewartParallel Manipulator. New York: State University of New York,2008.
    [80] Orang Vahid-Araghi, Farid Golnaraghi. Friction-Induced Vibration in Lead Screw Drives.New York: Springer,2011:7-15.
    [81] M. Honegger, A. Codourey, and E. Burdet, Adaptive control of the Hexaglide, a6dof parallelmanipulator, Proc. IEEE. Conf. on Robotics and Automation,1997:543–548.
    [82] S. H., Model Based Control of a Flight Simulator Motion System, Ph.D. Dissertation.Netherland: Delft University of Technology,2001.
    [83] Dongsu, Wu, Hongbin Gu, Peng Li. Comparative Study on Dynamic Identification of ParallelMotion Platform for a Novel Flight Simulator. Proceedings of the2009IEEE InternationalConference on Robotics and Biomimetics, Guilin, China,2009:2232-2237.
    [84] Ljung L. System identification-theory for the user,2nd ed, Upper Saddle River: PTR PrenticeHall,1999.
    [85]潘立登,潘仰东.系统辨识与建模.北京:化学工业出版社,2006.
    [86]陈雪松,杨洪耕.递推最小二乘法追踪电压闪变包络线,电力自动化设备,2006.26(6):30-32.
    [87]邱凤云. Kalman滤波理论及其在通信与信号处理中的应用.济南:山东大学,2008.
    [88] Greg Welch, Gary Bishop. An instruction to the Kalman filter. UNC-Chapel Hill, TR95-041,2006:1-16.
    [89]庄照荣.集合卡尔曼滤波资料同化系统的设计及其在集合预报中的应用.北京:中国气象科学研究院,2007.
    [90] Schutte F, Beineke S, Rolfsmeier A, et al. Online identification of mechanical parametersusing extended kalman filters. In: IEEE Industry Application Society Annual Meeting, NewOrleans, Lousiana: IEEE,1997:501-508.
    [91] Dan Simon. Optimal State Estimation: Kalman, H, and Nonlinear Approaches. New Jersey:A John Wiley&Sons, Inc.,2006.
    [92] Julier S, Uhlmann J K. A new extension of Kalman filter to nonlinear systems, Available:http://www.robots.ox.ac.uk.
    [93] Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation ofmeans and covariances in filter and estimators. IEEE Trans. on Automatic Control,2002.45(3):477-482.
    [94] Simo S. On unscented Kalman filtering for state estimation of continuous-time nonlinearsystems, IEEE Trans. On Automatic Control,2007.9(52):1631–1641.
    [95] Rudolph van der Merwe, Eric A. Wan. The square-root unscented Kalman filter for state andparameter-estimation, IEEE International Conference on Acoustics, Speech, and SignalProcessing.2001,(6)3461–3464.
    [96] Ganwen Zeng, Ahmad Hemami. An overview of robot force control. Robotica,1997.15:473-482.
    [97] Jae Y. Lew, Yung Tsan Jou, Hajrudin Pasic. Interactive control of human/robot sharing sameworkspace. Intelligent robots and systems, Proceedings of the2000IEEE/RSJ InternationalConference on Intelligent Robots and Systems. Tamatsu, Japan: Kagawa University,2000:535-540.
    [98] Costas S. Tzafestas, Nacer K. M’Sirdi, N. Manamani. Adaptive impedance control applied to apneumatic legged robot. Journal of Intelligent and Robotic Systems.1997.20:105-129.
    [99] Yung Tsan Jou. Human-robot interactive control. Ohio: Ohio University,2003.
    [100]殷跃红,魏忠信,朱剑英.机器人柔顺控制研究.机器人,1998,20(3):232-240.
    [101]王剑,秦海力,绳涛.仿人机器人的不平整地面落脚控制方法.机器人,2010,32(2):210-218.
    [102]胡海燕.半主动式结肠内窥镜机器人系统研究.哈尔滨:哈尔滨工业大学,2010.
    [103]张立勋,王令军.步态训练机器人模拟弹性地面承载特性研究.机械设计,2009,26(8):38-40.
    [104]陈峰.可穿戴型助力机器人技术研究.合肥:中国科学技术大学,2007.
    [105]刘攀,张立勋,王克义.绳索牵引康复机器人的动力学建模与控制.哈尔滨工程大学学报,2009,30(7):811-815.
    [106] Shan Liu、Yongle Xie et al. Interactive control for the arm rehabilitation robot.2009International Workshop on Intelligent Systems and Applications,2009:1-4.
    [107]杨勇.手臂康复机器人系统研究.哈尔滨:哈尔滨工程大学,2009.
    [108]詹建明.机器人研磨自由曲面时的作业环境与柔顺控制研究.长春:吉林大学,2002.
    [109]王桂莲.微小研抛机器人加工大型曲面工艺规划技术.长春:吉林大学,2010.
    [110]陈贵亮.研抛大型复杂曲面自主作业微小机器人研究.长春:吉林大学,2009.
    [111]魏秀权.机器人遥控焊接非结构化环境力觉辅助装配策略研究.哈尔滨:哈尔滨工业大学,2009.
    [112]魏媛媛,魏敏,林松青.模糊控制在机器人柔顺装配中的应用.北京科技大学学报,2003,25(1):74-78.
    [113]夏妍春,殷跃红,霍华.轴孔装配主动柔顺中心设置方法研究.中国机械工程,2004,15(11):1015-1021.
    [114]兰天.多指仿人机器人灵巧手的同步控制研究.哈尔滨:哈尔滨工业大学,2010.
    [115]黄海.新型仿人假手及其动态控制的研究.哈尔滨:哈尔滨工业大学,2008.
    [116]殷跃红,魏忠信,朱剑英.基于FNN机器人擦洗玻璃的力/位并环控制.航空学报,1997,18(4):501-504.
    [117]殷跃红,魏忠信,朱剑英.基于FNN机器人擦洗玻璃的主动柔顺控制研究.南京航空航天大学学报,1997,29(3):251-256.
    [118] Agostino De Santis. Modelling and control for human-robot interaction. Napoli: Universit`adegli Studi di Napoli Federico II,2007.
    [119]张佳帆.基于柔性外骨骼人机智能系统基础理论及应用技术研究.杭州:浙江大学,2009.
    [120]王宪伦.不确定环境下机器人柔顺控制及可视化仿真的研究,济南:山东大学,2006
    [121]马登武,范庚.基于交互式多模型的VR系统头部运动预测算法与仿真.系统仿真学报,2009,21(24):7817~7820.
    [122] Liang, Jiandong, Chris Shaw, Mark Green. On Temporal-Spatial Realism in the Virtual RealityEnvironment, Proceeding of the ACM Symposium on User Interface Software and Technology,1991:19-25
    [123]马登武,叶文,吕晓锋,等.虚拟现实系统中人的头部运动与跟踪研究.光电与控制,2007,14(1):55-60.
    [124]马登武,孙隆和,佟明安.虚拟现实系统的视觉延迟及其克服算法.火力与指挥控制,2004,29(2):50-52.
    [125] Loginow, Nicholas E., Predicting Pilot look-Angle with a Radial Basis Function Network,IEEE Transactions on Systems, Man and Cybernetics,,1994,24(10):1151-1158.
    [126]顾宏斌,吴东苏,高振兴,等.基于人体表面肌电信息的头盔显示器虚拟视觉时延补偿系统及方法:中国专利, CN101727182A,2010-06-09.
    [127]顾宏斌,高振兴,吴东苏.基于多加速度传感器的头盔显示器防眩晕系统及方法.中国专利: CN101034309,2007-09-12.
    [128]齐潘国,王慧,韩俊伟.液压操纵负荷系统惯性补偿方法研究.液压气动与密封,2010,8:37-41.
    [129]齐潘国.飞行模拟器液压操纵负荷系统力感模拟方法研究.哈尔滨:哈尔滨工业大学,2009.
    [130] Yung Tsan Jou. Human-robot Interactive control. Ohio: Ohio University,2003.
    [131] Gabriel Aguirre-Ollinger and J. Edward Colgate and Michael A. Peshkin. A1-DOF AssistiveExoskeleton with Inertia Compensation: Effects on the Agility of Leg Swing Motion. Journalof engineering medicine.2011,225(3):228-245.
    [132] Ma Xiao, Yang Zhiyong, Wang Panfeng, et al. Dynamics modeling and computed momentcontrol of high speed parallel manipulator. JOURNAL of MACHINE DESIGN,2006,23(2):13-15.
    [133] Yang Junhong. Research on ship motion simulator with three degree of freedom and itshydraulic servo driven system. Changsha: National University of Defense Technology,2007.
    [134] Yang Chifu, Huang Qitao, Jiang Hongzhou, et al. PD control with gravity compensation forhydraulic6-DOF parallel manipulator. Mechanism and Machine Theory,2010,45:666-677.
    [135] Shang Weiwei, Cong Shuang, Zhang Yaoxin. Nonlinear friction compensation of a2-DOFplanar parallel manipulator. Mechatronics,2008,18:340-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700