淀山湖氮磷营养物与浮游藻类增长相互关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从五个方面:1)20多年历史数据分析,2)湖泊营养物及其响应指标的实际观测,3)藻类增长的实验室和现场生物学评价,4)淀山湖浮游藻类群落增长过程的数学模拟,5)淀山湖营养物投入及响应统计学关系分析,验证了淀山湖在重度富营养化状态下,浮游藻类群落生长受到水体中氮磷营养物交替限制的科学假设。研究结果表明:
     (1)经过15年的营养物积累,淀山湖生态系统发生了重大转折,于1999-2000年前后由中度富营养化转变成重度富营养化。虽然淀山湖水力停留时间较短,但水体中营养物已经累积到足以暴发水华的程度;
     (2)淀山湖浮游藻类群落的季节演替基本符合PEG (Plankton Ecology Group)模式,但浮游藻类群落正迅速向以绿藻+蓝藻为主的群落结构演替,夏秋季则以蓝藻(微囊藻)为主,其水华对水源保护区构成威胁;
     (3)藻类群落生长的营养物累积生物学评价实验研究表明,淀山湖春夏季浮游硅藻和绿藻的生长受到水体营养物磷的显著限制,而氨氮则可能是夏秋季(7-9月)浮游蓝藻生长的主要限制因子,控制蓝藻的生物量。淀山湖浮游藻类生长的营养物限制符合氮磷交替限制的季节变化模式,即营养物磷是淀山湖的基本限制因子,夏秋季蓝藻群落占优势时则为氮限制;
     (4)经典的Logistic增长模型能够很好的描述淀山湖藻类群落春季和夏季的早期增长。近年的数据计算表明,淀山湖春季藻类群落的增长速度从2月下旬开始迅速增加,藻类密度的翻倍时间仅为半个月,到3月中旬藻类群落的增长速度达到最大值29.4μg/L.Month,5-6月份可能形成藻类水华。淀山湖夏季蓝藻藻类群落的增长速度在6月中下旬开始迅速增加,藻类密度的翻倍时间仅26天,到7月下旬藻类群落的增长速度达到最大值22.8μg/L.Month,8-9月份可能形成蓝藻水华;
     (5)淀山湖营养物输入及响应指标的统计学研究表明,淀山湖水体营养物投入响应指标总磷TP、总氮TN和叶绿素Chl a的平均浓度(平均值μ)和离散程度(标准差σ)随着富营养化程度的增加而增加。在重度富营养化的条件下,TN和TP平均浓度及其离散程度即使变化不大,也会引起Chl a平均浓度及其离散程度的较大的变化。淀山湖TP-Chl a回归方程的斜率随湖泊富营养化程度的增加而增加。目前的数据基础很难给出有统计学意义的氨氮和叶绿素α的经验表达式;
     依据上述的研究成果,我们可以得到以下的推论:
     (1)淀山湖虽然已进入重度富营养化阶段,浮游藻类生长,包括藻类早期增长的营养物限制仍然符合氮磷交替限制的季节变化模式。淀山湖控制营养物要有更好的策略;
     (2)淀山湖在重度富营养化的状态下,即便营养物质得到了控制(水体中营养物质的浓度不再增加),水体藻类的增长也不会马上停止,藻类水华事件还会在一个时期内继续发生;
     (3)淀山湖浮游藻类的早期增长是可以预计的,控制淀山湖蓝藻水华的根本出路在于早期预警和防治。
     在此基础上,我设计了淀山湖藻类水华早期预警预报的框架:
     (?)第一级预警(早期预警):Chl a=15μg/L,此时浮游藻类群落的增长速度开始迅速增加,增长速度增加最快;
     (?)第二级预警(水华预警):Chl a=35μg/L,此时浮游藻类群落的增长速度达到最大值区域;
     无论是春季还是夏季,在一般通常的气象和水文条件下,如果不采取任何控制措施,藻类叶绿素浓度有第一级预警(早期预警)到第二季预警(水华预警)的时间大约为20天。
The scientific hypotheses of hypereuthrophication and seasonal shift of nutrient limitation on algal growth in Dianshan Lake were tested from the following five aspects:1) historical data analyses,2) limnological survey on nutrient inputs and responses,3) lab and field Nutrient Enrichment Bioassays (NEBs),4) mathematic stimulation on algal growth, and 5) statistical analyses on the relationships between nutrient inputs and their response. The results showed that:
     (1) After more than 15 years of nutrient accumulation, the trophic state of Dianshan Lake transitioned from eutrophic to hypereutrophic in 1999-2000. Despite short residence time of the lake, rapid nutrient accumulation is possible to induce algal blooms;
     (2) Although the seasonal succession has been fitted into the model of Plankton Ecology Group (PEG) basically, the phytoplankton community of the lake is dominated by green algae and cyanobacteria, Microcystis in summertime, which may threaten the safe of drinking water;
     (3) In situ nutrient enrichment bioassays (NEBs) on algal community level suggested phosphorus (P) additions significantly stimulated phytoplankton growth in spring and autumn when the algal composition was dominated by diatoms and green algae. In contrast, significant phytoplankton responses to nitrogen (N) additions occurred only in the summer (July to September) when cyanobacteria dominated the phytoplankton. The pattern of shift nutrient limitation is that, P is the primary limiting factor for the lake but that nitrogen deficiency in the water column, which always occurred in summer, may cause N limitation.
     (4) The early algal growth of the lake can be well described by Logistic model. The stimulation with recent data showed that in spring the algae started its exponential growth at late February, doubled it density within 15 days, reached its maximum growth rate,29.4μg/L.Month, in the middle March, and bloom might occur during the period of May-July. In summertime, cyanobacteria started its exponential growth at the late of June, doubled its density within 26 days, reached its maximum growth rate,22.8μg/L.Month, and cyanobacteria bloom might occur during Augest-September.
     (5) The statistical analyses on the relationships between nutrients and their response Ch1 a showed that means (μ) and deviations (σ) of TP, TN, and Ch1 a increased with the eutrophication process. In the state of hypereutrophication, even a little variations of mean and/or deviation of nutrients might cause significant increment of Ch1 a. The TP-Chl a regression relationship fitted OECD model well, slopes increased with the eutrophication process. The empirical equation of TN-Chl a was not statistically derived from the existing data set.
     Based on the above results, some extrapolations were concluded:
     (1) The trophic state of Dianshan Lake has been transitioned to hyper eutrophication, and algal growth, including early growth is limited by TP and TN alternatively. Better understanding of seasonal shifts in nutrient limitation may help with the development of management strategies for successful lake restoration.
     (2) In the state of hyereutrophication, even the nutrient concentrations in the water column stop increasing, algae may not change its growth rate simultaneously, and the events of algal bloom may continually occur in a certain period.
     (3) Prediction of algal early growth is expected. The fundamental way out for controlling harmful algal bloom is early warming and prevention of algal growth.
     According to these results, a framework was designed for warming system of algal early development:
     The First Alert Level (Early Warming):Ch1 a=15μg/L, algal exponential growth starts;
     The Second Alert Level (Bloom Warming):Ch1 a= 35μg/L, algal growth reaches its maximum rate.
     Under the normal meteorological and hydrological conditions, if there is no action taken, it may take about 20 days that the concentration of Ch1 a be raised from the First Alert to the second.
引文
*2007-07-30收稿:2007-10-23收修改稿.程曦.女,1974年生,博士研究生,工程师E-mail:chengxi2000@hotmail.com.
    **通讯作者E-mail:xiaoping_lee@hotmail.com.
    ①上海市环境保护局.上海市环境质量报告书(1996-2000).2001.
    ①上海市环境保护局.上海市环境质量报告书(1991-2004).2005.
    ②谢欢.基于遥感的水质监测与时空分析(学位论文).同济大学,2006.
    ①上海环境保护局.上海市环境质量报告书(1991-2004)2005
    ①上海环境保护局.上海市环境质量报告书(1991-2004)2005.
    ①曾正荣,袁永坤,孙建国.淀山湖生物资源调查研究见:上海湿地利用和保护研讨会论文集.上海:上海市水利学会,2002
    ②谢欢.基于遥感化水质监测与时空分析(学位论文).同济大学,2006.
    ①谢欢.基于遥感化水质监测与时空分析(学位论文).同济大学,2006.
    基金项目:上海市科委重大攻关资助项目(04DZ12030)
    收稿日期:2008-12-23; 修订日期:2009-02-19
    致谢:感谢上海市环境监测中心张锦平总工在数据收集过程中的协助。
    *通讯作者Corresponding author. E-mail:lixp_2008@hotmail.com
    [1]金相灿,屠清瑛.湖泊富营养化调查规范.北京:中国环境科学出版社,1990:10-20,275-302
    [2]Bergman E Changes in nutrient load and lake water chemistry in Lake Ringsjon, southern Sweden, from 1966 to 1996. Hydrobiologia,1999,404(10):9-18.
    [3]Dokulil MT, Teubner K. Eutrophication and restoration of shallow lakes:the concept of stable equilibria revisited Hydrobiologia,2003,506(7):29-35.
    [4]Inna N Andronikova. Zooplankton characteristics in monitoring of Lake Ladoga. Hydrobiologia,1996,322(4):173-179.
    [5]Jarl Eivind Lovik, Gosta Kjellberg. Long-term changes of the crustacean zooplankton community in Lake Mjosa, the largest lake in Norway. J Limnol,2003,62(2):143-150.
    [6]Degobbis D, Precali R, Ivancic I et al. Long-term changes in the northern Adriatic ecosystem related to anthropogenic eutrophication. International Journal of Environment and Pollution,2000,13(1-6):495-533.
    [7]Anderson NJ, Erik Jeppesen, Martin S. Ecological effects of reduced nutrient loading (oligotrophication) on lakes:an introduction. Freshwater Biology,2005,50(10):1589-1593.
    [8]Monica Tolotti, Hansjorg Thies. Phytoplankton community and limnochemistry of Piburger See (Tyrol, Austria) 28 years after lake restoration. J Limnol,2002,61(1):77-88.
    [9]Joao Gomes Ferreira, Suzanne B Bricker, Teresa Castro Simasa. Application and sensitivity testing of a eutrophication assessment method on coastal systems in the United States and European Union. Journal of Environmental Management,2007, 82(4):433-445.
    [10]Goldman CR, Horne AJ. Limnology. New York:McGraw-Hill Book Co,1983:115-151.
    [11]宋永昌.淀山湖富营养化及其防止研究上海:华东师范大学出版社,1992:5-30.
    [12]阮仁良,屠鹤鸣,王 云.淀山湖水质监测及富营养化对策研究.上海水利,1997,48(3):35-38.
    [13]由文辉.淀山湖水生态系统的物质循环.中国环境科学,1997,17(4):293-296.
    [14]USEPA. Nutrient Criteria Technical Guidance Manual (Lakes and Reservoirs). United States,2000:5-1.
    [15]由文辉.淀山湖的浮游植物及其能量生产.海洋湖沼通报,1995,1:47-53.
    [16]Goldman CR, Wetzel RG A study of the primary productivity of Clear Lake, Lake County, California. Ecology,1963,44(2): 283-294.
    [17]Horne AJ, Goldman CR. Nitrogen fixation in Clear Lake, California.1. Seasonal variation and the role of the heterocysts. Limnol Oceanogr,1972,17(5):678-692.
    [18]Taylor MF, Clark WJ, Ho L. Nutrient availability and the algal growth potential (AGP) in a small microcosm Wat Res,1990,24(4): 529-532.
    [19]Taylor MF, Clark WJ. Variability in algal growth potential and related parameters in four central Texas ponds. The Texas Journal of Science,1991,43(2):133-148.
    [20]何灿芝,罗汉.应用统计学.长沙:湖南大学出版社,2004:130-144.
    [21]USEPA. Algal assay procedure bottle test, U.S. Oregon. United State,1971:1-82.
    [22]阮仁良,王云.淀山湖水环境质量评价及污染防治研究.湖泊科学,1993,5(2):153-158
    [23]世界经济合作于发展组织(OECD)水体富营养化监测评价与防治.北京:中国环境科学出版社,1989:92-95
    [24]张志红.赵金明.蒋颂辉等.淀山湖夏秋季微囊藻毒素-LR和类毒素-A分布状况及其影响因素.卫生研究,2003,32(4):316-319
    [25]Li X, Goldman CR, Richerson PJ. The cycle of iron, nitrogen and phosphorus in the water column of Clear Lake. Proceedings of ASLO 1996 Annual Meeting. US California:UWM,1996:16-20.
    [26]Li X, Goldman CR, Richerson PJ. Nutrient bioassays in Clear Lake:Co-limitation of iron and nitrogen to phytoplankton growth. Eos Transactions,1996,76(3):6-10.
    [27]Wurtsbaugh WA, Horne AJ. Iron in eutrophic Clear Lake, California:Its importance for algal nitrogen fixation and growth. Can J Fish Aquat Sci,1983,40:1419-1429.
    [1]Shanghai Suzhou Creek Rehabilitation Project Head Office. Shanghai Suzhou Creek Rehabilitation Project. (2007-09-18) [2008-04-01]. http:// www.sacrpbo.org/gb/szh/xxgk/userobject1 ai1.html.
    [2]Shanghai Suzhou Creek Rehabilitation Project Head Office. Shanghai Suzhou Creek Rehabilitation Project:First Stage. (2004-08-25)[2008-04-01]. http://www.sscrpho.org/gb/szh/node12/userobject1 ai177.html.
    [3]Shanghai Suzhou Creek Rehabilitation Project Head Office. Shanghai Suzhou Creek Rehabilitation Project: Second Stage. (2004-08-25) [2008-04-01]. http://www.sscrpho.org/gb/szh/xxgk/userobject1 ai4.html.
    [4]Shanghai Environmental Protection Bureau. Shanghai Environment Quality Reports (1991-2005). Shanghai; Shanghai Enviromental Protection Bureau, 1992-2006.
    [5]Environmental Protection Bureau, People's Republic of China. Standard Methods for the Monitoring and Analysis on Water and Wastewater, 4th edn. Beijing: Chinese Environmental Science Press, 2002. 200-285.
    [6]Liu G C, Lai W, Yin H W, Gu F K. A study on macro-invertebrate of the Suzhou River, Shanghai. China Environmental Science, 2001, 21(2): 112-114.
    [7]Solidoro C, Pastres R, Cossarinia G, Ciavatta S. Seasonal and spatial variability of water quality parameters in the lagoon of Venice. Journal of Marine Systems, 2004, 51: 7 - 18.
    [8]Vega M, Pardo R, Barrado E, Debaan L. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 1998, 32(12): 3581 -3592.
    [9]Rabeni C F, Wang N. Bioassessment of Streams using macroinvertebrates: Are the chironomidae necessary?. Environmental Monitoring and Assessment, 2001. 71:177 - 185.
    [10]Royer T V, Robinson C T, Minshall G W. Development of macroinvertebrate-based index for bioassessment of Idaho rivers. Environmental Management, 2001, 27(4): 627-636.
    [11]Metzeling L, Miller J. Evaluation of the sample size used for the rapid bioassessment of rivers using macroinvertebrates. Hydrobiologia, 2001, 444: 159-170.
    [12]Flotemersch J E, Blocksom K A. Electrofishing in boatable rivers:Does sampling design affect bioassessment metrics?. Environmental Monitoring and Assessment, 2005, 102: 263-283.
    [13]United States Environmental Protection Agency. Nutrient Criteria Technical Guidance Manual; Rivers and Streams. http://www.epa.gov/ waterscience/criteria/nutrient/guidance/rivers/index.html (2000-11-12) [2007-09-10].
    [14]United States Environmental Protection Agency. Nutrient Criteria Technical Guidance Manual: Lakes and Reservoirs. http://www.epa.gov/ waterscience/criteria/nutrient/guidance/lakea/index.html (2000) [2007-09-10].
    [15]Krasnicki T, Pinto R, Head M. Australia-Wide Assessment of River Health: Tasmanian Bioassessment Report (TAS Final Report). http://www. environment.gov.au/water/publications/environmental/rivers/nrhp/tas.html (2002-10-15) [2007-09-10].
    [16]Zhang J P, Sao L. Investigation and evaluation of periphyton and benthic invertebrate communities in Suzhou Creek. Shanghai Environmental Sciences, 1998, 17(11):28-29.
    [17]Dai Y Q, Xiong Y Q, You W H. Dynamic restoration process of zoobenthos communities in Suzhou Creek. Rural Eco-Environment, 2005, 21(3): 21-24.
    [18]United States Environmental Protection Agency. Rapid Bioassesament Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. http://www.epa.gov/owowwtrl/monitoring/rbp/index.html (1999/10/09) [2007-09-10].
    [19]Gong Z J, Xie P, Tang H J,Wang S D, The influence of eutrophycation upon community structure and biodiversity of macrozoobenthos. Acta Hydrobiologica Sinica, 2001, 25(3):210 -216.
    [20]Dai Y Z, Tan S Y, Zhan G B. The distribution of zoobenthos species and bio-assessment of water quality in Dongting Lake. Acta Ecologjca Sinica, 2000, 20(2): 277-282.
    [21]Ma T W, Huang Q H, Wang H, Wang Z J, Wang C X, Huang S B. The selection of benthic macroinvertebrate-based multimetrics and preliminary establishment of biocriteria for the bioassessment of the water quality of Taihu Lake. Acta Ecologica Sinica, 2008, 28(3): 2911-0021.
    [1]上海市苏州河环境综合整治领导小组办公室.上海市苏州河环境综合整治方案[EB/OL.]. http://www.sscrpho.org/gb/szh/xxgk/ userobject1 ai1.html (2007-09-18) [2008-06-01].
    [2]上海市苏州河环境综合整治领导小组办公室.苏州河环境综合整治一期工程概况[EB/OL]. http://www.sscrpho.org/gb/szh/node12/ userobject1 ai177.html (2004-08-25).[2008-04-01].
    [3]上海市苏州河环境综合整治领导小组办公室.苏州河环境综合整治二期工程方案EB/OL]. http://www.sscrpho.org/gb/szh/xxgk/ userobject1 ai4.html (2004-08-25) [2008-04-01].
    [4]上海市环境保护局.上海市环境质量报告书(1991-2005).上海:上海市环境保护局,1992-2006.
    [5]国家环境保护总局.水和废水监测分析方法,第四版.北京:中国环境科学出版社,2002.200-285.
    [6]刘国才,赖伟,殷浩文,顾福康.上海苏州河大型底栖动物的研究.中国环境科学,2001,21(2):112-114.
    [16]张锦平,邵亮.苏州河着生物、底栖生物群落的调查与评价.上海环境科学.1998,17(11):28-29.
    [17]戴雅奇,熊昀青,由文辉.苏州河底栖动物群落恢复过程动态研究.农村生态环境,2005,21(3):21-24.
    [19]龚志军,谢平,唐汇涓,王士达.水体富营养化对大型底栖动物群落结构及多样性的影响.水生生物学报,2001,25(3):210-216.
    [20]戴友芝.唐受印,张建波.洞庭湖底栖动物种类分布及水质牛物学评价.生态学报,2000,20(2):277-282.
    [21]马陶武,黄清辉.王海,王子健,王春霞,黄圣彪.太湖水质评价中底栖动物综合生物指数的筛选及生物基准的确立.生态学报,2008,28(3):2911-0021.
    Bottcher, A.B., T.K. Tremwel, and K.L. Campbell.1995. Best management practices for water quality improvement in the Lake Okeechobee Watershed. Ecological Engineering 5:341-356.
    Environmental Protection Bureau, the People's Republic of China (EPBC). 2002. Standard methods for the monitoring and analysis on water and wastewater (4th edition). Chinese Environmental Science Press, Beijing, China (in Chinese).
    Goldman, C. R. and A. Home.1994. Limnology. McGraw-Hill Book Co., New York, USA.
    Goldman, C. R.2000. Four decades of change in two subalpine lakes. Verhandlungen Internationale Vereinigung Limnology 27:7-26.
    Hovhanissian, R. and B. Gabrielyan.2000. Ecological problems associated with the biological resource use of Lake Sevan, Armenia. Ecological Engineering 16:175-180.
    Jiang, J. and Y. Shen.2006. Estimation of the natural purification rate of a eutrophic lake after pollutant removal. Ecological Engineering 28:166-173.
    Jin, X. and Q. Tu (eds.).1990. Standard methods for the observation and analysis in lake eutrophication (2nd edition). Chinese Environmental Science Press, Beijing, China (in Chinese).
    Li, X., C. R. Goldman, and P. J. Richerson.1996a. The cycle of iron, nitrogen and phosphorus in the water column of Clear Lake. Proceedings of ASLO 1996 Annual Meeting 16-20.
    Li, X., C. R. Goldman, and P. J. Richerson.1996b. Nutrient bioassays in Clear Lake:colimitation of iron and nitrogen to phytoplankton growth. Ecosystem Transactions 76:6-10.
    Mitsch, W.J. and S.E. J(?)rgensen.1989. Ecological engineering:an introduction to ecotechnology. Wiley, New York, USA.
    Organization for Economic Development (OECD).1982. Eutrophication of waters:monitoring assessment and control. OECD, Paris, France.
    Ruley, J.E. and K.A. Rusch.2002. An assessment of long-term post-restoration water quality trends in a shallow, subtropical, urban hypereutrophic lake. Ecological Engineering 19:265-280.
    Shanghai Environmental Protection Bureau (SEPB).1996. Shanghai Environment Quality Report (1991-1995). SEPB, Shanghai, China (in Chinese).
    Teubner, K. and M.T. Dokulil.2002. Ecological stoichiometry of TN:TP:SRSi in freshwaters:nutrient ratios and seasonal shifts in phytoplankton assemblages. Archiv fur Hydrobiologie 154:625-646.
    Wetzel R. G. and G. E. Likens.1990. Limnological Analyses (2nd edition). Springer-Verlag New York, Inc., New York, USA.
    Wurtsbaugh, W.A. and A.J. Home.1983. Iron in eutrophic Clear Lake, California:Its importance for algal nitrogen fixation and growth. Canadian Journal of Fisheries and Aquatic Sciences 40:1419-1429.
    You, W.1995. A study on phytoplankton and its energy production in Dianshan Lake. Transaction of Oceanology and Limnology 1:47-53 (in Chinese).
    Zhang, Z., J. Zhao, S. Jiang, W. Qu, and H. Zhu.2003. Distribution of microcystin-LR and anatoxin-A and their influence factors in Dianshan Lake during summer and autumn. Journal of Hygiene Research 32:316-319 (in Chinese).
    An, K.G. (2003) Spatial and Temporal Variabilities of Nutrient Limitation Based on In Situ Experiments of Nutrient Enrichment Bioassay, J. Environ. Sci. Heal.,38, 867-882.
    Arar. E.J. and Collins, G.B. (1997) In Vtro Eetermination of Chlorophyll a and Pheophytin a in Marine and Greshwater Algae by Fluorescence (Method 445.0). National Exposure Research Laboratory Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
    Axler, R.P., Rose, C. and Tikkanen C. A. (1994) Phytoplankton Nutrient Deficiency as Related to Atmospheric Nitrogen Deposition in Northern Minnesota Acid-sensitive Lakes. Can. J. Fish. Aquat. Sci.,51,1281-1296.
    Bottcher, A.B., Tremwel, T.K. and Campbell, K.L. (1995) Best Management Practices for Water Quality Improvement in the Lake Okeechobee Watershed. Ecol. Eng., 5,341-356.
    Cheng, X. and Li, X. (2008) 20-year Variations of Nutrients (N and P) and Their Impacts on Algal Growth in Lake Dianshan, China. J. Lake Sci.,20,409-419 (in Chinese).
    Elser, J.J., Marzolf, E.R. and Goldman, C.R. (1990) Phosphorus and Nitrogen Limitation of Phytoplankton Growth in the Freshwaters of North America:A Rieview and Critique of Experimental Enrichments. Can. J. Fish. Aquat. Sci.,47, 1468-1477.
    Environmental Protection Bureau China (EPBC) (2002) Standard Methods for the Monitoring and Analysis on Water and Wastewater (4th edn). Beijing, China (in Chinese).
    Goldman, C.R. (1981) Lake Tahoe:Two Decades of Change in A Nitrogen Deficient Oligotrophic Lake. Verhandlungen Internationale Vereinigung Limnology,21, 45-70.
    Goldman, C.R. (2000) Four Decades of Change in Two Subalpine Lakes. Verhandlungen Internationale Vereinigung Limnology,27,7-26.
    Goldman, C.R. and Wetzel, R.G. (1963) A Study of the Primary Productivity of Clear Lake, Lake County, California. Ecol.,44,283-294.
    Gu, L. and Sheate, W.R. (2005) Institutional Challenges for EIA Implementation in China:A Case Study of Development Versus Environmental Protection. Environ. Manage.,36(1):125-142.
    Havens, K.E. and Nurnberg, G.K. (2004) The Phosphorus-Chlorophyll Relationship in Lakes:Potential Influences of Color and Mixing Regime. Lake Reserv. Manage., 20(3):188-196.
    Home, A.J. and Goldman, C.R. (1972) Nitrogen Fixation in Clear Lake, California.1. Seasonal Variation and the Role of the Heterocysts. Limnol. Oceanogr.,17, 678-692.
    Howarth, W. (1988) Nutrient Limitation of Net Primary Production in Marine Ecosystems. Annu. Rev. Ecol. Syst.,19:89-110.
    Hu, S., Gao, Y., Zhang, S., Zhou, Q., Xu, D. and Wu, Z. (2009) Distribution of Nutrients and Ecological Indexes of Diatom about Moon Lake in Wuhan. Ecol. Environ. Sci.,18(3):856-864 (in Chinese).
    Jin, X. and Tu, Q.(Eds.) (1990) Standard Methods for the Observation and Analysis in Lake Eutrophication (2nd edn). Chinese Environmental Science Press, Beijing (in Chinese).
    Jones, J.R., Laperriere, J.D. and Perkins, B.D. (1990) Limnology of Walker Lake and Comparisons with Other Lakes in the Brooks Range, Alaska (USA). Verhandlungen Internationale Vereinigung Limnology,24,302-308.
    Kilham, S.S., Theriot, E.C. and Fritz, S.C. (1996) Linking Planktonic Diatoms and Climate Change in the Large Lakes of the Yellowstone Ecosystem Using Resource Theory. Limnol. Oceanogr.,41:1052-1062.
    Knowlton, M.F. and Jones, J.R. (1996) Nutrient Addition Experiments in A Nitrogen-limited High Plains Reservoir Where Nitrogen-fixing Algae Seldom Bloom. J. Freshwater Ecol.,11,123-130.
    Lafrancois, B.M., Nydick, K.R. and Caruso, B. (2003) Influence of Nitrogen on Phytoplankton Biomass and Community Composition in Fifteen Snowy Range lakes (Wyoming, USA). Arctic, Antarctic, and Alpine Research,35:4499-508.
    Lewis, W.M. and Wurtsbaugh, W.A. (2008) Control of Lacustrine Phytoplankton by Nutrients:Erosion of the Phosphorus Paradigm. International Review of Hydrobiology,93,446-465.
    Li, X., Goldman, C.R. and Richerson, P.J. (1996a) The Cycle of Iron, Nitrogen and Phosphorus in the Water Column of Clear Lake. Proceedings of ASLO 1996 Annual Meeting,16-20.
    Li, X., Goldman, C.R. and Richerson, P.J. (1996b) Nutrient Bioassays in Clear Lake: Colimitation of Iron and Nitrogen to Phytoplankton Growth. Ecosystem Transactions,76,6-10.
    Organization for Economic Development (OECD) (1982) Eutrophication of Waters: Monitoring Assessment and Control. OECD, Paris.
    Ruley, J.E. and Rusch, K.A. (2002) An Assessment of Long-term Post-restoration Water Quality Trends in A Shallow, Subtropical, Urban Hypereutrophic Lake. Ecol.Eng.,19,265-280.
    Steel, R.G.D., Torrie, J.H. and Dickey, D.A. (1997) Principles and Procedures of Statistics:A Biometrical Approach (3rd edn). The McGraw-Hill College, New York.
    Tett, P., Gilpin, L., Svendsen, H., Erlandsson, C.P., Larsson, U., Kratzer, S., Fouilland, E., Janzen, C., Lee, J., Grenz, C., Newton, A., Ferreira, J.G., Fernandes, T. and Scory, S. (2003) Eutrophication and Some European Waters of Restricted Exchange. Cont. Shelf Res.,23:1635-1671.
    Wang, H.J., Liang, X.M., Jiang, P.H., Wang, J., Wu, S.K. and Wang, H.Z. (2008a) TN: TP Ratio and Planktivorousfish Do Not Affect Nutrient-chlorophyll Relationships in Shallow Lakes. Freshwater Biol.,53:935-944.
    Wurtsbaugh, W.A. and Home, A.J. (1983) Iron in Eutrophic Clear Lake, California: Its Importance for Algal Nitrogen Fixation and Growth. Can. J. Fish. Aquat. Sci., 40,1419-1429.
    Zhang, Z., Zhao, J., Jiang, S., Qu, W. and Zhu, H. (2003) Distribution of Microcystin-LR and Anatoxin-A and Their Influence Factors in Dianshan Lake During Summer and Autumn. J. Hygiene Res.,32,316-319. (in Chinese)
    [1]Abeliovich, A, Shilo, M.1972. Photooxidative Death in Blue-Green Algae. Journal of Bacteriology,111(3):682-689.
    [2]An, K.2003. Spatial and temporal variabilities of nutrient limitation based on in situ experiments of nutrient enrichment bioassay. Journal of Environmental Science and Health, A38:867-882.
    [3]Anderson, NJ, Jeppesen, E, Martin, S.2005. Ecological effects of reduced nutrient loading (oligotrophication) on lakes:an introduction. Freshwater Biology,50(10):1589-1593.
    [4]Andronikova, IN.1996. Zooplankton characteristics in monitoring of Lake Ladoga. Hydrobiologia,322(4):173-179.
    [5]ANZECC & ARMCANZ.2000. Australian and New Zealand guidelines for Fresh and Marine Water Quality:National Water Quality Management Strategy Paper No.4, Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand, Canberra.
    [6]APHA (American Public Health Association).1992. Standard Methods for the Examination of Water and Wastewater,16th edition APHA, Washington, D.C.
    [7]Arar, EJ, Collins, G.B.1997. In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence (Method 445.0). National Exposure Research Laboratory Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
    [8]Ault, T, Velzeboer, R, Zammit, R.2000. Influence of nutrient availability on phytoplankton growth and community structure in the Port Adelaide River, Australia:bioassay assessment of potential nutrient limitation. Hydrobiologia, 429:89-103.
    [9]Axler, RP, Reuter, JE.1996. Nitrate uptake by phytoplankton and periphyton: whole-lake enrichments and mesocosm-15N experiments in an oligotrophic lake. Limnology and Oceanography,41:659-671.
    [10]Bartram, J, Rees, G.2000. Monitoring Bathing Waters, E&FN Spon, London, on behalf of the WHO.
    [11]Belenky, M, Meyers, R, Herzfeld, J.2004. Subunit structure of gas vesicles:a MALDI-TOF mass spectrometry study, Biophysical Journal,86(1):499-505.
    [12]Bergman E.1999. Changes in nutrient load and lake water chemistry in Lake Ringsjon, southern Sweden from 1966 to 1996. Hydrobiologia,404(10):9-18.
    [13]Boni, L, Coccagna, L, Ferrari, D.1991. The trophic potential of sewage effluent resulting from various levels of treatment. Water Resource,25(10): 1255-1261.
    [14]Bottcher, AB, Tremwel, TK, Campbell, KL.1995. Best management practices for water quality improvement in the Lake Okeechobee Watershed. Ecological Engineering,5:341-356.
    [15]Boyd, CE, Davis, JA, Johnston, E.1978. Die-offs of the blue-green alga, Anabaena variabilis, in fish ponds. Hydrobiologia,6(2):129-133.
    [16]Bryhn, AC, Hakanson, L.2009. Eutrophication:Model Before Acting. Science, 324:723.
    [17]Burge, K, Breen, PF. 2006. Detention time design criteria to reduce the risk of excessive algal growth in constructed waterbodies. http://www.ecoeng.com.au
    [18]Camacho, A, Wurtsbaugh, WA, Miracle, MR, Armengol, X, Vicente, E.2003. Nitrogen limitation of phytoplankton in a Spanish karst lake with a deep chlorophyll maximum:a nutrient enrichment bioassay approach. Journal of Plankton Research,8:397-404.
    [19]Carpenter, SR.1983. Lake geometry:implications for production and sediment accretion rates. Journal of Theoretical Biology,105:273-86.
    [20]Carpenter, SR, Kitchell, JF.1993. The Trophic Cascade in Lakes. Cambridge University Press, Cambridge.
    [21]Chorus, I, Bartram, J.1999. Toxic Cyanobacteria in Water:a Guide to Public Health Significance, Monitoring and Management. Fur WHO durch E & FN Spon/Chapman & Hall, London.
    [22]Conley, DJ, Paerl, HW, Howarth, RW, Boesch, DF, Seitzinger, SP, Havens, KE, Lancelot, C, Likens, GE.2009a. Controlling eutrophication:nitrogen and phosphorus. Science,323:1014-1015.
    [23]Conley, DJ, Paerl, HW, Howarth, RW, Boesch, DF, Seitzinger, SP, Havens, KE, Lancelot, C, Likens, GE.2009b. Response. Science,324:724.
    [24]Davalos, L, Lind, O, Doyle, RD.1989. An evaluation of phytoplankton limiting factors in Lake Chapala, Mexico:turbidity and the spatial and temporal variation in algal assay response. Lake and Reservoir Management,5: 99-104.
    [25]Davies, JM, Nowlin, WH, Mazumder, A.2004. Temporal changes in nitrogen and phosphorus codeficiency of plankton in lakes of coastal and interior British Columbia. Canadian Journal of Fisheries and Aquatic Sciences,61: 1538-1551.
    [26]Degobbis, D, Precali, R, Ivancic, I.2000. Long-term changes in the northern Adriatic ecosystem related to anthropogenic eutrophication. International Journal of Environment and Pollution,13(1-6):495-533.
    [27]Devries, PJR, Torenbeck, M, Hillebrand, H.1983. Bioassays with Stigeoclonium Kutz (Chlo-rophyceae) to identify nitrogen and phosphorus limitations. Aquatic Botany,17:95-106.
    [28]Dodds, WK.2006. Nutrients and the "dead zone":the link between nutrient ratios and dissolved oxygen in the northern Gulf of Mexico. Front Ecology Environment,4:211-217.
    [29]Dokulil MT, Teubner K.2003. Eutrophication and restoration of shallow lakes: the concept of stable equilibria revisited. Hydrobiologia,506(7):29-35.
    [30]Downing, JA, Osenberg, CW, Sarnelle, O.1999. Metanalysis of marine nutrient enrichment experiments:variation in the magnitude of nutrient limitation. Ecology,80:1157-1167.
    [31]Downing, JA, Watson, SB, McCauley, E.2001. Predicting cyanobacteria dominance in lakes. Canadian Journal of Fishery and Aquatic Sciences, 58:1905-1908.
    [32]Droop, MR.1968. Vitamin B12 and marine ecology. IV.The kinetics of uptake, growth and inhibition in Monachrysis lutheri. Journal of the Marine Biological Association of the United Kingdom,48:689-733.
    [33]Dzialowski, AR, Wang, SH, Lim, NC, Spotts, WW, Huggins, DG.2005. Nutrient limitation of phytoplankton growth in central plains reservoirs, USA. Journal of Plankton Research,27:587-595.
    [34]Edmundson, JA, Carlson, SR.1998. Lake typology influences on the phosphorus-Chlorophyll relationship in subarctic, Alaskan lakes. Lake and Reservation Management,14:440-450.
    [35]Elser, JJ, Kimmel, BL.1986. Alteration of phytoplankton phosphorus status during enrichment experiments:implications for interpreting nutrient enrichment bioassay results. Hydrobiologia,133:217-222.
    [36]Elser, JJ, Marzolf, ER, Goldman, CR.1990. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America:a review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences,47:1468-77.
    [37]Fee, EJ.1979. The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Area, northwestern Ontario:implication for primary production estimates. Limnology Oceanography,21:767-83.
    [38]Ferreira, JG, Bricker, SB, Simasa, TC.2007. Application and sensitivity testing of an eutrophication assessment method on coastal systems in the United States and European Union. Journal of Environmental Management,82(4): 433-445.
    [39]Fisher, SG, Grimm, NB.1983. Water Quality and Nutrient Dynamics of Arizona Streams. Office of Water Resources and Technology Project Completion Report A-106-Ariz. Arizona.
    [40]Fitzgerald, GP.1972. Bioassay analysis of nutrient availability. In:Nutrients in Natural Waters, (edited by Allen, HE, Kramer, JR), Wiley-Interscience, New York.
    [41]Ganf, G.1982. Influence of added nutrient on the seasonal variation of algal growth potential of MT Bold Reservoir, South Australia. Marine & Freshwater Research,33:475-490.
    [42]Goldman, CR, Wetzel, RG 1963. A study of the primary productivity of Clear Lake, Lake County, California. Ecology,44(2):283-294.
    [43]Goldman, CR.1981. Lake Tahoe:two decades of change in a nitrogen deficient oligotrophic lake. Verhandlungen Internationale Vereinigung Limnology,21:45-70.
    [44]Goldman, CR, Home, AJ.1983. Limnology. McGraw-Hill Book Co., New York.
    [45]Goldman, CR, Jassby, AD, Hackley, SH.1993. Decadal, interannual, and seasonal variability in enrichment bioassays at Lake Tahoe, California-Nevada, USA. Canadian Journal of Fisheries and Aquatic Sciences,50:1489-1496.
    [46]Goldman, CR.2000. Four decades of change in two sub Alpine lakes. Verhandlungen Internationale Vereinigung Limnology,27:7-26.
    [47]Guildford, SJ, Hecky, RE.2000. Total nitrogen, total phosphorus and nutrient limitation in lakes and oceans:is there a common relationship? Limnology and Oceanography,45:1213-1223.
    [48]Havens, KE.1994. Seasonal and spatial variation in nutrient limitation in a shallow sub-tropical lake (Lake Okeechobee, Florida) as evidenced by trophic state index deviations. Archiv fur Hydrobiologie,131:39-53.
    [49]Havens, KE.2004. The Phosphorus-Chlorophyll Relationship in Lakes: Potential Influences of Color and Mixing Regime. Lake and Reservoir Management,20(3):188-196.
    [50]Healey, EP, Hendzel, LL.1979. Fluorometric measurement of alkaline phosphatase activity in algae. Freshwater Biology,9:429-439.
    [51]Health Canada.1993. Guidelines for Canadian Drinking Water Quality.
    [52]Hecky, RE, Kilham, P.1988. Nutrient limitation of phytoplankton in freshwater and marine environments:A review of recent evidence on the effects of enrichment. Limnology Oceanography,33:796-822.
    [53]Henry, R, Hino, K, Tundisi, JG, Ribeiro, JSB.1985. Responses of phytoplankton in lake Jacaretinga to enrichment with nitrogen and phosphorus in concentrations similar to those of the River Solimoes (Amazon, Brazil). Archiv fur Hydrobiologie,103:453-77.
    [54]Holmboe, N, Jensen, HS, Andersen, FO.1999. Nutrient addition bioassays as indicators of nutrient limitation of phytoplankton in a eutrophic estuary. Marine Ecology Progress Series,186:95-104.
    [55]Home, AJ, Goldman, CR.1972. Nitrogen fixation in Clear Lake, California.1. Seasonal variation and the role of the heterocysts. Limnology Oceanography, 17(5):678-692.
    [56]Home, AJ, Goldman, CR.1994. Limnology. McGraw-Hill Book Co., New York.
    [57]Homer, JD, Cates, RQ Gosz, JR.1987. Tannin, nitrogen, and cell wall composition of green vs. senescent Douglas-fir foliage. Oecologia,72(4): 515-519.
    [58]Howarth, RW, Marino, R, Cole, JJ.1988. Nitrogen fixation in freshwater, estuarine, and marine ecosystems.2. Biogeochemical controls. Limnology and Oceangraphy,33:688-701.
    [59]Ignatiades, L, Moschopolou, N.1988. Nitrogen as a factor affecting algal growth potential of an oligotrophic coastal environment of Eastern Mediterranean Sea. International Review Gesamt Hydrobiology.73(4): 457-464.
    [60]Interlandi, SJ, Kilham, SS.2001. Limiting resources and the regulation of diversity in phytoplankton communities. Ecology,82:1270-1282.
    [61]Jacoby, CA, Frazer, TK.2009. Eutrophication:time adjust expectations. Science,324:723.
    [62]Jones, JR, Bachmann, RW.1976. Prediction of phosphorus and chlorophyll levels in lakes. Journal of Water Pollution Control Federation,48:2176-2182.
    [63]Jones, JR, Laperriere, JD, Perkins, BD.1990. Limnology of Walker Lake and comparisons with other lakes in the Brooks Range, Alaska (USA). Verhandlungen Internationale Vereinigung Limnology,24,302-308.
    [64]Knowlton, MF, Jones, JR.1996. Nutrient addition experiments in a nitrogen-limited high plains reservoir where nitrogen-fixing algae seldom bloom. Journal of Freshwater Ecology,11:123-130.
    [65]Kohler, J, Hilt, S, Adrian, R, Nicklisch, A, Kozerski, HP, Walz, N.2005. Long-term response of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading. Freshwater Biology,50:1639-1650.
    [66]La Point, TW, Fairchild, JF, Little, EE, Finger, SE.1989. Laboratory and field techniques in ecotoxicological research:strengths and limitations. In:Aquatic Ecotoxicology:Fundamental Concepts and Methodologies (edited by Boudou, A, Ribeyre, F). CRC Press, Boca Raton.
    [67]Lewis, WM, Levine, SN.1984. The light response of nitrogen fixation in Lake Valencia, Venezuela. Limnology Oceanography,29:894-900.
    [68]Lewis, WM, Wurtsbaugh, WA.2008. Control of lacustrine phytoplankton by nutrients:Erosion of the phosphorus paradigm. International Review of Hydrobiology,93:446-465.
    [69]Li, X, Goldman, CR, Richerson, PJ.1996a. The cycle of iron, nitrogen and phosphorus in the water column of Clear Lake. Proceedings of ASLO 1996 Annual Meeting,16-20.
    [70]Li, X, Goldman, CR, Richerson, PJ.1996b. Nutrient bioassays in Clear Lake: colimitation of iron and nitrogen to phytoplankton growth. Ecosystem Transactions,76:6-10.
    [71]Liebig, J.1855. Principles of agricultural chemistry with special reference to the late researches made in England. London:Taylor and Walton. (Reprinted in Pomeroy, L. R. (editor). (1974). Cycles of essential elements. Stroudsburg, Pennsylvania:Dowdon, Hutchinson, & Ross, Incorporation)
    [72]Lopez, EL, Davalos-Lind, L.1998. Algal growth potential and nutrient limitation in a tropical river-reservoir system of the Central Plateau, Mexico. Aquatic Ecosystem Health Management,1(3-4):345-351.
    [73]Lovik, JE, Kjellberg, G.2003. Long-term changes of the crustacean zooplankton community in Lake Mjosa, the largest lake in Norway. Journal of Limnology,62(2):143-150.
    [74]Manitoba Conservation.2000. Information Bulletin-Development of a Nutrient Management Strategy for Surface Waters in Southern Manitoba. 2000-02E. Water Quality Management Section, Manitoba Conservation, Winnipeg, Canada.
    [75]MPCA (Minnesota Pollution Control Agency).2008. Relation of Nutrient Concentrations and Biological Responses in Minnesota Streams:Applications for River Nutrient Criteria Development.
    [76]Montgomery, DC.1991. Design and Anaiysis of Experiments. (3rd Edition), John Wiley and Sons, New York.
    [77]NHMRC.2005. Guildlines for Managing Risks in Recreational Waters, National Health and Medical Research Council, Australian Government, Canberra.
    [78]Nordin, RN.1985. Water Quality Criteria for Nutrients and Algae, Technical Appendix. Prepared for Ministry of Environment, Province of British Columbia, Canada.
    [79]Nyholm, N, Lyngby, JE.1988. Algal bioassays in eutrophication research. A discussion in the framework of mathematical analysis. Water Resource,22(10): 1293-1300.
    [80]Odum, EP.1971. Fundamentals of ecology. WB Saunders Company, Philadelphia.
    [81]OECD (Organization for Economic Development).1982. Eutrophication of Waters:Monitoring Assessment and Control. OECD, Paris.
    [82]OECD (Organization for Economic Development).1984. Guideline for Testing of Chemicals, section 2-Effects on biotic systems, no.201, Alga Growth Inhibition Test. EC/Directive 87/302/EEC, OECD, Paris.
    [83]Philips, EJ, Aldridge, FJ, Hansen, P, Zimba, PV, Ihnat, J, Conroy, M, Ritter, P. 1993. Spatial and temporal variability of trophic state parameters in a shallow subtropical lake (Lake Okeechobee, Florida, USA). Archiv fur Hydrobiologie, 128:437-58.
    [84]Pilotto, LS, Douglas, RM, Burch, MD.1997. Health effects of exposure to cyanobacteria (blue green algae) during recreational water activities. Australian New Zealand Public Health,21:562-566.
    [85]Pollingher, U, Berman, T, Kaplan, B, Scharf, D.1988. Lake Kinneret phytoplankton:response to N and P enrichments in experiments and in nature. Hydrobiologia,166:65-75.
    [86]Redfield, AC.1958. The biological control of chemical factors in the environment. American Scientist,64:205-221.
    [87]Reynolds, CS, Walsby, AE.1975. Water-blooms. Biological Reviews,50: 437-481.
    [88]Rhee, GY.1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnology and Oceanography, 23:10-25.
    [89]Rhee, GY, Gotham, IJ.1980. Optimum N:P ratios and coexistence of planktonic algae. Journal of Physiology,16:486-489.
    [90]RIVM (National Institute for Public Health and Environment).1995. Environmental balances,1995. Published by:Samson H.D. Tjeenk Willink B.V., Alphen aan den Rijn (NL)
    [91]Rodusky, AJ, Steinman, AD, East, TL, Sharfstein, B, Meeker, RH.2001. Periphyton nutrient limitation and other potential growth-controlling factors in Lake Okeechobee, USA. Hydrobiologia,448:27-39.
    [92]Ruley, JE, Rusch, KA.2002. An assessment of long-term post-restoration water quality trends in a shallow, subtropical, urban hypereutrophic lake. Ecological Engineering,19:265-280.
    [93]Saskatchewan Environment.1997. Surface water Quality Objectives. MB 117. Environmental Protection Branch, Saskatchewan Environment and Resource Management, Canada.
    [94]Schanz, F, Juon, H.1983. Two different methods of evaluating nutrient limitations of periphyton bioassays, using water from the River Rhine and eight of its tributaries. Hydrobiologia,102:187-195.
    [95]Scheffer, M.1998. Ecology of Shallow Lakes. Chapman & Hall, London.
    [96]Schelske, CL.2009. Eutrophication:Focus on Phosphorus. Science,324:721.
    [97]Schindler, DW.1974. Experimental studies of eutrophication and lake recovery:Some implications for lake management. Science,184:897-899.
    [98]Schindler, DW.1977. Evolution of phosphorus limitation in lakes. Science, 195:260-262.
    [99]Schindler, DW.1978. Factors regulating phytoplankton production and standing crop in the world's lakes. Limnology Oceanography,23:478-85.
    [100]Schindler, DW, Hecky, RE, Findlay, DL, Stainton, MP, Parker, BR, Paterson, MJ, Beaty, KG, Lyng, M, Kasian, SEM.2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input:Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences,105:11254-11258.
    [101]Schindler, DW, Hecky, RE.2009. Eutrophication:more nitrogen data needed. Science,324:721.
    [102]Sommer, U, Gliwicz, ZM, Lampert, W, Duncan, A.1986. The PEG-model of Seasonal Succession of Planktonic Events in Fresh Waters. Archives of Hydrobiology,106(4):433-471.
    [103]Sommer, U.1989. Nutrient status and nutrient competition of phytoplankton in a shallow, hypertrophic lake. Limnology Oceanography,34:1162-73.
    [104]Taub, FB.1984. Measurement of pollution in standardized aquatic microcosms. In:White, HH. (Ed.). Concepts in Marine Pollution Measurements. University of Maryland, USA.
    [105]Taylor, MF, Clark, WJ, Ho, L.1990. Nutrient availability and the algal growth potential (AGP) in a small microcosm. Water Resource,24(4):529-532.
    [106]Taylor, MF, Clark, WJ.1991. Variability in algal growth potential and related parameters in four central Texas ponds. The Texas Journal of Science,43(2): 133-148.
    [107]Teixeira, C, Kutner, MBB, Aidar-Arago, E, Schmidt, G.1986. Algal assay of limiting nutrients for phytoplankton production and growth at Flamengo bay (Ubatuba-Brazil). Revista Brasileira De Biologia,46(3):491-506.
    [108]Tetta, P.2003. Eutrophication and some European waters of restricted exchange. Continental Shelf Research,23:1635-1671.
    [109]Tolotti, M, Thies, H.2002. Phytoplankton community and limnochemistry of Piburger See (Tyrol, Austria) 28 years after lake restoration. Journal of Limnology,61(1):77-88.
    [110]UNEP (United Nations Environment Programme).1989. Estimation of the toxicity of pollutants to marine phytoplanktonic and zooplanktonic organisms. Reference Methods for Marine Pollution Studies,44:24-30.
    [111]USEPA.1971. Algal assay procedure bottle test, U.S. Oregon, United State.
    [112]USEPA.1998. National Strategy for the Development of Regional Nutrient Criteria. United States.
    [113]USEPA.2000. Nutrient Criteria Technical Guidance Manual (Lakes and Reservoirs). United States.
    [114]USGS,2001. Nutrient and Chlorophyll Relations in Selected Streams of the New England Coastal Basins in Massachusetts and New Hampshire, June-September 2001. U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 03-4191.
    [115]Van Donk, E, Mur, LR, Ringelberg, J.1989. A study of phosphate limitation in Lake Maarseveen:phosphate uptake kinetics versus bioassays. Hydrobiologia, 188/189:201-209.
    [116]Vollenweider, RA.1968. The scientific basis of lake and stream eutrophication, with particular reference to phosphorus and nitrogen as factors in eutrophication. OECD, Paris.
    [117]Vrba, J, Vyhnalek, V, Hejzlar, J, Nedoma, J.1995. Comparison of phosphorus deficiency indices during a spring phytoplankton bloom in a eutrophic reservoir. Freshwater Biology,33:73-81.
    [118]Wang, C, Kong, HN, He, SB. The inverse correlation between growth rate and cell carbohydrate content of Microcystis aeruginosa. Journal of Applied Phycology,doi:10.1007/s10811-009-9421-1.
    [119]Wang, H, Wang, H.2008a. No Need to Reduce Nitrogen for Eutrophication Mitigation:Findings of a Long-Term Limnological Study in China. SILnews 53.
    [120]Wang, H, Liang, X, Jiang, P, Wang, J.2008b. TN:TP ratio and planktivorous fish do not affect nutrient-chlorophyll relationships in shallow lakes. Freshwater Biology,53:935-944
    [121]Wasmund, N, Andrushaitis, A, Lysiak-Pastuszak, E, Muller-Karulis, B, Nausch, G, Neumann, T, Ojaveer, H, Olenina, I, Postel, L, Witek, Z.2001. Trophic status of the South-Eastern Baltic Sea:a comparison of coastal and open areas. Estuarine, Coastal and Shelf Science,53:849-864.
    [122]Wurtsbaugh, WA, Home, AJ.1983. Iron in eutrophic Clear Lake, California: Its importance for algal nitrogen fixation and growth. Canadian Journal of Fisheries and Aquatic Sciences,40:1419-1429.
    [123]Wong, YS, Lan, CY, Chen, GZ, Li, SH, Chen, XR, Liu, ZP, Tam, NFY.1995. Effect of wastewater discharge on nutrient contamination of mangrove soils and plants. Hydrobiology,295:243-254.
    [124]Wurtsbaugh, W, Vincent, WF, Alfaro-Tapia, R, Vincent, CL, Richerson, PJ. 1985. Nutrient limitation of algal growth and nitrogen fixation in a tropical alpine lake, Lake Titicaca (Peru/Bolivia). Freshwater Biology,15:185-195.
    [125]陈德辉,刘永定,袁峻峰,章宗涉,宋立荣,陈坚.1999.微囊藻和栅藻共培养实 验及其竞争参数的计算.生态学报,19(6):908-913.
    [126]程曦,李小平.2008.淀山湖氮磷营养物20年变化及其藻类增长响应.湖泊科学,20(4):409-419.
    [127]崔党群.2005.Logistic曲线方程的解析与拟合优度测验.数理统计与管理,1:112-115.
    [128]范志锋,王丽卿,陈林兴,李燕,彭自然,季高华.2009.水质标识指数法在淀山湖水质评价中的应用.上海海洋大学学报,18(3):314-320.
    [129]顾涤生.1994.淀山湖水质五年调查报告.上海预防医学杂志,6(2):36-37.
    [130]国家环境保护总局.2002.水和废水监测分析方法(第四版).北京:中国环境科学出版社.
    [131]哈欢,朱宏进,朱雪生,田华.2009.淀山湖富营养化防治与生态修复技术研究.中国水利,13:46-48.
    [132]韩昌来.1998.淀山湖富营养化的环境—经济损益分析.上海水利,53(4):37-41.
    [133]何灿芝,罗汉.2004.应用统计学.长沙:湖南大学出版社.
    [134]金相灿,屠清瑛.1990.湖泊富营养化调查规范.北京:中国环境科学出版社.
    [135]孔繁翔,马荣华,高俊峰,吴晓东.2009.太湖蓝藻水华的预防、预测和预警的理论与实践.湖泊科学,21(3):314-328.
    [136]李红清,马经安.2005.生物控制技术在水体富营养化防治中的应用.人民长江.
    [137]李小平.2008.蓝藻运动与水华早期预防和控制.自然杂志,30(5):280-286.
    [138]李燕,王丽卿,张瑞雷.2008.淀山湖沉水植物死亡分解过程中营养物质的释放.环境污染与防治,30(2):45-52.
    [139]马荣华,孔繁翔,段洪涛,张寿选,孔维娟,郝景燕.2008.基于卫星遥感的太湖蓝藻水华时空分布规律认识.湖泊科学,20(6):687-694.
    [140]马知恩.1996.种群生态学的数学建模与研究.合肥:安徽教育出版社.
    [141]连民,陈传炜,俞顺章,刘颖.2000.淀山湖夏季微囊藻毒素分布状况及其影响因素.中国环境科学,20(4):323-327.
    [142]阮仁良.1992.淀山湖富营养化程度综合评价研究.上海水务,1:13-19.
    [143]阮仁良,王云.1993.淀山湖水环境质量评价及污染防治研究.湖泊科学,5(6):153-158.
    [144]阮仁良,屠鹤鸣,王云.1997.淀山湖水质监测及富营养化对策研究.上海水利,48(3):35-38.
    [145]阮仁良.1997.淀山湖富营养化对上海市水源地的影响及防治对策研究.水系污染与保护,2:71-74.
    [146]上海市环境保护局.1996.上海市环境质量报告书(1991-995).上海:上海市环境保护局.
    [147]上海市环境保护局.2001.上海市环境质量报告书(1996-2000).上海:上海市环境保护局.
    [148]上海市环境保护局.2006.上海市环境质量报告书(2001-2005).上海:上海市环境保护局.
    [149]上海市环境保护局.2007.上海市环境质量报告书(2006).上海:上海市环境保护局.
    [150]上海市环境保护局.2008.上海市环境质量报告书(2007).上海:上海市环境保护局.
    [151]上海市环境保护局.2009.上海市环境质量报告书(2008).上海:上海市环境保护局.
    [152]上海市环境科学研究院.2009.淀山湖藻类群落增长规律的研究(科研报告)
    [153]施玮,吴和岩,赵耐青,祁萍萍,朱惠刚.2005.淀山湖水质富营养化和微囊藻毒素污染水平.环境科学,26(5):55-61.
    [154]宋玲玲,仇雁翎,张洪恩,赵建夫.2007a.淀山湖叶绿素α的高光谱遥感监测研究.长江流域资源与环境,16(1):48-51.
    [155]宋玲玲,仇雁翎,张洪恩,刘登国,韩中豪,赵建夫.2007b.淀山湖有色可溶性有机物的光谱吸收特性.湖泊科学,19(3):250-254.
    [156]宋永昌.淀山湖富营养化及其防止研究.1992.上海:华东师范大学出版社.
    [157]宋晓兰,刘正文,潘宏凯.2007.太湖梅梁湾与五里湖浮游植物群落的比较.湖泊科学,19(6):643-651.
    [158]隋海霞,徐海滨,严卫星,陈艳.2007.淀山湖及鄱阳湖水体中微囊藻毒素的污染.环境与健康杂志,24(3):136-138.
    [159]隋海霞,陈艳,严卫星,徐海滨.2004.淡水湖泊中微囊藻毒素的污染.中国食品卫生杂志,16(2):112-114.
    [160]童小华,谢欢,仇雁翎,赵建夫.2006.黄浦江上游水域的多光谱遥感水质监测与反演模型.武汉大学学报(信息科学版),31(10):851-854.
    [161]徐虹,王靖,赵振坤,章军.2007.铜绿微囊藻光合作用的昼夜节律变化.高技术通讯,7(2).
    [162]万能,宋立荣,王若南,刘剑彤.2008.滇池藻类生物量时空分布及其影响因子.水生生物学报,32(2):184-188.
    [163]王爱军,王修林,王江涛,李雁宾,韩秀荣,唐洪杰.2006.光照对东海赤潮高发区春季硅藻生长的影响.中国海洋大学学报,36:173-178.
    [164]王长友,王修林,孙百晔,苏荣国.2007.铜对中肋骨条藻生态毒性效应的现场实验.中国环境科学,27(5):703-706.
    [165]王海军,王洪铸.2008.富营养化治理应放宽控氮、集中控磷.自然科学进展,19(6):599-603.
    [166]王红兵,宋伟民,朱惠刚.1995.上海淀山湖、黄浦江水系浮游藻类及藻类毒素的动态研究.环境与健康杂志,5:196-199.
    [167]王红兵,朱惠刚.1998.微囊藻毒素和水体有机污染物联合诱导SHE细胞转化及相关癌基因的变化.卫生研究,27(1):41-44.
    [168]王洪铸,王海军.2008.蓝藻水华治理应放宽控氮、集中控磷、以大幅度降低污水处理成本.科技导报,26(22).
    [169]王丽卿,李燕,张瑞雷.2008.6种沉水植物系统对淀山湖水质净化效果的研究.农业环境科学学报,27(3):1134-1139.
    [170]王丽卿,张军毅,王旭晨,彭自然,王岩.2008.淀山湖水体叶绿素α与水质因子的多元分析.上海水产大学学报,17(1):58-64.
    [171]王修林,邓宁宁,祝陈坚,韩秀荣,李克强,辛宇,陈莉莉.2004.磷酸盐、硝酸盐组成对海洋赤潮藻生长的影响.中国海洋大学学报,34(3):453-460。
    [172]王修林,张蕾,韩秀荣.2002.营养盐对海洋浮游藻类生长的影响—数学模型研究.海洋科学进展,20(3):96-101.
    [173]王旭晨,王丽卿,彭自然.2006.灰色聚类法评价淀山湖水质状况.上海水产大学学报.15(4):497-502.
    [174]吴国豪,王郁.1993.淀山湖水质模型和水质保护规划研究.华东理工大学学报,19(3):363-368.
    [175]吴和岩,郑力行,苏瑾.2005.上海市供水系统微囊藻毒素LR含量调查.卫生研究,34(2):152-154.
    [176]吴晓东,孔繁翔,张晓峰.2008.太湖与巢湖水华蓝藻越冬和春季复苏的比较研究.环境科学,29(5):162-167.
    [177]谢欢.2006.基于遥感的水质监测与时空分析[学位论文].上海:同济大学.
    [178]阎海,雷志芳,叶常明.1998.斜生栅藻降解邻苯二甲酸二甲酯和苯胺的动力学研究.环境科学学报,18(2):216-220.
    [179]杨苏文,姜霞,金相灿.2007HCO3-对铜绿微囊藻、四尾栅藻和小环藻增长特性及竞争行为的影响.生态环境,16(2):347-351.
    [180]杨漪帆,朱永青,林卫青.2009a.淀山湖富营养化控制的模型研究.环境科技,22(2):17-25.
    [181]杨漪帆,朱永青,林卫青.2009b.淀山湖蓝藻水华及其控制因子的模型研究.环境污染与防治,31(6):58-88.
    [182]由文辉.1994.淀山湖水生植被资源及其利用.植物资源与环境学报,1
    [183]由文辉.1995.淀山湖的浮游藻类及其能量生产.海洋湖沼通报,1:47-53.
    [184]由文辉.1997.淀山湖水生态系统的物质循环.中国环境科学,17(4):293-296.
    [185]由文辉.1999.淀山湖着生藻类群落结构与数量特征.环境科学,20(5):5-26.
    [186]张大弟,张晓红,陈佩青.1998.淀山湖区(上海部分)水质污染源调查评价.上海交通大学学报(农业科学版),16(2):92-97.
    [187]张鼎国,杨再福.2006.淀山湖生态环境的演变与对策.水利渔业,26(1):16-18.
    [188]张运林,秦伯强,黄群芳.2002.东部平原地区湖泊富营养化的演变及区域分析.上海环境科学,21(9):549-581.
    [189]张志红,赵金明,蒋颂辉.2003a.淀山湖夏秋季微囊藻毒素-LR和类毒素-A分布状况及其影响因素.卫生研究,32(4):316-319.
    [190]张志红,郑力行,屈卫东,朱惠刚.2003b.淀山湖微囊藻毒素-LR和类毒素-A的分布状况.中国环境科学,23(4):403-406.
    [191]赵爱萍,刘福影,吴波,尤庆敏,庞婉婷,王全喜.2005.上海淀山湖的浮游植物.上海师范大学学报(自然科学版),34(4):70-76.
    [192]赵宏林,陈东辉.2002.淀山湖水环境管理新模式探讨.上海环境科学,21(8):478-511.
    [193]郑晓红.1999.影响淀山湖水质变化的因素分析.干旱环境监测,13(4):226-252.
    [194]郑晓红,汪琴.2009.淀山湖水质状况及富营养化评价.环境监测管理与技术,21(2):68-70.
    [195]郑忠明,白培峰,陆开宏,金春华,张亮.2008.铜绿微囊藻和四尾栅藻在不同温度下的生长特性及竞争参数计算.水生生物学报,32(5):720-728.
    [196]中华人民共和国卫生部.2006.生活饮用水卫生标准(GB5749-2006).
    [197]周建中.2009.蓝藻问题不容忽视.环境经济,4:57-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700