碎石桩复合地基震后沉降规律试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碎石桩复合地基在工程上的广泛应用使其在抗液化方面的显著效果得到了工程实践的验证。虽然碎石桩复合地基在地震过程中一般不会发生液化,但复合地基也经常会因为震后附加沉降而伴随有震害发生。目前对碎石桩复合地基在动荷载作用下地震响应和震后沉降情况研究较少,实测资料和地震震害资料更少。所以对碎石桩复合地基的震后沉降问题进行有针对性的研究是对碎石桩复合地基理论体系完善和补充的必要环节。
     借助振动台模型试验对碎石桩复合地基的震后沉降规律做了探索性的试验研究工作,课题主要进行了以下工作:
     1.对叠层剪切模型箱的关键零部件从机械角度进行了全面的分析设计研制。新研制的模型箱具有受力机制合理、可循环操作性高、整体稳定性好、质量小、强度高、不漏水等突出特点。
     2.进行了完整的振动台方案设计,试验在振动台模型箱中成功的采用了振动沉管成桩工艺来模拟施工现场的振动沉管法。试验还采用可调节钢管内支撑的方式成功的解决了叠层剪切模型箱中常见的漏砂漏水问题。
     3.对饱和砂土地基和碎石桩复合地基的地震加速度响应和孔压发展规律进行了分析研究。对孔压消散开始时间的影响因素进行了分析,并分析了碎石桩复合地基在动荷载作用下,附加压重投影面积下的桩土应力比的变化规律。
     4.进行了饱和砂土地基和不同成桩方法、不同桩径、不同桩间距的碎石桩复合地基振动台模型试验。找到了砂土地基和碎石桩地基在无附加压重和有附加压重两种情况下震后即时沉降和震后最终沉降的比例和规律,绘制出了砂土地基和碎石桩复合基地震后12小时内的沉降曲线。通过试验结果对震后即时沉降的影响因素进行了总结,并对碎石桩复合地基震后的沉降规律进行了详尽的分析,对碎石桩复合地基减小地基震后沉降的效果进行了评价。
     5.建立了预估砂土地基震后沉降简化公式,公式结合了土的动力参数,并用振动台模型试验结果进行了对比验证。同时,针对振动台模型试验进行了数值模拟分析。
There are agreements that Vibro replacement stone columns are in use can mitigate liquefaction hazards in sandy soils for almost three decades.But the post-earthquake settlement of stone columns can also induce earthquake disaster.The research of earthquake response and post-earthquake settlement of stone columns composite foundation during dynamic load is not enough now.And actual measurement and earthquake disaster information of stone columns com-posite foundation is fewer. So the research to stone columns composite foundation settlements is a important part and supplement to the whole theory of composite foundation.
     A shaking table experiment for stone columns have been made to find the characteristic of stone columns settlement.The following work have been made in this project.
     1. Technical development has been made to the laminar shear model box after the comprehensive analysis of the key accessories of the laminar shear model box.The deadweight of the new devel-oped model box decreases, and the force mechanism of the model box is more close to the actual one of soil. Equipment can be reused, and its operation capability is better than before.
     2. The whole scheme of shaking table test have been made. During stone column installa-tion,vibrator have been used to simulate the real construction of stone column installation in this experiment. Support system which inside with adjustable steel pipe have been used to solve the water creep problem in the laminar box.
     3. Analyse and research have been made to saturated sandy soil foundation and stone columns composite foundation earthquake acceleration response and the rule of development of excess pore water pressure. And analyse have been made to pile-soil stress ratio under upper load during dynamic load.
     4. A shaking table experiment for saturated sandy soil foundation and stone columns composite foundation have been made,and stone columns composite foundation use the different stone column installation and the different diameter of column and the different pile spacing. The pro-portion between instantaneous settlement and total settlement have been found through the ex-periment. And drawing the post-earthquake settlement curve in 12 hours of stone columns com-posite foundation and saturated sandy soil foundation.And elaborate analyse have been made to post-earthquake settlement.Assess of minishing settlements result have been made based on ex-periment result.
     5. Adopting dynamic parameter of sandy soil, a simple and practical method of estimating soil set-tlements is established. The shaking table test data have been used to verify the proposed method. And numerical simulation also have been made to shaking table test.
引文
[1]Seed, H. B., and Idriss, I. M.. Ground motions and soil liquefaction during earthquakes. Earth-quake Engineering Research Institute Monograph, Oakland, Calif.1982
    [2]Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M. The influence of SPT procedures in soil liquefaction resistance evaluations.J. Geotech. Engrg., ASCE,1985.111 (12),1425-1445.
    [3]Shamoto Y, Zhang J-M. Evaluation of seismic settlement potential of saturated sandy ground based on concept of relative compression [J]. Soils and Foundations,1998,38 (S2):57-68.
    [4]Shamoto Y, Zhang J-M, Tokimatsu,K. New methods for evaluating large residual post-liquefaction ground settlement and horizontal displacement [J]. Soils and Foundations, 1998,38 (S2):69-84.
    [5]ldriss, L M. Response of soft soil sites during earthquakes. Proc., H. Bolton Seed Memorial Symp., Vol.2, BiTech Publishers, Ltd., Vancouver,1990.273-290.
    [6]Andrus, R. D., and Stokoe, K. H., Ⅱ. Liquefaction resistance of soils from shear-wave velocity. J. Geotech.and Geoenvir.Engrg.,ASCE,2000.126 (11),1015-1025.
    [7]Youd,T. L., Kayen, R. E., and Mitchell, J. K. (1997). Liquefaction criteria based on energy con-tent of seismograms. Proc., NCEERWorkshop on Evaluation of Liquefaction Resistance of Soils, Nat. Ctr. For Earthquake Engrg. Res., State Univ. of New York at Buffalo,217-224.
    [8]Suzuki, Y., Tokimatsu, K., Koyamada, K., Taya, Y., and Kubota, Y. Field correlation of soil lique-faction based on CPT data. Proc., Int. Symp. on Cone Penetration Testing,1995.Vol.2,583-588.
    [9]陈国兴等.岩土地震工程学[M].北京:科学出版社,2007.
    [10]Seed,H.B.,Booker,J.R., Stablization of potentially liquefiable sand deposits using gravel drains.ASCE Journal of Geotechincal Engineering Division.1977.103(7),757-768
    [11]Ishihara A K, Yoshimine M. Evaluation of settlements in sand deposits following liquefaction during earthquakes [J]. Soils and Foundations,1992,32 (1):173-188.
    [12]Tokimatsu, K., Yoshimi, Y., Effects of vertical drains on the bearing capacity of saturated sand during earthquakes. Proc.,International Conference on Engineering for Protection fromNatural Disasters, Bangkok, Thailand,1980.643-655.
    [13]Saito,A.,TAghawa,K.,Tamura,T.,Oishi,H.,Shimaoka,H.,A countermeasure for sand liquefac-tion,gravel drain method.Nippon Kokan Technical Report,Overseas.1987.No.51, Japan
    [14]Lee K Let al.Earthquake induced settlements in saturated sands.Jr.of the Geo-tech.Dic.ASCE,1974
    [15]Seed H B,Martin P P,Lysmer J.The generation and dissipation of pore water pressures during soil liquefaction.Report No EERC 75-26,Earthquake Engineering Research Center,University of California at Berkeley,USA.1975
    [16]Tokimatsu, K.,1979.Generation and dissipation of pore water pressure in sanddeposits during earthquake[D].Tokyo Institute of Technology,Tokyo,Japan.
    [17]Taksuoka,F.,Sasaki,Y.,Yamada,S., Settlement on saturated sands induced by cyclic undrained simple shear.Proc.,8th World Conference on Earthquake Engineerring.San Francisco,CA, 1984.vol.Ⅲ,95-102
    [18]Nagase,H.,Ishihara,K.,1988.Liquefaction induced compation and settlement of sand during earthquakes.Soil and Foundation.1988.28 (1),66-76
    [19]Scott,R.,1986.Solidification and consolidation of a liquefied sand column.Soil and Founda-tion26 (4),23-31
    [20]邢皓枫,龚晓南,杨晓军.碎石桩复合地基固结简化分析[J].岩土工程学报.2005.5.521-524
    [21]谢康和,郑辉,Leo C J.软粘土一维非线性大应变固结解析理论[J].岩土工程学报,2002,24.680-684.
    [22]谢康和,潘秋元.变荷载下任意层地基一维固结理论[J].岩土工程学报,1995,17(5):80-85.
    [23]谢康和,周瑾,董亚钦.循环荷载作用下地基一维非线性固结解析解[J]岩石力学与工程学报.2006.1.21-26
    [24]谢康和.复合地基固结理论研究现状与发展[J].地基处理.1993.9.1-14
    [25]郑辉,谢康和,杨晓强.双层饱和软土地基一维大应变固结研究[J].岩土力学.2004.11.1770-1778
    [26]黄明聪.复合地基振动反应与地震响应数值分析[D].浙江大学博士学位论文.1999.
    [27]郁寿松,石兆吉.土壤震陷试验研究[J].岩土工程学报.1989.7.35-44
    [28]张建民,王刚.评价饱和砂土液化过程中小应变到大应变的本构模型[J].岩土工程学报,2004,26(4).546-552.
    [29]张建民,王刚.砂土液化后大变形的机理[J].岩土工程学报,2006,28(7).835-840
    [30]Shamoto Y, Zhang J-M, Goto S. Mechanism of large post-liquefaction deformation in saturated sands[J]. Soils and Foundations,1997,37 (2).71-80.
    [31]王刚,张建民.砂土液化大变形的弹塑性循环本构模型[J].岩土工程学报,2007,01.51-59
    [32张建民,罗刚.考虑可逆与不可逆性剪胀的粗粒土动本构模型,岩土工程学报,2005,27(2):1-7
    [33]么印凡,谢定义,王十风.饱和砂土振后再固结变形规律的试验研究[J].工程抗震,1995.12:32-35
    [34]石兆吉,丰万玲,郁寿松.饱和砂土震后再固结体应变的变化规律[J].岩土工程学报,1989,13(11):43-51.
    [35]周云东,刘汉龙,丁晓峰等饱和砂土液化后再固结体变特性研究[J].河海大学学报(自然科学版).2003.7.403-406
    [36]黄春霞.碎石桩复合地基抗液化性能试验研究[D].北京:北京交通大学博士论文,2005
    [37]Tzou-Shin Ueng, Ming-Huei Wang, Ming-Horn Chen, Chia-Han Chen, and Li-Hsien Peng.A Large Biaxial Shear Box for Shaking Table Test on Saturated Sand.[J]. Geotechnical Testing Journal,2006.Vol.29, No.1.1-8
    [38]Ueng, T. S., Chen, C. H., and Chen, H.W., Pore Water Pressure Changes in Saturated Sand Dur-ing One-and Two dimensional Shaking Table Tests," Proceedings of the 1 lth International Con-ference on Soil Dynamics & Earthquake Engineering and the 3rd International Conference on EarthquakeGeotechnical Engineering, Berkeley, CA, Vol.2004,1.682-687.
    [39]Pavese, A.Lai, C.G.Calvi, GM. Ceresa P. and Behrami,C.Reaction Mass and Foundation Design of the High Performance, One-degree-of freedom centre Shaking Table, in Pavia (Italy).Vol.1,2005.513-524
    [40]Matsuda.T.and Goto,Y. Studies on experimental technique of shaking table test for geotechni-cal problems.Proceedings of 9th World Conference on Earthquake Engineer-ing.Tokyo.1988.837-842.
    [41]Seed, H. B., and Idriss, I. M.Simplified procedure for evaluating soil liquefaction potential. [J]. Geotech.Engrg.Div.,ASCE,1971.97 (9),1249-1273.
    [42]Seed H B,Idriss I M.Soil moduli and damping factors for dynamic response analyses.Report No.EERC70-10,Earthquake Engineering Researth Center,University of California,Berkeley,1970
    [43]Tamura S.,Suzuki,Y.,etc.Dynamic response and failure mechanisms of a pile foundation during soil liquefaction by shaking table test with a large scale laminar shear box.Proceedings of 12th World Conference on Earthquake Engineering.2002.No.0903
    [44]Robertson, P. K., Woeller, D. J., and Finn, W. D.. Seismic cone penetration test for evaluating liquefaction potential under cyclic loading. Can. Geotech. J., Ottawa,1992.29,686-695.
    [45]Katayama T.Construction of E-Defense-A Large Sized 3-dimensional Shaking Ta- ble.Proceedings of the First Conference on Advances in Experimental Structural Engineering (AESE), Vol.1,2005.29-37
    [46]Idriss, I. M. Evaluating seismic risk in engineering practice.Proc.,11th Int. Conf. on Soil Mech. and Found. Engrg.,1985.Vol.1,255-320.
    [47]Liao, S. S. C., and Whitman, R. V. Catalogue of liquefactionand non-liquefaction occurrences during earthquakes. Res. Rep., Dept.of Civ. Engrg., Massachusetts Institute of Technology, Cam-bridge,Mass. Geotech. Engrg., ASCE,1986.112 (3),373-377.
    [48]Robertson, P. K., and Wride, C. E. Evaluating cyclic liquefaction potential using the cone pene-tration test. Can. Geotech. [J]., Ottawa,1998.35 (3),442-459.
    [49]Seed H B, Lee K L. Liquefaction of saturated sands during cyclic loading [J]. Journal of Soil Mechanics and Foundation Engineering Division, ASCE,1966,92 (SM6):105-134.
    [50]Taylor,C.A.and Crewe,A.J. Shaking table tests of simple direct foundation.Proceeding of 11th World Conference on Earthquake Engineering.1996.No.2048
    [51]景立平,姚运生,郑志华.饱和粉土液化特性的大型振动台模型试验研究[J].地震工程与工程振动,2007,12:160-165
    [52]Abdoun, T., Dobry, R., O'Rourke, T.D. and Goh, S.H.. Pile Response to Lateral Spreads:Centrifuge Modeling, Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2003.Vol.129,No.10,869-878.
    [53]Iai, S. Similitude for Shaking Table Tests on Soil-Structure-Fluid Model in 1g Gravitational Field.Soils and Foundation,1990.Vol.29,105-118.
    [54]Kagawa T. Minowa C, Abe. EDUS Project(Earthquake Damage to Underground Structure)[C] /12WCEE, New Zealand,2000,0329.
    [55]Tokimatsu.K.,Yoshimi.Y.,1980.Effect of vertical drains on the bearing capacity of saturated sand during earthquakes.Oroc.,International Conference on Engineering for Protection from Natural Disaster,Bangkok,Thailand,643-655.
    [56]Tanaka, Y., Kokusho, T., Esashi, Y, Matsui, I.,1983. Effects ofgravel piles on stabilizing a sand deposit susceptible to liquefaction:Part 2. On the designing method of gravel piles with finite permeability. Rep. Cent. Res. Inst. Elec. Pow. Ind.382058 (in Japanese)
    [57]Pyke, R. M., Seed, H. B., and Chan, C. K., "Settlement of Sands Under Multi-directional Load-ing[J]. Journal of Geotechnical Engineering Division, ASCE,1975,Vol.101, No.4,379-398.
    [58]Iai.S,Koizumi.K.,Noda.S.,Tsuchida.H.,1988.Large scale model tests and analysis of gravel drains.Proc.,9th World Conference Earthq.Eng.,Tokyo-Kyoto.Japan,vol.Ⅲ
    [59]Sasaki, Y, Taniguchi, E., Shaking table tests on gravel drains to prevent liquefaction of sand deposits. Soils and oundations.1982.22 (3),1-14.
    [60]Baez, J.I., Martin, G R.,1992. Quantitative evaluation of stone column techniques for earth-quake liquefaction mitigation. Proc.,10th World Conference on Earthquake Eng., Madrid, Spain.
    [61]蒋关鲁,刘先峰,张建文等.沉管挤密碎石桩加固液化土地基的振动台试验研究[J].铁道科学与工程学报,2006.6.41-46
    [62]Adalier, K., Elgamal, A., Meneses, J., Baez, I.J., Stone columns as liquefaction counter-measure in non-plastic silty soils.Journal of Soil Dynamics and Earthquake Engineering.2003.23 (7),571-584.
    [63]Brennan A.J., Madabhushi S.P.G.. Liquefaction remediation by vertical drains with varying penetration depths.Soil Dynamics and Earthquake Engineering.2006.26 469-475
    [64]Okita, Y., Ito, K., Nakajima, Y., Oishi, H., Gravel drains installed with compaction rod type machine. Proc., Geo-Coast.1991, Yokohama-Japan.
    [65]Ono, Y, Ito, K., Nakajima, Y, Oishi, H.,1991. Efficient installation of gravel drains. Proc.,2nd Int. Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dy-namics, St. Louis, Missouri. Paper No.3.24.
    [66]Nakata, H., Miyake, K., Muraoka, T., Shaking table tests of submerged tunnel in sandy ground. Proc., Geo-Coast.1991, Yokohama-Japan.
    [67]Kawamura, M., Kuribayashi, E., Tuchiyama, S., Ogino, A.,1988. Estimation of effect of pre-venting measures for uplift of manhole due to liquefaction. Proc.,9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, vol. Ⅲ.
    [68]Miyajima, M., Yoshida, M., Kitaura, M.,1992. Small scale tests on countermeasures against liquefaction for pipelines using gravel drain system. Proc.,4th US- Japan Workshop on Earth-quake Resistant Design of Lifeline Facilities and Countermeasures against Soil Liquefaction, Buffalo, NY.
    [69]Satoh, T., Miyake, M.,1991. Centrifuge model tests studying the effect of gravel drain to pre-vent liquefaction. Proc., Geo-Coast'91, Yokohama-Japan,501-504.
    [70]Tokimatsu, K. and Suzuki, H. Pore Water Pressure Response around Pile and Its Effects on p-y Behavior during Soil Liquefaction, Soils and Foundations,2004. Vol.44, No.6.101-110.
    [71]Sasaki, Y, Taniguchi, E., Shaking table tests on gravel drains to prevent liquefaction of sand deposits. Soils and oundations.1982.22 (3),1-14.
    [72]Meymand P.J. Shaking table scale model test of nonlinear soil-pile-superstructure interaction in soft clay[D]. Berkeley:Univ of California Berkeley,1998.
    [73]吕西林,陈跃庆等.结构一地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动,2000,20(4):1-10.
    [74]Matsuda.T.and Goto,Y Studies on experimental technique of shaking table test for geotechnical problems.Proceedings of 9th World Conference on Earthquake Engineer-ing.Tokyo.1988.837-842.
    [75]韦晓,范立础,王君杰.考虑桩-土-桥梁结构相互作用振动台试验研究[J].土木工程学报,2002,35(4):91-97.
    [76]凌贤长,王丽霞,王东升等.非自由液化场地地基动力性能大型振动台模型试验研究[J].中国公路学报,2005,18(2):34-39
    [77]蒋关鲁,刘先峰,张建文等.高速铁路液化土地基加固的振动台试验研究[J].西南交通大学学报,2006,41(2):190-196.
    [78]陈国兴,庄海洋,杜修力等.土-地铁车站结构动力相互作用大型振动台模型试验研究[J].地震工程与工程振动,2007,27(2).171-176.
    [79]Gibson A D. Physical scale modeling of geotechnical structures at one-G[Ph. D. Thesis][D]. Pasadena, USA:California Institute of Technology,1997.
    [80]Prasad S K, Towhata I, Chandradhara G P, et al. Shaking table tests in earthquake geotechnical engineering[J]. Current Science,2004,87 (10):1398-1404.
    [81]Ueng T S, Chen C H. Liquefaction of sand under multidirectional shaking table tests[C]//Pro-ceedings of the International Conference on Physical Modeling in Geotechnics(ICPMG 06). Hong Kong:[s.n.],2006:481-486.
    [82]Pamuk A, Gallagher P M, Zimimie T F. Remediation of piled foundations against lateral spreading by passive site stabilization technique[J]. Soil Dynamics and Earthquake Engi-neering,2007,27 (7):864-874.
    [83]Pitilakis D, Dietz M, Wood D M, et al. Numerical simulation of dynamic soil-structure in-teraction in shaking table testing[J]. Soil Dynamics and Earthquake Engineering,2008,28 (6):453-467.
    [84]Whitman R V, Lambe P C, Kutter B L. Initial results from a stacked ring apparatus for simu-lation of a soil profile[A]. In:Proceedings of the International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics[C]. St. Louis, USA:[s.n.],1981. 1105-1110.
    [85]Zeng X,Schofield A N. Design and performance of an equivalentshear-beam container for earth-quake centrifuge modeling[J].Geotechnique,1996,46 (1):83-102.
    [86]http://www.civil.columbia.edu/ling/geotech.html
    [87]Andrus R. D., and Stokoe, K. H.,Ⅱ. Liquefaction resistance based on shear wave velocity.Proc., NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Nat. Ctr. for Earthquake Engrg.Res., State Univ. of New York at Buffalo,1997.89-128.
    [88]Youd, T. L., and Idriss, I. M., eds. (1997). Proc., NCEER Workshop on Evaluation of Liq-uefaction Resistance of Soils, Nat. Ctr. for Earthquake Engrg. Res., State Univ. of New York at Buffalo.
    [89]http://nees.buffalo.edu/docs/labmanual/HTML/Chapter%203.html
    [90]http://geot.civil.metro-u.ac.jp/events/1999/obayashi/obayashi.html
    [91]Jakrapiyanun, W.2002. Physical Modeling of Dynamic soil-Foundation-Structure-Interaction Using a Laminar Container[D], Department of Structural Engineering, University of California San Diego, La Jolla, U.S.A.
    [92]楼梦麟,宗刚,牛伟星等.土-桩-钢结构相互作用体系的振动台模型试验[J].地震工程与工程振动,2006,26(5):226-230.
    [93]楼梦麟,牛伟星,宗刚等.TLD控制的钢结构振动台模型试验研究[J].地震工程与工程振动,2006,26(1):145-151.
    [94]杨广鉴,单志康,杨文生.振冲碎石桩复合地基的动力参数现场试验[J].地基处理,1992,06,1-8
    [95]Mitchell,J.K.,Baxter,C.D.P,and Munson,T.C.,Performance of improved ground during earth-quakes.Soil Improvement for Earthquake Hazard Mtigation,ASCE Geotechnical Special Publi-cation.1995.No.49,1-36.
    [96]邓纹洁.碎石桩处理可液化层和软土层交互地基沉降特性[J]江苏建筑2005.02,40-44
    [97]齐迪,冯志仁,陈剑平.碎石桩复合地基振动响应试验分析地震工程与工程振动,2005.10,132-136.
    [98]Ashford, S.A., Rollins, K.M., Baez, J.I., Comparison of deep foundation performance in im-proved and non improved ground using blast induced liquefaction. Proc., Geo-Denver 2000, Soil Dynamics and Liquefaction. ASCE Geotech. Special Publ.,2000.vol.107,20-34.
    [99]龚晓南.地基处理手册(第三版)[M].北京:中国建筑工业出版社,2008.
    [1]伍小平,孙利民,胡世德,等.振动台试验用层状剪切变形土箱的研制[J].同济大学学报(自然科学版),2002,30(7):781-785.
    [2]蒋关鲁,刘先峰,张建文等.沉管挤密碎石桩加固液化土地基的振动台试验研究[J].铁道科学与工程学报,2006.6.41-46
    [3]楼梦麟,宗 刚,牛伟星等.土-桩-钢结构相互作用体系的振动台模型试验[J].地震工程与工程振动,2006,26(5):226-230.
    [4]陈国兴,庄海洋,程绍革,等.土-地铁隧道动力相互作用的大型振动台试验:试验方案设计[J].地震工程与工程振动,2006,26(6):178-183.
    [5]Turan A, Hincheberger S D, Naggar H E. Design and commissioning of a laminar soil container for use on small shaking tables[J]. Soil Dynamics and Earthquake Engineering,2009,29 (2).404-414.
    [6]Ashford, S. A. and Jakrapiyanun, W.2001.Design and Verification of the UCSD Laminar Con-tainer.Structural Systems Research Project-TR-2001/07, UC San Diego.
    [7]李国豪.工程结构抗震动力学[M].张山译.上海:上海科学技术出版社,1980.
    [8]汪正荣,朱国梁.简明施工计算手册[M].北京:中国建筑工业出版社.1989.
    [9]潘景龙.单向模拟地震振动台设计中的若干问题讨论[J].哈尔滨建筑工程学院学报,1990,23(2) :90-99.
    [10]Mizuno H, Sugimoto M, Mori T, et al.Dynamic behavior of pile foundation in liquefaction proc ess-shaking table tests utilizing big shear box.Proceedings of the 12th World Conference on Earthquake Engineering[C].New Zealand:2000.28-32.
    [11]Maugeri M,Musumeci G, Novit-D, et al.Shaking table test offailure of a shallow foundation subjected to an eccentric load[J].Soil Dynamics an d Earthquake Enginering,2000,20 (5/8): 435-444.
    [12]Jakrapiyanun, W.2002. Physical Modeling of Dynamic soil-Foundation-Structure-Interaction Using a Laminar Container, Ph.D. Dissertation, Department of Structural Engineering, Univer-sity of California San Diego, La Jolla, U.S.A.
    [13]Iai, S.and Sugano, T.1999.Soil-Structure Interaction Studies through Shaking Table Tests. Theme Lecture for the Second International Conference on Earthquake Geotechnical Engineer- ing.
    [14]Taylor C. A,Crewe A J.Shaking table tests of simple direct foundation[A].In:Proceedings of the 11th World Conference on Earthquake Enginering[C].Acapulco:Elsevier Science Ltd., 1996.2048-2056.
    [15]黄春霞,张鸿儒,隋志龙.简易单向专用地震模拟振动台的研制[J].世界地震工程,2007,12.79-283.
    [16]实用五金手册[M].上海:上海科学技术出版社,1980.
    [17]尚守平,刘方成,卢华喜等.振动台试验模型地基土的设计与试验研究[J].地震工程与工程振动.2006.8.199-204
    [18]黄春霞,张鸿儒,隋志龙.大型叠层剪切变形模型箱的研制[J].岩石力学与工程学报,2006,25(10):2128-22134.
    [19]黄春霞.碎石桩复合地基抗液化性能试验研究[D].北京:北京交通大学,2005
    [1]Finn W.D.L.,Fujita N.Piles in liquefiable soils:seismic analysis and design issues[J].Soil Dy-namic and Earthquake Engineering,2002,22:731-742.
    [2]Akihiro Takahashi.Soil-pile interaction in liquefaction-induced lateral spreading of soils[D].Japan,2002.
    [3]杨林德,季倩倩,杨超,郑永来.地铁车站结构振动台试验中传感器位置的优选[J].岩土力学,2004.4.619-623
    [4]Jakrapiyanun, W. Physical Modeling of Dynamic soil-Foundation-Structure-Interaction using a Laminar Container, Ph.D. Dissertation, Department of Structural Engineering, University of California San Diego, La Jolla, U.S.A.2002
    [5]Lu, J., Elgamal, A. and Yang, Z.2006. OpenSeesPL Three-Dimensional Lateral Pile-Ground In-teraction Version 1.00 User's Manual, Report SSRP-06/04, Department of Structural Engineer-ing,University of California San Diego, La Jolla, U.S.A.
    [6]Kagawa, T., Minowa, C., Abe, A., and Oda, S. Shaking-Table Tests on Analyses of Piles in Liq-uefying Sand. Procs. of 1st International Conference on Earthquake Geotechnical Engineer-ing.1995. Vol.2.699-704.
    [7]Nashed, R., Thevanayagam, S., Martin, G. R., and Shenthan, T. (2004).Liquefaction mitigation in silty soils using dynamic compaction and wick drains. Proc.,13th 192 World Conference on Earthquake Engineering, Vancouver, BC, Canada, Paper no.1951.
    [8]陈国兴,庄海洋,程绍革等.土一地铁隧道动力相互作用的大型振动台试验——试验方案设计[J].地震工程与工程振动,2006,26(6):178-183.
    [9]凌贤长,王臣,王成.液化场地桩一土一桥梁结构动力相互作用振动台试验模型相似设计方法[J].岩石力学与工程学报,2004,23(3):450--456.
    [10]杨林德,季倩倩,郑永来,等.地铁车站结构振动台试验中模型箱设计的研究[J].岩土工程学报,2004(1):75-78.
    [11]季倩倩,地铁车站结构振动台试验研究[D],上海:同济大学,2002,
    [12]庄海洋.土一地下结构非线性动力相互作用及其大型振动台试验研究[D].江苏:南京工业大学,2006.
    [13]周锡元,王广军等.场地-地基-设计地震.[M].北京:地震出版社.1991
    [14]吕西林,陈跃庆等结构一地基动力相互怍用体系的振动台模型试验研究[J].地震工程与工程振动.2000,20(4):20-29
    [15]伍小平,孙利民,胡世德,等.振动台试验用层状剪切变形土箱的研制[J].同济大学学报(自然科学版),2002,30(7):781-785.
    [16]楼梦麟,潘旦光,范立础.土层地震反应分析中侧向人工边界影响的数值研究[J].同济大学学报,2003,31(7):757-761.
    [17]Mitchell,J.K.,Baxter,C.D.P,and Munson,T.C.,Performance of improved ground during earth-quakes.Soil Improvement for Earthquake Hazard Mtigation,ASCE Geotechnical Special Publi-cation.1995.No.49,1-36
    [18]龚晓南.地基处理手册(第三版)[M].北京:中国建筑工业出版社,2008.
    [1]中华人民共和国国家标准.GB/T50123-1999.土工试验方法标准[S].北京:中国计划出版社,1999.
    [2]吴世明等.土动力学[M].北京:中国建筑工业出版社,2000.
    [3]南京水利科学研究院.GBSL237—1999土工试验规程[S].北京:中国水利水电出版社,1999.
    [4]中华人民共和国国家标准.GB50007-2002.建筑地基基础设计规范[S].北京:中国建筑工业出版社,2002.
    [5]《工程地质手册》编委会.工程地质手册(第四版)[M].北京:中国建筑工业出版社,2007
    [6]Seed,H.B.Evaluation of soil liquefaction effectson level ground during earthquake.Liquefaction Problem in Geotechnical Engineering.ASCE National Convention,1976:1-104
    [7]黄春霞.碎石桩复合地基抗液化性能试验研究[D].北京:北京交通大学,2005.
    [8]Seed,H.B.,Martin P.P.,Lysmer,J.Pore water pressure change during soil liquefaction.Journal of the Geotechnical Engineering Division,ASCE,1976,102 (GT4):323-346
    [9]Finn,W.D.L.,Lee,K.W.,Martin,G.R.An Effect stress model for liquefaction. Journal of the Geo-technical Engineering Division,ASCE,1977,103 (GT6):517-533.
    [10]Finn,W.D.L.,Bhatia,S.K.Prediction of seismic pore water pressure,Proceeding of 10th Interna-tional Conference on Soil Mechanical and Foundation Engineering,.1981.vol.3
    [11]徐志英,沈珠江.地震液化的有效二维应力分析方法[J].华东水利学院院报,1981,9(3):1-14.
    [12]汪闻韶.饱和砂土振动孔隙水压力试验研究[J].水利学报,1962(2):37-49.
    [13]曾长女,刘汉龙,丰土根,等.饱和粉土孔隙水压力性状试验研究[J].岩土力学,2005,26(12):1963-1966.
    [14]Davis,R.O.,Berrill,J.B.Energy dissipation and seismic liquefaction in sands.Earthquake Engi-neering and Structural Dynamics,1982,10 (1).59-68.
    [15]Tokimatsu, K. and Suzuki, H. Pore Water Pressure Response around Pile and Its Effects on p-y Behavior during Soil Liquefaction", Soils and Foundations,2004.Vol.44, No.6.101-110.
    [16]刘华北,宋二祥.可液化土中地铁结构的地震响应[J].岩土力学,2005,26(3):381-391
    [17]谢君斐,石兆吉,郁寿松等.液化危害性分析[J].地震工科与工程振动.1988(1):61-77
    [18]建筑工业出版社编.唐山地震建筑震害分析资料选编[M].北京:中国建筑工业出版社,1976
    [19]石兆吉,丰万玲,郁寿松.饱和砂土震后再固结体应变的变化规律[J].岩土工程学报,1989,13(11):43-51.
    [20]Lee K.L.,Albaisa.A.Earthquake induced settlements in saturated sands.Jr.of the Geotechnical Engineering.Division, ASCE,1974:Vol.100:387-406.
    [21]Seed H.B., Lee K.L.. Liquefaction of saturated sands during cyclic loading [J]. Journal of Soil Mechanics and Foundation Engineering Division, ASCE,1966,92 (SM6):105-134.
    [22]Proceedings of13th World Conference On Earthquake Engineering[C]. Vancouver,Canada, CD-ROM,2004.
    [23]张爱军,谢定义.复合地基三维数值分析[M].北京:科学出版社.2004
    [24]Tatsuoka.F, SASAKI T, YAMADA S. Settlement in saturated sand induced by cyclic undrained simple shear[C]//Proceedings of 8th World Conference on Earthquake Engineering, San Fran-cisco,1984,3:398-405.
    [25]郁寿松,石兆吉.土壤震陷试验研究[J].岩土工程学报.1989.7.35-44
    [26]Shamoto Y, Zhang J-M, Tokimatsu K. New methods for evaluating large residual post-liquefaction ground settlement and horizontal displacement [J]. Soils and Foundations, 1998,38 (S2):69-84.
    [27]周云东,刘汉龙,丁晓峰等饱和砂土液化后再固结体变特性研究[J].河海大学学报(自然科学版).2003.7.403-406
    [28]Seed H. B., and Idriss I. M.. Simplified procedure for evaluating soil liquefaction potential.[J]. Geotech.Engrg.Div.,ASCE,1971.97 (9).1249-1273.
    [29]Liao S. S. C., and Whitman, R. V. Catalogue of liquefactionand non-liquefaction occurrences during earthquakes.Res. Rep., Dept.of Civ. Engrg., Massachusetts Institute of Technology, Cambridge,Mass.Geotech.Engrg.,ASCE,1986.112 (3).373-377.
    [30]Seed H B,Martin P P,Lysmer J.The generation and dissipation of pore water pressures during soil liquefaction.Report No EERC 75-26,Earthquake Engineering Research Center,University of California at Berkeley,USA.1975
    [31]Seed H B,Idriss I M.Soil moduli and damping factors for dynamic response analyses.Report No.EERC70-10,Earthquake Engineering Researth Center,University of Califor-nia,Berkeley,1970.
    [32]Simplified estimation of earthquake-induced settlement in saturated sand deposits[J].Soils and foundations.1996.3. Vol.36.Nol:39-50.
    [33]Mahdi T, Hadi S Ali P.Study of pore pressure variation during liquefaction using two constitu-tive models for sand. Soil Dynamics and Earthquake Engineering 2007,27 60-72
    [34]A.J. Brennan,S.P.G.Madabhushi.Effectiveness of vertical drains in mitigation of liquefaction. Soil Dynamics and Earthquake Engineering.2002.22.1059-1065
    [35]朱俊高,俞炯奇,姜朴.松砂液化后液化区渐进扩散的计算方法初探[J].水利学报.1998.952-56.
    [36]么印凡,谢定义,王十风.饱和砂土振后再固结变形规律的试验研究[J].工程抗震,1995.12:32-35.
    [1]龚晓南.地基处理手册(第三版)[M].北京:中国建筑工业出版社.2008.
    [2]许明军,方磊,姜在田.碎石桩处理液化地基抗液化研究现状及存在问题[J].防灾减灾工程学报.2003.09:99-104.
    [3]黄春霞.碎石桩复合地基抗液化性能试验研究[D].北京:北京交通大学博士论文,2005.
    [4]赵如意。蒋关鲁,刘先峰等.沉管挤密碎石桩加固液化土地基的振动台试验研究[J].铁道科学与工程学报,2006,3:41-46.
    [5]邱钰,黄卫,刘松玉.干振碎石桩处理高速公路液化地基效果分析[J].公路交通科技,2000,17(4):19-21.
    [6]Nashed, R., Thevanayagam, S., Martin, G. R., and Shenthan, T. (2004).Liquefaction mitigation in silty soils using dynamic compaction and wick drains. Proc.,13th 192 World Conference on Earthquake Engineering, Vancouver, BC, Canada, Paper no.1951.
    [7]刘松玉.高速公路液化地基及桥梁抗液化研究总报告[R].南京:东南大学出版社,1999.47-66
    [8]林本海,谢定义.复合地基的液化检验理论及其应用[M].北京:中国水利水电出版社,1999.
    [9]张定.振冲碎石桩复合地基的作用原理分析及沉降计算[J].岩土力学.1999.6.84-87.
    [10]Tokimatsu K., and H.B. Seed.Evaluation of settlements in sands due to earthquake shaking. J. Geotech.Eng.Div.,ASCE,1987.113 (8).861-878.
    [11]Vaid, Y.P.,Ground failures under seismic conditions. Proc., ASCE Convention, GSP.44, S. Prakash and P. Dakoulas, eds.,ASCE.Atlanta, GA, Oct.1994.1-16.
    [12]Thevanayagam, S., Nashed, R., Shenthan, T., and Martin, G. R. Liquefaction mitigation for silty soils using dynamic compaction and stone columns:Design methods, Annual Report for Research Year 5, MCEER Highway Project, FHWA Contract 2005.DTFH61-98-C-00094.
    [13]Thevanayagam, S., Nashed, R., Martin, G. R., and Shenthan, T. (2004).Ground remediation for silty soils using composite dynamic compaction.Annual Report for Research Year 4, MCEER Highway Project, FHWA Contract DTFH61-98-C-00094.
    [14]Thevanayagam, S., Martin, G.R., and Shenthan, T. (2003c).Ground remediation for silty soils using composite stone columns.Annual Report for Research Year 3, MCEER Report, FHWA Contract # DTFH61-98-C-00094.
    [15]刘汉龙,周云东,高玉峰.砂土地震液化后大变形特性试验研究[J].岩土工程学报,2002,24(2).747-751.
    [16]高玉峰,刘汉龙,朱伟.地震液化引起的地面大位移研究进展[J].岩土力学.2000,21(3)::294-298.
    [17]池跃君.刚性桩复合地基工作性能及沉降计算方法的研究.[D].北京:清华大学,2002:1-10.
    [18]邱发兴.地基沉降变形计算[M].四川:四川大学出版社,2007.
    [19]Mitchell,J.K.,Baxter,C.D.P,and Munson,T.C.,Performance of improved ground during earth-quakes.Soil Improvement for Earthquake Hazard Mtigation,ASCE Geotechnical Special Publi-cation No.49,1995:1-36.
    [20]孟上九,袁晓铭,孙锐.建筑物不均匀震陷机制的振动台实验研究[J].岩土工程学报,2002,24(6):747-751.
    [21]孟上九,刘汉龙,袁晓铭,刘添华.可液化地基上建筑物不均匀震陷机制的振动台试验研究[J].岩石力学与工程学报.2005.6.1978-1985.
    [22]袁晓铭,孙锐,孟上九.软弱地基土上建筑物不均匀震陷机理研究[J].土木工程学报.2004.2.67-77.
    [23]朱志铎,刘义怀.碎石变形特征及挤密碎石桩复合地基效果评价[J].岩土力学.2006.7.1153-1157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700