气压沉箱施工对周边环境影响的动态数值模拟方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究基于气压沉箱的施工特点,提出了一套定量化评价气压沉箱施工对周围土体影响的数值模拟方法以及气压沉箱施工控制技术。本研究的创新性成果主要体现在以下三个方面:(1)基于气压沉箱的特殊施工工艺,提出了一种能够追踪气压沉箱下沉施工全过程的非线性有限元动态模拟方法与技术;(2)基于系列性的数值模拟和工况分析,定量化地分析了气压沉箱下沉时影响地层变形的主要参数及影响效果;(3)基于数值理论分析结果和特殊的施工工艺,提出了一套完整的气压沉箱施工控制技术和周围环境保护措施。
     本论文的主要研究内容由如下八部分组成。
     在论文的第1章中,简要介绍了课题来源、研究背景、研究意义与目的、研究内容、研究计划以及主要创新之处。
     在论文的第2章中,系统地总结了国内外气压沉箱工法的应用现状及发展动态,分析了一般基坑工程开挖对周围环境影响的研究方法及成果,在此基础上结合国内普遍应用的沉井研究资料,详细论述了国内外学者在气压沉箱施工对周边环境影响方面的研究成果。另外,还对非线性有限元分析方法在地下工程中的应用作了简要的阐述。
     在论文的第3章中,首先分析了自动化气压沉箱下沉施工的工艺流程以及沉箱下沉施工对地层变形影响的主要因素。然后,基于沉箱分节下沉全过程的动态受力特点以及物理力学模型,创新性地提出了一种能够追踪气压沉箱下沉施工全过程的非线性有限元动态模拟方法和技术。
     在论文的第4章中,提出了不同于其它施工方法的沉箱实时监测技术与方法,并分析了国内首个采用自动化气压沉箱方法施工完成的隧道风井的监测方案及数据,包括地表沉降、水平位移以及地下水位变化等。
     在论文的第5章中,利用上述提出的气压沉箱下沉施工全过程的非线性有限元动态模拟技术,根据实际的施工状况和条件,针对国内首个采用自动化气压沉箱方法的隧道风井(地铁7号线耀华路隧道风井工程),动态模拟了沉箱下沉施工的整个过程,分析了沉箱下沉各阶段对周边地层变形的影响。基于现场实测数据,比较分析了下沉各阶段引起的地表沉降、土体水平位移以及工作室内的土体隆起等,验证了本文所提出的气压沉箱动态有限元模拟方法的合理性。
     在论文的第6章中,利用上述提出的气压沉箱下沉施工全过程的非线性有限元动态模拟方法,定量化分析了土体弹性模量E、粘聚力C、内摩擦角φ、卸载再加载模量E_(ur)等土性参数,工作室内气压的大小,沉箱与土体间侧摩阻力的大小以及设置临时挡土隔墙对气压沉箱施工的影响,系统性地分析了各种因素对气压沉箱施工以及周围土体的影响效果。
     在论文的第7章中,基于以上定量化数值分析结果以及各种因素的影响效果,提出沉箱下沉施工的主要控制技术与保护措施,如沉箱箱体制作控制、下沉姿态控制、工作室内气压管理、沉箱施工设备管理、高气压作业管理、下沉实时监测、沉箱壁外注浆、刃脚超挖控制、设置临时挡土隔墙、局部地基加固等等。
     在论文的第8章中,对本文的研究工作与主要结论作了总结,并提出须进一步研究的课题。
Based on the construction characteristics of pneumatic caisson, a type of numerical simulation method to evaluate the influence of surrounding soil deformation and the corresponding control technique are presented in this paper. The innovation mainly includes the following three aspects: (Da type of nonlinear finite element dynamic simulation method and technique to track the entire process of pneumatic caisson sinkage is presented based on the special construct technics of pneumatic caisson. (2) the main parameters to impact the strata deformation and the influence in the sinkage of pneumatic caisson are analyzed quantitatively based on a series of numerical simulations and working-state analysis. (3) a suit of whole construction control technique of pneumatic caisson sinking and surrounding environmental protection measures are presented based on the results of numerical analysis and the special construct technics.
     This thesis consists of the following eight parts:
     In chapter 1, the project source and background, research meaning and objective, main content, research program and main innovation are generally introduced.
     In chapter 2, the present application and development situation of pneumatic caisson method are systematically summarized and the research measures and results of general pit engineering are analyzed. On previous basis, the research results on the surrounding environment effect due to pneumatic caisson construction are discussed in detail incorporating domestic open caisson research data. In addition, non-linear finite element analysis method applied in underground engineering is briefly mentioned.
     In chapter 3, the process flow of automated pneumatic caisson sinkage is introduced briefly and the main factors which induce strata deformation are presented. Then, based on the dynamic mechanical characteristics and the physical mechanical model of entire process of caisson sub-section sinkage, a type of nonlinear finite element dynamic simulation method and technique to track the entire process of pneumatic caisson sinkage is creatively proposed.
     In chapter 4, unlike other construction method the pneumatic caisson sinkage real-time monitoring technology and method are presented. Moreover, the measurement project and data are analyzed, including the ground surface settlement, the horizontal displacement of surrounding soil and the heave of soil in the working chamber of the first tunnel air shaft constructed by automated pneumatic caisson method in China.
     In chapter 5, by the proposed nonlinear finite element dynamic simulation method, the entire process of pneumatic caisson sinkage is simulated and the influence of surrounding soil doformation is analyzed based on the actual construction status incorporating the first tunnel air shaft constructed by automated pneumatic caisson method in China. The ground surface settlement, the horizontal displacement of surrounding soil and the heave of soil in the working chamber are simulated and compaired with the measure data. It is validated that the presented FEM analysis is valid and accurate for the construction of pneumatic caisson.
     In chapter 6, by the proposed nonlinear finite element dynamic simulation method, the sensitivity of parameters for the influence to adjacent environment are analyzed, including the soil physical parameters: elastic modulus E, cohesion C, angle of internal frictionφ, unloading-reloading modulus E_(ur), and the pressure of compressed air in the working chamber, the side friction between the caisson and soil, the temporary retaining wall.
     In chapter 7, according to the results of soil deformation by numerical analysis and the effect to soil deformation of main factors, the corresponding control techniques and protective measures are proposed, which include the caisson construction technique, the sinkage state control, the air management in the working chamber, the management of construction equipment, the sinkage real-time monitoring, the spout technique outside caisson, the overbreak control under the cutting curb, the setting of temporary retaining wall,local foundation reinforcement and so on.
     In chapter 8, the summary of conclusions from this thesis with associated objectives for future studies is presented.
引文
[1]钱七虎.迎接我国城市地下空间开发高潮,岩土工程学报,Vol.20 No.1 1998.1
    [2]周健,王浩.环境岩土工程的发展与展望,上海:首届环境岩土工程学术交流会论文集,2002.6
    [3]杨林德编著,软土工程施工技术与环境保护.人民交通出版社,2000
    [4]彭芳乐,孙德新,大内正敏,袁大军,廖少明,朱合华.压气沉箱工法的信息化施工,岩土工程师.Vol.15 No.3 2003.12
    [5]大内正敏,彭芳乐,孙德新,朱合华,廖少明.压气沉箱工法,岩土工程师[J]Vol.15 N.12003.2.
    [6]彭芳乐,孙德新,大内正敏,朱合华,廖少明.压气沉箱工法的历史与现状,岩土工程师[J]Vol.15 N.2 2003.10.
    [7]白石俊多,藤田宏一.革新ヶ一ソンェ法[M]综合土木研究所,1996.2.
    [8]#12
    [9]孙德新,彭芳乐,大内正敏,朱合华,廖少明.压气沉箱工法的几种现代技术及其应用,岩土工程师[J]Vol.15 N.1 2003.2.
    [10]高大钊.软土地基理论与实践.北京:中国建筑出版社,1992.8
    [11]Lamel Shihara,K.Relations between process of cutting and uniqueness of solution Soils and Found.1990,10(3):50-65
    [12]Clough,G.W.and O'Rourke,T.D.(1990),Construction-induced movements of insitu walls,Design and performance of Earth retaining Structures,ASCE Special Publication,No.25,pp.430-470.
    [13]侯学渊,陈永福.深开挖引起周围地基土沉陷的计算[J].岩土工程师,1989,1(1):3-13.
    [14]徐方京等.地下连续墙基坑开挖综合特性研究.岩土工程学报,1993
    [15]Peck R.B.Deep excavation and tunneling in soft ground.7~(th)ICSMFE,State of the Art Volume,v3,1969,Mexico City:225-290
    [16]欧章煜.深开挖工程分析设计理论与实务.台湾科技图书股份有限公司,2002.4
    [17]Nicholson,D.P.(1987),The design and performance of retaining wall at Newton station,Proceeding of Singapore Mass Rapid Transit Conference,Singapore,pp.147-154.
    [18]Sugimoto.Prediction for the maximum settlements of ground surface by open cut[J].Proceedings of Japan Society of Civil Engineers,1986,No.373,Ⅵ-5.
    [19]Mana A.I,Clough G.W..Prediction of movements for braced cuts in clay[J].J.Geotech.Engrg.,ASCE,1981,107(6):759-777.
    [20]刘建航,刘国彬,范益群.软土基坑工程中时空效应理论与实践(上)(下).地下工程与隧道,1999,3-4
    [21]孙钧.市区基坑开挖施工的环境土工问题.地下空间,1999,19(4):86-87
    [22]高文华.香港广场基坑挡土结构变形的时空效应分析.湖南大学学报(自然科学版),2000,27(1)
    [23]刘国彬.考虑时空效应的等效土体水平抗力系数的取值研究.土木工程学报,2001,(3)
    [24]范益群.时空效应理论与软土基坑工程现代设计概念.清华大学学报(自然科学版),2000,(51)
    [25]侍倩.流变性地层中的基坑开挖的环境保护.武汉大学博士学位论文,2001.1
    [26]张燕凯.基坑工程中考虑开挖深度和时间效应的土压力计算公式的探讨.南昌大学学报(工科版),2002,24(1)
    [27]Hashash M.A.Y.Analysis of deep excavation in clay.Ph.D.Thesis,Dept.of Civil Engineering,MIT,Cambridge,MA,1992.
    [28]俞建霖,赵荣欣,龚晓南.软土地基基坑开挖地表沉降量的数值研究[J].浙江大学学报,1998,32(1):95-101.
    [29]俞建霖,龚晓南.基坑工程变形性状研究[J].土木工程学报,2002,35(4):86-90.
    [30]Clough,Hansen.Clay Anisotropy and Braced Wall Behavior[J].1981,(6)
    [31]Ge,Xuewu.Response of a shield-driven tunnel to deep excavations in soft clay.Hong Kong University of Science and Technology(People's Republic o f China),P h.D.2002:15-237
    [32]宋二祥等.某特深基坑支护的非线性三维有限元分析.岩土力学.Vol.25 No.42004:538544
    [33]Mingju Zhang,Erxiang Song,Zhaoyuan Chen.Construction by three-Dimensional(3- D)Finite Element Modeling.Computers and Geotechnics,1999,25(2):191-204
    [34]张尚根,陈志龙,尹峰.深基坑支护结构变形预报,江苏建筑,2004(1):1
    [35]张亚奎.深基坑开挖对近邻建筑物变形影响的研究.北京工业大学硕士学位论文,2003
    [36]梅传书等.高层建筑基坑开挖的数值分析研究及工程应用分析.建筑结构学报.Vol.22No.3:81-87 2001
    [37]赵海燕等.深基坑支护结构变形的三维有限元分析与模拟.上海交通大学学报.Vol.35No.4 2001:610613
    [38]李大勇等.软土地基深基坑周围地下管线保护措施的数值模拟.岩土工程学报.Vol.23No.6 2001:736740
    [39]白永学,软土地铁车站深基坑变形的影响因素及其控制措施,西南交通大学硕士学位论文.2006,6.
    [40]张鸿儒,深开挖对周围工程设施的影响预测,北方交通大学学报,1996.
    [41]刘国彬.软土卸荷变形特性的试验研究,上海:同济大学地下建筑与工程系,1993
    [42]曾庆义,高吨位土层锚杆扩大头技术的工程应用,岩土工程界,2004,8(4):54-58
    [43]Thomas D.Ground movement caused by braced excavation[J].J.Geotech.Engrg.,ASCE,1981,107(6).
    [44]Attwell P.B.Soil movement induced by tunneling and their effects or pipelines and structures.Blackie,Chapman and Hall.1986:20-46
    [45]Bransby BL,Milligan GW.Soil deformation near cantilever sheet pile walls.Geotechnique.1975,25(2):185-192
    [46]BoltonM D,PowriteW Behavior of diaphragm walls in clay prior to collapse. Geotechnique.1988,38(2):125-1343
    [47]Laefer,Debra Fern.Prediction and assessment of ground movement and building damage induced by adjacent excavation.University of Illinois at Urbana--Champaign,Ph.D.2001:36-553
    [48]Bryson,Lindsey Sebastian.Performance of a stiff excavation support system in soft clay and there response of an adjacent building.Northwestern Universitv.Ph.D.2002:52-687
    [49]夏明耀,地下连续墙工程的变形机理与环境问题对策.博士学位论文:同济大学,1990
    [50]宰金珉,梅国雄.泊松曲线的特征及其在沉降预测中的应用.重庆建筑大学学报,2001,23(1):30-35
    [51]陈伟,城市地下空间开挖对环境的影响与试验研究.中南大学博士学位论文,2006.4.
    [52]范建.深基坑变形时空预测研究.河南工业大学硕士学位论文,2006
    [53]李蓓等.非线性弹性卸荷损伤的基坑上程有限元分析.同济大学学报(自然科学版).Vol.33 No.5:615-620 2005
    [54]李俊才等.深基坑开挖变形的三维数值模拟研究南京工业大学学报.Vol.27No.3:1-7.2005
    [55]杨光华,深基坑开挖中几个问题的实用计算方法,第五届全国地基处理学术讨论会论文集,1997
    [56]刘金元,基坑近旁建筑物循迹补偿保护法的应用,岩土工程学报,1999.6
    [57]Fischmann,W.W.,Hellings,J.E.and Snowden.C.Protection of the mansion house against damage caused by ground movements due to the docklands light railway extension.Proceeding institution of Civil Engineering,London,England,65-76
    [58]Skempton,A.W.and Mac Donald,D.H.Allowable settlement of building.Proc.Institution of civil engineers.1956,13(6):19-32.
    [59]Burland,J.B.,Wroth C.P.Settlement of buildings and associated damage.Build research establishment,Watford,England.
    [60]O'Rourke,T.D.,Cording,E.D.,and Boscardin,M.The ground movements related to braced excavations and their influence on adjacent structures.Rep.No.DOT-TST 76T-23,U.S.Department of Transpiration Washington,D.C.
    [61]Boscardin,M.D.and Cording,E.J.Building response to excavation-induced settlement.Journal of Geotechnical Engineering,ASCE,1989,115(1):1-21
    [62]Marco D.Boscardin and Edward J.Cording,Building Response to Excavation-Induced Settlement.Journal of Geotechnical Engineering,ASCE,1989,Vol.115,No.1.
    [63]Bracegirdle,A.,Mair,R.J.and Nyren,R.J.A methodology for evaluating potential damage to cast iron pipes induced by tunneling.Proceeding s on the Geotechmcal Aspects of Underground Construction in Soft Ground.London.659-664
    [64]孙更生,郑大同主编.软土地基与地下工程[M].北京:中国建筑工业出版社,1984
    [65]周申一,张立荣,杨仁杰等编著.沉井沉箱施工技术.北京:人民交通出版社,2005
    [66]黄学庆.沉井工程施工的环境效应及防治对策,特种结构,Vol.20 N.2 2003.6.
    [67]王红霞.大型沉井结构施工过程的力学模型及控制研究.上海交通大学博士学位论文, 2001.8.
    [68]麦穗海,王红霞,黄金枝.大型沉井数字化监测与控制系统的试验研究,中国市政工程,2001增刊
    [69]陆中发.沉井气幕法减低井周土体扰动原理分析及应用探讨.中国市政工程,2005.5:42-43
    [70]张玉生.地表微沉降沉井的信息化施工.结构工程师,2001.4:30-35
    [71]崔泽旺.某雨水泵房沉井施工对其桩基础的影响分析.武汉大学学报(工学版),2005.38:220-223
    [72]#12
    [73]#12
    [74]#12
    [75]彭芳乐,孙德新,大内正敏,白云,白廷辉.日本压气沉箱设计的基本思想及其发展状况.岩土工程师.2004,16(3-4).35-42
    [76]彭芳乐,孙德新,大内正敏,朱合华,廖少明.桥梁基础的压气沉箱施工法,岩士工程师[J]Vol.15 N.2 2003.10.
    [77]彭芳乐,孙德新,大内正敏,袁大军,廖少明,朱合华.压气沉箱工法在隧道基坑施工中的应用,岩土工程师,Vol.15 N.3 2003.11
    [78]彭芳乐,孙德新,大内正敏,袁大军,廖少明,朱合华.压气沉箱工法在相邻近接施工中的应用.岩土工程师[J]Vol.15 N.3 2003.11
    [79]彭芳乐,孙德新,大内正敏,白云.超大深度压气沉箱工法的施工技术.地下空间.2004,24(5).699-703
    [80]彭芳乐,孙德新,大内正敏,白云,白廷辉.压气沉箱工法与地下水处理.岩土工程师.2004,16(3-4).48-50
    [81]彭芳乐,孙德新,大内正敏,白云,白廷辉.压气沉箱内的平板载荷试验及其承载力评价方法.岩土工程师.2004,16(3-4).43-45
    [82]彭芳乐,孙德新,大内正敏,白云,白廷辉.压气沉箱基础的耐震性能.岩土工程师.2004,16(3-4).51-53
    [83]孙德新,彭芳乐,大内正敏,廖少明,朱合华.压气沉箱施工中的减压病及其预防措施,岩土工程师[J]Vol.15 N.4 2003.12.
    [84]张凤祥,傅德明,张冠军[M].沉井与沉箱.北京:中国铁道出版社,2002
    [85]孙德新,张玉芝,马彦昌.压气沉箱下沉时的计测数据分析.工程建设.Vol.38 No.12006:19-21
    [86]王勖成.有限单元法.北京:清华大学出版社,2003
    [87]朱伯芳.有限单元法原理与应用(第二版).北京:中国水利水电出版社,2000
    [88]龚晓南.土工计算机分析,北京:中国建筑工业出版社,1999
    [89]谢康和,周健.岩土工程有限元分析理论与应用[M].科学出版社,2002
    [90]孙均,汪炳鉴.地下结构有限元分析.同济大学出版社.1992
    [91]雷晓燕.岩土工程数值计算[M].中国铁道出版社,1999
    [92]龚晓南.土塑性力学[M].杭州:浙江大学出版社,1999.
    [93]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].
    [94]PLAXIS version 8 professional manual:[程序说明书].PLAXIS BV,P.O.Box572,2600 AN Delft The Netherlands,2000.
    [95]Desai,C.S.Theory and Applications of the Finite Element Method in Geotechnical Engineering[J].Proc.Application of the FEM in Geotech.1972,1:3-90.
    [96]Schanz,T.,Vermeer,P.A.,Bonnier,P.G..The Hardening Soil Modell:Formulation and Verification[A].Proceedings Plaxis Symposium "Beyond 2000 in Computational Geotechnics":Amsterdam,Balkema,Rotterdam,1999:281-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700