高频焊管温度监控及视觉检测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接温度是影响高频焊管焊缝韧性最重要的因素之一,焊接温度在高频焊管的生产过程受到管材材质壁厚不均、焊接速度波动等一些因素影响容易发生波动,焊接温度的波动最终会导致高频焊管焊缝成型质量的下降。本文对如何对高频焊管焊接温度进行监测控制并应用于生产实际做了研究。
     试验前期根据高频焊管温度控制模型,使用Matlab的Simulink仿真工具包进行了高频焊管温度控制仿真试验。分别设计了常规PID控制器和模糊自适应PID控制器,比较了两种控制器的仿真控制效果。试验结果表明:在添加干扰信号的模型条件下,常规PID控制器和模糊自适应PID控制器都能有较好的控制精度和响应速度,常规PID控制器响应速度要稍快于模糊自适应控制器,模糊自适应PID控制器具有较小超调量,两种控制器有各自优点。
     在仿真的基础上,结合高频焊管现场生产状况对控制方案进行了分析选择。由于高频焊管是个高速的生产过程,在焊管生产现场,模糊PID控制方案较常规PID控制方案调整参数多、周期长,调整不适很容易造成很高的废管率,因而最终选择常规PID控制器设计了基于labview平台的高频焊管温度监控系统。试验结果表明:该系统具有良好的测温精度和控制响应速度,能及时准确显示采集到的焊管温度,在测温准确的前提下,可以对焊管温度起到较好的控制效果。
     为了满足企业的生产要求,构建了基于PLC和触摸屏的高频焊管温控系统。PLC和触摸屏系统相对微机系统而言,具有更高的可靠性,操作简单,更方便工人在高频焊管生产车间进行现场操作使用。现场试验证明,PLC和触摸屏系统可以准确显示采集到的高频焊管温度趋势图,在焊管位置波动不大,测温准确的前提下能有很好的温度控制效果。
     试验后期设计了高频焊管温度视觉综合监测系统,通过对焊管焊接区域温度和视觉的综合监测,可以更加全面的对焊管生产质量进行监测分析。对高频焊管焊接加热区域的图像特征提取进行了算法研究。研究表明,使用形态学算子能够准确提取出高频焊管加热区域的图像边缘,提取的图像边缘信息光滑、连续、断点和噪声较小。在提取焊管加热区图像的基础上,研究了加热区宽度值提取算法,对视觉检测过程中采集的每帧图像在同一位置进行了焊管加热区宽度提取计算,分析了熔宽变化和焊接缺陷之间的对应关系。
There are many factors to affect the toughness of weld beads for high-frequency welded pipe.Welding temperature is one of the most important factors. Welding temperature in high frequency welded pipe production process will flutuate due to the influence of the thickness of pipe wall and the fluctuation of welding speed. The fluctuation of welding tempreture can eventually lead quality of the welding seam forming to decline. The researches were done that how to monitor and control the welding temperature of high frequency welded pipe and use it in this paper .
     In the earlier stage of test, select temperature control models of high frequency welded pipe, and use Simulation Tookit of matlab to do simulation and control of temperature for high frequency welded pipe . General PID controller and fuzzy adaptive PID controller are designed separately, then the two simulation of controller’s results are compared. Test results show that both the conventional PID controller and the fuzzy adaptive PID controller can have a good control precision and response speed in the condition of adding interference signal to the model, the conventional PID controller response speed slightly faster than fuzzy adaptive controller, but the fuzzy adaptive PID controller has small overshoots, two controllers have their respective advantages.
     On the basis of simulation,combine with production status of high frequency welded pipe to anlayze and choose.Due to the production process of high frequency welded pipe having high speed, in manufacturing sites, fuzzy PID control has more regulation parameters and longer life cycle than general PID control. Adjustment discomfort easily lead to a high rate of waste pipes. Finally select the general desigh of PID controller to design temperature monitoring system of high frequency welded pipe based on Labview platform . The results showed that: this system had a good measurement accuracy and response speed, and accurately display collected welded pipe temperature. Besides, on the premise of temperature measurement accuracy, it well control welded pipe temperature.
     Temperature control system of high frequency welded pipe based on PLC and touch screem was was built on the basis of microcomputer high frequency welded pipe. The system of PLC and touch screem has a higher reliability ,easy operation, more convenience for workers in high-frequency welded pipe peoduction shop to operate on the spot. Field test probe that: PLC and touch-screem system can accutately display a trend diagram of collected temperature for high-frequency welded pipe. On the condition that little fluctuatio of pipe location and accuracy of emperature measurement, it well control the temperature.
     Aimed at environmental complex of high frequency welded pipe production and many factors leading to the instability of temprature measured, the visual monitoring system of high frequency welded pipe temperature was designed. The purpose is that through the comprehensive monitoring of welded pipe welding temperature and visual, the quality of welded pipe production was comprehensively monitored and analyzed. The image feature extraction of the high frequency welded pipe welding heating area algorithm was in study . Research shows that the use of morphological operator can accurately extract the image edge of heating area of high frequency welded pipe, the extracted image edge is smooth, continuous, breakpoint and noise is small. Based on the extracted image of heating area, width values extraction algorithm of the heating area is studied: the width extraction of the welded pipe heating area calculation is carried out for every frame image of collected visual inspection process in the same position, the corresponding relationship of width changes and the welding flaws is analysed.
引文
[1]刘创钰,胡海文.我国焊接钢管发展现状[J].船海工程,2002,(3):34-37.
    [2]李鹤林.油气输送钢管的发展动向与展望[J].焊管,2004(6):1-11.
    [3]张勇.高频直缝电阻焊套管国内外状况[J].焊管,1995,18(2):11-13.
    [4]李季科,齐玉钗,高建忠.国内ERW钢管生产情况[J].焊管:2006,29(6):63-67.
    [5]王晓香.我国焊管工艺装备的现状、发展与市场定位[C].钢管行业战略发展研讨会学术论文集.北京:中国钢结构协会钢管分会,2005:91.
    [6]杨继锋.2000年我国钢管消费需求市场发展趋势[J].焊管,2000,18(2):13-15.
    [7]彭在美.国内外直缝焊管机组的发展趋势[J].钢管,1998,27(4):13-18.
    [8]潘家华.ERW钢管的发展前景和面临的课题[J].焊管,1989,30(3):36-39.
    [9]顾纪清,阳代军.管道焊接技术[M].北京:化学工业出版社,2005,5.
    [10]高秀英,高国良.焊后正火条件对焊缝韧性的影响[c]∥我国焊管生产技术的引进与开发一中国金属学会第四届焊管学术年会论文集.陕西:测绘出版社,1992:174—179.
    [11]袁大伟.ERW焊管焊缝冲击韧性的影响因素分析[J].焊管,2008,31(3):68-70.
    [12]黄友洋.高频焊管金属流线的形态与分析[J].钢管,2000,29(6):31-36.
    [13]史福忠,马建国,陈燕军.ERW焊管焊缝热影响区形状与焊管质量的相关性初探[J].焊管,2007,30(3):60-63.
    [14]李锦旗.ERW钢管焊缝在线热处理工艺及其质量检验[J].焊管,1994,17(1):4-10.
    [15]毕洪运,陆明和.ERW直缝焊管焊缝焊缝与金相检验评价[J].宝钢技术,2006,(3):23-26.
    [16] T Yazawa,T Sugauoshi,S kojima,etc.NEW on-line process for ERW pipes,May 1991,TUBE IN-ternational.
    [17]胡松林.从日本焊管制造技术看国内ERW焊管技术创新[J].焊管:2006,29(6):53-57.
    [18] TOYODAS,SUZUKIK,SATOA.High Strength SteelTubes for Automotive Suspension Parts-High Strength Steel Tubes with Excellent Formability and Forming Technology for Light Weight Automobiles[J].JFE Technical Report,2004(4):32-37.
    [19] MASAMURA K,NAGAHAMA Y.Manufacturing Processes and Products of Steel Pipes and Tubes in JFE Steel[J].JFE Technical Report,2006(7):1-6.
    [20] KODET,KONDOH,ITADANIS Development of High Performance ERW Pipe for line Pipe[J].JFE Technical Report,2006(7):27-32.
    [21] TANMOTOM,KAWATA I,SOTOKAWAO,etal Outline of New Forming Eequipment for Hikari 24 inch ERW Mill[J].Nippon Steel TechnicalReport,2004(90):122-126.
    [22] YOKO YAMA E,YOSHMOTO Y.Steel Sheet Defomation Behavior and Forming Load Determination in the 26 inch Cage Forming ERW Pipe Mill[J].Kawasaki Steel Technical Report,1981(4):72-83.
    [23]奥原精一.比色高温计及电焊管焊接温度自动控制系统[M].东京:西格玛电子工业株式会社.
    [24]赖明道,吴学礼,于恩林,吴坚.焊管机组的研究与发展[M].北京:国防工业出版社,2006.10.
    [25]陈鹰扬,陈勤.高频焊管生产过程质量控制的三个环节[J].焊管:2003,26(2):53-55.
    [26]中国机械工程学会焊接学会[M].焊接手册(第一卷)[M].北京:机械工业出版社,1999.
    [27]张文钺.焊接冶金学[M].北京:机械工业出版社,1999.
    [28]潘天明.现代感应加热装置[M].北京:冶金工业出版社,1996.
    [29]刘新.高频直缝焊管感应焊接技术研究.北京交通大学.硕士学位论文.2007,1.
    [30]韩宝云.现代钢管生产工艺流程探讨[C].钢管行业战略发展研讨会学术论文集.北京:中国钢结构协会钢管分会,2005:5.
    [31]冶金工业部钢管司.中小直径电焊钢管技术[M].北京:冶金工业出版社,1980
    [32]首钢电焊管厂.高频直缝焊管生产[M].北京:冶金工业出版社,1988:136.
    [33]耿正,李莉群.红外测温技术在高频焊管中的应用[J].焊管,2006,26(3):30-34.
    [34]白日午.焊管焊接温度的检测和控制[J].焊管,1995,26(1):50-52.
    [35]赖明道,王海儒.高频直缝焊管焊接温度的计算[J].焊管通讯,.
    [36]耿正,赵冬斌,张广斌.高频焊管的焊接点温度监控系统[J].钢管,1997,26(6):47-50.
    [37]白日午等.高频直缝焊管焊接速度控温建模及控温系统[J].冶金自动化,1992,(1):23-27.
    [38]白日午.高频直缝焊管速度控温系统稳定性分析[J].焊管,2002,25(3):7-12.
    [39]姚俊,马俊辉.Simulink建模与仿真[M].西安:西安电子科技大学出版社,2002.
    [40]陈桂明,张明照,张宝俊.应用MATLAB建模与仿真[M].北京:科学出版社,2001.
    [41]杨涤,李立涛.系统实时仿真开发环境与应用[M].北京:清华大学出版社,2002.
    [42]赖明道,吴学礼.焊接温度的微机自适应控制[J].焊管, 2001,24(3):12-17.
    [43]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002.
    [44]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003.
    [45]仇慎谦.PID调节规律和过程控制[M].南京市:江苏科学技术出版社,1987,2
    [46]张国良,曾静,柯熙政等.模糊控制及其MATLAB应用[M].西安:西安交通大学出版社,2002.
    [47]石辛民,郝整清.模糊控制及其MATLAB仿真[M].北京:清华大学出版社,2002.
    [48]苏建中.GMAW控制系统的仿真研究.北京工业大学,硕士学位论文,2005,5.
    [49]李建军.铝合金MIG焊过程MIMO模型辨识及控制系统仿真.兰州理工大学,硕士学位论文,2007,06.
    [50] Gary W.Johnson,Richard Jennings LabVIEW图形编程[M].北京:北京大学出版社,2002.(5):23-25.
    [51]姚仕雄等.高频焊接自动控制系统[J].焊管,1989,12(6):44-48.
    [52]邹俊良.一种高频焊接温度控制系统[J].焊管,2004,27(6):61-62.
    [53]黄毅.高频焊管焊缝的温度自动控制系统[J].焊管,2002,20(6):49-52.
    [54]黄毅,林雪荣,徐军,等.直缝焊管焊缝热量输入的闭环控制.焊管,1993,16(3)
    [55]徐军等.高频螺旋焊管焊缝温度的闭环控制系统[J].焊管,1997,20(4)
    [56]彭永龙,石新春,夏越良.高频功率的闭环控制系统[J] .焊管, 2003 ,26(4):32-35.
    [57] Labview环境下的温度控制系统设计[J].大连理工大学研究生院网络学刊,2008:44-48.
    [58]杨运强,张军,宋永伦,殷树言.应用LabVIEW检测与分析焊接过程[J].电焊机,2003,33(6):19-21.
    [59]孟武胜,朱剑波,黄鸿,赵晨光.基于LabVIEW数据采集系统的设计[J].电子测量技术,2008,31(11):63-65.
    [60]吴立力.信号采集系统中的数据传输,显示和处理.北京工业大学.硕士学位论文.2001,5:22-25.
    [61]成守红.高速数据采集系统的制作.电子科技大学.硕士学位论文,2001,3:31-35.
    [62] LabVIEWTMUser Manual.National Instruments Corporation,1998,1.
    [63] Gary.W.Johnson,RichardJennings.LabVIEWGraphical programming.
    [64]DataAcquisitionBasicManual.NationlInstrumentsCorporation,1998.1.
    [65] Using External Code in LabVIEW.National Instruments Corporate Headquarters:14-16.
    [66]赵建华.基于Labview的焊接过程温度测试系统研究.重庆大学,硕士学位论文,2008,5.
    [67]陈锡辉,张银鸿编著.LabVIEW 8.20程序设计从入门到精通[M].清华大学出版社,2007.
    [68]杨学庆编著.LabVIEW图形化编程编程与实例应用.中国铁道出版社,2005.220-249.
    [69]牛晓明.基于PC-PLC构架的高频焊接控制系统[J].电工技术杂志,2004,(12):24-26.
    [70]刘文生.PLC与触摸屏的综合应用[J].辽宁师专学报,2009,11(1):87-88.
    [71]徐林,张秀彬.PLC与触摸屏在带钢纠偏系统中的应用[J].电工技术,2009,47(9):66-67.
    [72]曲海波,陈莉.触摸屏原理及应用[J].中国教育技术装备,2006,(11):49-51.
    [73]杨邦朝,张治安.触摸屏技术及应用[J].电子世界,2003(2):14-15.
    [74]吴晓兵,余建建.触摸屏技术在自动监控中的应用[J].水利水文自动化,2005,(4):14-16.
    [75]谢丽萍,王占富,岂兴明.西门子S7-200系列PLC快速入门与实践[M].人民邮电出版社,2010.
    [76]廖常初.PLC梯形图程序的设计方法与技巧[J].电工技术,1998(9):24.
    [77]施文灶,王平,江华丽.基于嵌入式的触摸屏菜单设计[J].自动化技术与应用,2009,28(9):47-52.
    [78]朱杏环.大型直缝焊管焊缝自动检测方法研究.广东工业大学,硕士学位论文,2009,06:55-76
    [79]王胜强.基于视觉传感的焊接质量检测专家系统.上海交通大学,硕士学位论文,2004,2.
    [80]卢立晖.铝合金脉冲MIG焊过程实时解耦控制.兰州理工大学,硕士学位论文,2010,6.
    [81]石玗.铝合金脉冲MIG机器人焊接智能控制系统研究[D].兰州理工大学,博士学位论文,2005,4.
    [82]陈杨,陈荣娟,郭颖辉.MATLAB6.X图形编程与图像处理[M].西安:西安电子科技大学出版社,2010,6.
    [83]董长虹.MTALAB图像处理与应用[M].北京:国防工业出版社, 2004,1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700