钢结构桥梁CTOD断裂韧性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国国力的增强、桥梁建造技术的提高,我国建造的大型、特大型钢结构桥梁越来越多,其断裂韧性的控制就显得更为重要。目前我国建造钢结构桥梁所用的韧性指标仍然是冲击韧性指标,其用于大型结构偏于危险,CTOD断裂韧性标准则比较适用。用CTOD指导钢结构桥梁防断在我国已有应用,但只是个别情况。本文在前人研究的基础上,对CTOD在钢结构桥梁防断中的应用进行了研究。
     本文前部分首先通过分析我国钢结构桥梁的发展现状和比较用于测试钢结构桥梁韧性的试验方法,得出CTOD试验最适合用于钢结构桥梁防断控制,为钢结构桥梁防断裂控制提供了研究方向。然后对CTOD试验,包括试验过程、理论基础进行了介绍,并根据试验经验提出了在CTOD试验中可以降低试验因素对试验结果影响的方法,即在预制疲劳裂纹过程中使各个试样固有频率相等。这种方法可以使得各个试样的预制疲劳裂纹长度基本相等,从而达到各个试样的CTOD试验条件基本相同的目的。这为更真实地得到材料的CTOD断裂韧性从方法上进行了改进。
     论文后部分在前人研究的基础上研究了CTOD的变化规律,包括CTOD的分布规律和对影响CTOD变化的温度与厚度因素。(1)对CTOD值的分布规律进行了研究,通过对14MnNbq母材的CTOD数据进行了拟合统计,结果表明在置信度为95%的情况下,以上三种统计分布函数都接受拟合检验,经过比较,三参数威布尔分布函数的拟合效果最佳。(2)在前人对桥梁钢CTOD断裂韧性研究的基础上,经过自己的分析,得出结论:温度和厚度因素对桥梁钢CTOD值的影响需要分别考虑,并对常用桥梁钢的CTOD与温度的关系进行了研究,得到了基于数据拟合的规律。(3)在小范围屈服的条件下,提出了厚度对CTOD值影响的数学表达式,为工程应用提供参考。另外,通过对常用桥梁钢的CTOD数据进行拟合,得出了CTOD随温度和厚度变化的表达式,为工程应用提供了便利。(4)根据CTOD-温度曲线的特点,提出将曲线上下平台值和的一半定为工程上的CTOD验收值,而该值下的温度为CTOD韧脆转变温度,并分别计算出了14MnNbq焊缝、16Mnq母材和焊缝的CTOD验收值。这为钢结构桥梁的防断控制提供了依据。
With the enhancement of our country and the development of domestic technique of bridge fabrication, the number of huge steel bridges that will appear is rising. So the control of their fracture toughness appears more important. Now, in our country, the toughness indicator is still Charpy impact toughness and it is not advisable to use impact toughness for huge steel bridge. There are examples of application of CTOD during fabrication of steel bridges, but the number found is only two. Based on previous research, this dissertation is mainly about study on CTOD fracture toughness of steel bridge.
     The first half of this dissertation introduces test methods of toughness of structural steel for bridges. Because Charpy impact toughness has the advantages of sample operation and low fee, it is applied speedily in engineering. Though series of impact tests under different temperatures, we could establish a curve of impact absorbing energy versus temperature. Then the transformation temperature of impact toughness could be obtained. Deep notched wide plate test is based on linear plastic fracture mechanics and its purpose is to get the critical plane stress intensity factor KC of materials tested, namely resisting force. The relationship of KC and impact transformation temperature, established through statistical means, is amended and then the limit thickness of structure under different temperatures could be determined. However, it is a little dangerous to use the toughness indicator of Charpy impact test for huge steel bridges. Neither, wide plate test is not effective in the situation of large-scale yielding. In order to test the most approximate toughness of real steel bridges and to take full advantage of materials, CTOD test is advisable.
     The second half of this dissertation talks about the scatter of CTOD values and the effect of temperature and thickness to CTOD values for bridge steel. Just as impact test, CTOD test results appear temperature-transformation phenomenon. In transformation region of CTOD-temperature curve, CTOD values have conspicuous scatter which cannot be neglected. Processing CTOD data of 14MnNbq steel by means of statistical fit, the result is that CTOD values obey the laws of normal distribution, logarithmic normal distribution and three-parameter Weibull distribution. The most effective distribution is the last one. Temperature and thickness are main factors that affect CTOD value and also are the most interested ones. The effect that temperature brings to CTOD value could be shown clearly through a S-shape curve which could be got by series of CTOD tests under different temperature. The effect of thickness to CTOD value is presented by a math formula which is deduced theoretically. At last, according to the characteristics of CTOD-temperature curve, a kind of CTOD criterion is proposed. Define the half of sum of upper platform value and lower platform value as acceptable value of bridge steel and the corresponding temperature as CTOD ductile-brittle transformation temperature. This criterion could be applied to control of fracture toughness of steel bridge.
引文
[1]吴冲.现代钢桥(上册).北京:人民交通出版社,2006.4
    [2]潘际炎.中国钢桥.中国工程科学,2007,9(7):18-26
    [3]冯晓霞.公路钢桁桥安全性能评估研究[硕士论文].北京交通大学,2006.12
    [4]张玉玲.大型铁路焊接钢桥疲劳断裂性能与安全设计:[博士学位论文].北京:清华大学机械系,2004
    [5]中铁大桥勘测设计院有限公司.TB10002.2—2005.中华人民共和国国家标准—铁路桥梁钢结构设计规范.北京:中国标准出版社,2005-06-14
    [6]中华人民共和国国家质量监督检验检疫总局.GB/T 714-2008.中华人民共和国国家标准—桥梁用结构钢.北京:中国标准出版社,2009-03
    [7]武延民.钢结构脆性断裂的力学机理及其工程设计方法研究[博士论文].清华大学,2004
    [8]中华人民共和国国家质量监督检验检疫总局.GB/T 6417.1-2005.中华人民共和国国家标准—金属熔化焊接头缺欠分类及说明.北京:中国标准出版社,2005-08
    [9]苗张木,吴华方.海洋钢结构韧性问题与CTOD试验技术.钢结构,2008,23(2):18-22
    [10]中华人民共和国国家质量监督检验检疫总局.金属夏比缺口冲击试验方法国家标准实施指南.北京:中国标准出版社,2006.6
    [11]陈伯蠡.焊接工程缺欠分析与对策(第2版).北京:机械工业出版社,2006.1
    [12]钟群鹏,张峥,李洁,等.材料韧脆转移过程的数学模拟和定量分析.机械工程学报,1992,28(5):1-7
    [13]钟群鹏,张峥,李洁,等.材料韧脆转移过程的数学模拟和实验标定.北京航空航天大学学报.1993,2:16-23
    [14]钟群鹏,张峥,李洁,等.材料韧脆转移模式和机理的理论推导及实验验证.自然科学进展,1996,6(1):105-112
    [15]初飞,钟群鹏.金属韧脆转移评定标准的本质及其相互关系.北京航空航天大学学报.1992,2:120-126
    [16]钱维平,蒋和岁.工程结构用钢温度转变特性的表征及其应用.材料开发与应用,1997,12(1):1-6
    [17]陈国华.结构完整性评估.北京:科学出版社,2002.11
    [18]钱维平,李刚,马建坡.用四点弯曲试验确定焊接接头的薄弱区.材料开发与应用,2000,15(2):23-25
    [19]刘家驹,蒋和岁,严明等.16Mnq钢用于焊接桥梁的防断适用性研究(待续).材料开发与应用,1994,9(2):1-7
    [20]刘家驹,蒋和岁,严明等.16Mnq钢用于焊接桥梁的防断适用性研究(续).材料开发与应用,1994,9(3):1-7
    [21]刘家驹,蒋和岁,严明等.16Mnq钢用于焊接桥梁的防断适用性研究(续完).材料开发与应用,1994,9(4):1-7
    [22]苗张木.厚钢板焊接接头韧度CTOD评定研究:[博士学位论文].武汉:武汉理工大学物流工程学院,2005
    [23]中华人民共和国国家质量监督检验检疫总局.中华人民共和国国家标准—金属材料准静态断裂韧度的统一试验方法.中国标准出版社,2008.3
    [24]Offshore Standard DNV-OS-C401-2008. Fabrication and Testing of Offshore Structures. Det Norske Veritas,2008
    [25]苗张木,唐小兵,陶德馨,等.金属焊缝CTOD试样疲劳裂纹前沿平直度研究.武汉理工大学学报,2002,24(12):54-57
    [26]方开泰.统计分布.北京:科学出版社,1987
    [27]郑荣跃,秦子增.Weibull分布参数估计的灰色方法.强度与环境,1989(2):34—40.
    [28]金晓军,霍立兴,张玉凤等.X65管线钢焊缝金属断裂韧度的统计分布研究.焊管,2003,26(1):11-15
    [29]苗张木,陶德馨,杨荣英,李永信.焊接接头韧度CTOD评定的适用性与允许值研究.机械强度,2006,28(1):150-154
    [30]苗张木,吴卫国,陶得馨,谢智华.钢箱梁焊接接头的断裂韧度评定.焊接学报,2006,27(4):77-80
    [31]张行.断裂与损伤力学(第2版).北京:北京航空航天大学出版社,2009.6
    [32]霍立兴.焊接结构的断裂行为及评定.北京:机械工业出版社.2006
    [33]刘文珽,郑晏仲,费斌军.概率断裂力学与概率损伤容限/耐久性.北京:北京航空航天大学出版社,1999.11
    [34]廖景娱.金属构件失效分析.北京:化学工业出版社,2003.8
    [35]孙智,倪宏听,彭竹琴.现代钢铁材料及其工程应用.北京:机械工业出版社,2007.1
    [36]李云雁,胡传荣.试验设计与数据处理.北京:化学工业出版社,2008.10
    [37]Miki, Chitoshi. Identification of the causes of fracture in the steel pipe column of a pedestrian bridge. Welding in the World,2009,53(9-10):R229-R237
    [38]张玉玲.低温对钢材及其构件性能影响研究综述.中国铁道科学,2003,24(2):89-96
    [39]张玉玲,刘晓光,潘际炎.铁路桥梁用钢冲击韧性标准研究.中国铁道科学,2005,26(3):16-21
    [40]张玉玲,王冒明,吴新如等.铁路桥梁钢及焊缝的CTOD性能.清华大学学报(自然科学版),2005,45(5):585-588
    [41]武延民,王元清,江见鲸等.低温下结构钢材裂纹尖端张开位移变化规律.低温建筑技术,2004,1:1-3
    [42]王元清,武延民,石永久等.含缺口受拉平板塑性应力场的有限元分析.工程力学,2007,24(4):7-12
    [43]王元清,冯宝锐,石永久等.考虑低温冷脆钢结构构件的实用简化设计方法.工程设计,2008,23(114):1-5
    [44]王元清,武延民,石永久等.低温对结构钢材主要力学性能影响的试验研究.铁道科学与工程学报,2005,2(1):1-4
    [45]严明君,刘家驹,蒋和岁等.14MnNbq钢断裂试验数据的统计分析及其应用.材料开发与应用,1994,9(1):1-7
    [46]钱维平,李刚,马建坡.14MnNbq钢及其焊缝的断裂抗力表述.材料开发与应用,2000,15(3):33-36
    [47]钱维平.14MnNbq钢用于焊接桥梁的防断适用性.材料开发与应用,2001,16(4):5-9
    [48]曲占元,马建坡,徐科.Q420桥梁钢及其焊接接头的断裂抗力分析.机械强度,2008,30(4):668~672
    [49]曲占元.桥梁钢及其焊接接头的断裂驱动力分析.四川兵工学报.,2009,30(11):93-95
    [50]钱维平.焊接桥梁结构的断裂驱动力分析.材料开发与应用,2001,16(5):17-19
    [51]N.M. Abd-Allah, M.S. El-Fadaly, etc. Fracture Toughness Properties of High-Strength Martensitic Steel within a Wide Hardness Range. Journal of Materials Engineering and Performance,2001,10(5):576-585
    [52]Ramirez, Jose E. Examining the mechanical properties of high-strength steel weld metals. Welding Journal,2009,18(1):32-38
    [53]Lanchao, Jiang. Study on safety evaluation of an aged steel truss bridge with cracking members. Key Engineering Materials,2010,417:909-912
    [54]MacDougall, Colin. Fatigue damage of steel bridges due to dynamic vehicle loads. Journal of Bridge Engineering,2006,11(3):320-328
    [55]Homma, Koji. Development of application technologies for bridge high-performance steel, BHS. Nippon Steel Technical Report,2008,97:51-57
    [56]Connor, Robert J. Influence of residual damage on fatigue performance of heat-straightened steel bridge girders. Transportation Research Record,2006,1976:23-30
    [57]苏本伟,郑加,李旭光.用宽板试验研究铁路钢桥的抗断裂性能.铁道学报,1995,17(1):85-91
    [58]潘际炎.钢桥设计(上).铁道建筑技术,2008,6:1-15
    [59]潘际炎.钢桥设计(下).铁道建筑技术,2009,6:1-9
    [60]BS7448:Part 1:Method for determination of KIC, critical CTOD and critical J values of metallic materials[S]. British Standards Institution, London,1991
    [61]BS7448:Part 2:Methods for determination of KIC, critical CTOD and critical J values of welds in metallic materials. British Standards Institution, London,1997
    [62]BS7448:Part 4:Methods for determination of fracture resistance curves and initiation values for stable crack extension in metallic materials. British Standards Institution, London,1997
    [63]BS5400-6:Steel, concrete and composite bridges—Part 6:Specification for materials and workmanship, steel. British Standards Institution, London,1999
    [64]The International Organization for Standardization. ISO12135:2002. Metallic materials-Unified method of test for the determination of quasistatic fracture toughness. 2002
    [65]中华人民共和国国家质量监督检验检疫总局.中华人民共和国国家标准—金属材料夏比摆锤冲击试验方法.北京:中国标准出版社,2007-11-23
    [66]赵建平,张秀敏,沈士明.材料韧脆转变温度数据处理方法探讨.石油化工设备,2004,33(4):29-32
    [67]Robert J. Dexter, M.ASCE. Fatigue and Fracture of Steel Girders. JOURNAL OF BRIDGE ENGINEEREING,2004,5:278-286

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700