新型微孔锗酸盐类分子筛材料的合成与结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微孔分子筛材料是无机多孔材料家族中的重要一员,由于它们具有规整的孔道结构和独特的性能而被广泛用于离子交换、催化、吸附、分离和化学微反应器等主客体化学领域。而新型拓扑结构和新化学组成的微孔化合物的设计、合成及性质研究一直是人们关注的课题。
     近年来,锗酸盐分子筛的研究逐渐引起人们的关注,成为分子筛合成的前沿领域之一。具有多种锗配位的ASU-14、含三元环的UCSB-9、螺旋孔道的UCSB-7以及24元环大孔的FDU-4等锗酸盐分子筛的出现,说明锗酸盐体系下可以合成出与传统硅酸盐沸石分子筛结构不同的分子筛,引起人们的极大兴趣。本论文的主要部分正是针对这一研究热点而开展,在水热和溶剂热体系下,采用不同的有机胺或碱金属作结构导向剂探索合成新型拓扑结构和新组成的锗酸盐和金属锗酸盐分子筛,并对它们的结构特点和合成规律进行了总结。
     在锗酸盐合成体系,以4-胺乙基吡啶、1,4-丁二胺和钾离子为结构导向剂成功地合成出了四种新型结构锗酸盐分子筛:Ge_5O_5(OH)_(10)·5H_2O、(H_3O)~+K_3Ge_7O_(16)·3H_2O(FDG-1)、K_4Ge_9O_(20)(FDG-2)、和(C_3H_(11)N_2)(OH)[Ge_(10)O_(20)]。其中Ge_5O_5(OH)_(10)·5H_2O是由三元环和九元环组成的层状结构,与UCSB-9结构类似;FDG-2与毒铁矿结构的FDG-1具有相同的“火箭状”的二级结构单元Ge_(10)O_(28),但连接方式不同;(C_3H_(11)N_2)(OH)[Ge_(10)O_(20)]具有AST型分子筛拓扑结构。
     对锗酸盐合成体系的合成条件和规律的总结,发现有机胺的种类和溶剂对结构影响较大,有机胺的形状与孔道有一定关系;一般碱金属离子结构导向作用强于有机胺,但哌嗪和1,3-丙二胺例外;若合成体系中加入三价铝或镓离子,则它们会进入分子筛骨架参与结构形成;与纯硅酸盐体系相比较而言,纯锗酸盐的结构更易于与二胺等有机胺模板匹配。
     在锆锗酸盐合成体系,首次采用ZrO(NO_3)_2·2H_2O作为锆源,用吡啶(或乙二醇)和水做溶剂,氟离子做矿化剂,分别用哌嗪、1,4-丁二胺和三乙烯四胺做结构导向剂成功地合成出了三种新型锆锗酸盐分子筛(C_4N_2H_(12))[ZrGe_4O_(10)F_2](FDZG-1)、(NH_4)_2ZrGe_3O_9(FDZG-2)和(C_2H_(10)N_2)H_2O[ZrGe_3O_9](FDZG-3)。其结构均由锆氧(氟)六面体连接锗酸盐基本单元组成三维结构,其中锗酸盐基本单元分别为层状、三角、链状。它们的结构中包含大量的三元环。
     在钛锗酸盐合成体系,分别采用哌嗪和三胺乙基胺作为结构导向剂成功地合
    
    复旦大学博l:论文
    摘要
    成出了两种新型钦锗酸盐分子筛材料(C4H.尹2)6[Ti .2Ge2208。](FDTG一l)和
    (C6H22N4)2[Ti3oe:4035](FoTo一2),创门结构都由钦锗簇连接而成。FTG一1为由
    钦锗簇【Ti.ZGe20O司与Geo;四面体连接而成二维层状结构,层间包含呱嗦分子;
    FTG一2为钦锗簇[Ge,ZTi3O司连成三维结构,三胺乙基胺分子在其八元环孔道中起
    稳定作用。
     研究了含铝、硼、锌等金属锗酸盐的合成,以碱金属离子作为结构导向剂成
    功地合成出铝锗分子筛KAIGe3OS和硼锗分子筛LIBGeO;,其拓扑结构与长石
    Paracelsian和方石英的结构类似。这两类分子筛易于形成4一连接类沸石拓扑结
    构。另外还合成了一些锌锗酸盐的片状粉末微晶,其结构有待解析。
     本论文的另一小部分还对一种具有工业化应用价值的新型沸石分子筛
    MCM一22的静态法合成进行了研究,总结了其适宜的合成条件,并拓展了其合成
    硅铝比的范围。
Microporous molecular sieves, such as zeolites, are one of the most important porous materials, which have wide usage in ion-exchange, catalysis, gas adsorption and separation, and microreactors etc, benefited from their highly ordered pore structures and good physical or chemical performance. Nowadays many efforts are focused on preparation of zeolite-type materials with new framework topologies or chemical compositions.
    Recently, germanate-based molecular sieves, including the pure germanates and ones containing metal ion in their frameworks, are one of the great interests in microporous and zeolite-analogous systems. Because germinates have more structural diversity of coordination chemistry compared with silicates, some of their frameworks are novel with fascinate features such as mixed Ge4+ coordination in ASU-14, helical pores in UCSB-7, 3-rings in UCSB-9 and 24-membered rings (MRs) large pores in FDU-4. However, the study of germanate-based molecular sieves is far from enough. In this dissertation we primarily study the hydro/solvothermal syntheses and structural characterization of open framework germanates and metal germanates with new structures. The following are the main results.
    In the germanate system, four new open framework germanate, including Ge5O5(OH)10·5H2O, (H3O)+K3Ge7O16·3H2O (FDG-1), K4Ge9O20 (FDG-2) and (C3H11N2)(OH)[Ge10O20], were obtained by using 4-(aminoethyl) pyridine, K+ and 1,4-diaminobutane as template respectively. Ge5O5(OH)10·5H2O has a layer structure with 3-MRs and 9-MRs which is similar to the structure of UCSB-9. FDG-1 and FDG-2 are the pharmocosiderite analogues which are both constructed from same rock-like second building units (SBUs) with the composition of Ge10O28, but different connection way of this SBUs lead to the different structures of them. For the (C3H11N2)(OH)[Ge10O20] it is the first germanate molecular sieve with zeotype AST topology.
    
    
    
    The investigation of relationship between the synthesis conditions and structures indicates that the amines and solvents have remarkable effect on the structures of germanates. The size and shape of amines are related to the pore or channel shape of the germanates. The structural directing role of alkali metal ions are generally strong than that of amine except for the piperazine and 1,3-diaminopropane. If Al3+ and Ga3+ is added to the reaction mixture they can be incorporated into the germanate frameworks and have effect on the structure formation. Compared with silicates system germanates are more easier to accommodate diamines and other muti-headed amine than silicates.
    In the zirconium germanate system, three novel open framework zirconogermanates, FDZG-1 ((C4N2H12)[ZrGe4O10F2]), FDZG-2 ((NH4)2ZrGe3O9), FDZG-3 ((H2DEA) H2O [ZrGe3O9]) and ASU-15 ((H2DAB)[ZrGe2O6F2]), were synthesized by a new synthetic method which uses ZrO(NO3)2-2H2O as source of Zr and organic amines as structure direct agents in hydrothermal conditions. Their structures are all based on the structural principle whereby germanate units such as cyclic trigermanate, germanate chain and germanate layer, are bridged by ZrO6 (or ZrO4F2) octahedrons to form frameworks; nonframework species such as pronated organic amine cations, waters or NH4+ ions fill the intracrystalline pore space. Their structures contain high proportion of 3-MRs.
    In the titanium germanate system, two novel organically templated titanogermanates, FDTG-1 ((C4H12N2)6[Ti12Ge22O80]) and FDTG-2 ((C6H22N4)2
    [Ti3Ge14O38]) were synthesized by using piperizine and tris (2-aminoenthyl) amine (TREN) as template. FDTG-1 has a layer structure, which is connected by titanogermanate clusters. [Ti12Ge20O56] and GeO4 octahedra, and piperazine molecules are contained between the layers. The 3D framework structure of FTG-2 is also built up by a titanogermanate clusters with the composition of [Ge 12Ti3O36], and the TREN molecules are situated in the channels playing a stable role.
    The syntheses of other metal germinates containing B, Al and Zn, were also
    
    
    
    
    explored. And we got a
引文
1 C.T., Kresge; M. E., Leonowicz,; W. J., Roth; J. C. ,Vartuli; J. S.,Beck, Nature 1992, 359, 710.
    2 J. W. Macbain, The sorption of Gases and Vapors by Solid, Rutledge and Sons, London, Chapter 5(1932).
    3 A. F. Cronstedt, Akad Handl. Stockholm 1756, 17, 120.
    4 H. de Sainte Claire Deville and C. R. Hebd, Seances Acad. Sci. 1862, 54, 324.
    5 R. M. Barrer, J. Chem. Soc., 1948, 127.
    6 R. M. Milton, U.S. Patent 2882243, 1959.
    7 R. M. Milton, U.S. Patent 2882244, 1959.
    
    
    8 U. S. Pat, 3, 649, 1972,178
    9 H. van Koningsveld, J. C. Jansen, H. van Bekkum, Zeolites, 1990, 10, 235.
    10 A. Kuperman, S. Nadimi, S. Oliver, G. A. Ozin, J. M. Garces, M. M. Olken, Nature, 1993, 365, 239.
    11 A. K. Cheetham, L. M. Bull and N. J. Henson, Stud Surf. Sci. Catal., 1997, 105, 2267.
    12 L. M. Bull and A. K. Cheetham, Stud Surf. Sci. Catal., 1997, 105, 471.
    13 L. M. Bull, A. K. Cheetham, T. Anupold, A. Reinhold, A. Samoson, J. Sauer, B. Bussemer, Y. Lee, S. Gan, J. Shore, A. Pines and R. Dupree, d. Am. Chem. Soc., 1998, 120, 3510.
    14 C. M. Jin, J. D. Luttmer, D. M. Smith and T. A. Ramos, MRS Bull., 1997, 22, 39.
    15 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.
    16 T. Taramasso, G. Perego, B. Notarir (Eniriceche), US-A 4410501, 1983。
    17 徐如人,庞文琴,屠昆岗,“沸石分子筛结构与合成”,吉林大学出版社,1987.
    18 P. Varey, Chem. Eng. 1991, 491, 13; Y. J. Li, J. N. Armor, J. Catal. 1994, 145, 1.
    19 M. J. Annen, M. E. Davis, J. B. Higgins, J. L. Sehlenker, J. Chem. Soc. Chem. Commun. 1991, 1175.
    20 S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, E. M. Flanigen, J. Am. Chem. Soc. 1982, 104, 1146.
    21 B. M. Lok, C. A. Messina, R. L. Patton, R. T. Gajek, T. M. Cannan, R.E. Flanigen, J. Am. Chem. Soc. 1984, 106, 6092.
    22 E. M. Flanigen, B. M. Lok, R. L. Patton, S. T. Wilson, Pure Appl. Chem. 1986, 58, 1351.
    23 J. B. Parise, Inorg. Chem. 1985, 24, 4312.
    24 J B. Parise, J. Chem. Soc. Chem. Commun. 1985, 606.
    25 J. B. Parise, Acta Crystallogr. Sect. C 1986, 42, 144.
    26 A. K. Cheetham, Gerard Ferey and T. Loiseau, Angew. Chem. Int. Ed. 1999, 38,3268.
    27 L. YU, W. Pang, L. Li, J. Solid State Chem. 1990, 87, 241.
    28 G. Ferey, T. Loiseau, P. Lacorre, F. Taulelle, J. SolidState Chem. 1993,105, 179.
    29 T. Loiseau, G. Ferey, J. Chem. Soc. Chem. Commun. 1992, 1197.
    
    
    30 G. Ferey, J. Fluorine Chem. 1995, 72, 187; G. Ferey, C. R. Acad, Sci.Ser. C 1998, 1, 1.
    31 R. L. Bedard (UOP Inc. USA), US 005302362, 1994.
    32 W. T. A Harrison, R. W. Broach, R. A. Bedard, T. E. Gier, X. Bu and G. D. Stucky, Chem. Mater., 1996, 8, 691.
    33 W. T. Harrison, L. Hannooman, Angew. Chem. Int. Ed Engl., 1997, 36, 640.
    34 T. E. Gier and C. D. Stucky, Nature, 1991, 349, 508
    35 L. Yu ang W. Q. Pang, J. Chem. Soc, Chem. Commun., 1990, 787
    36 M. Cavellec, D. Riou, C. Ninclaus, J. M. Greneiche, G. Ferey, Zeolites 1996, 17, 260.
    37 K. -H. Lii, Y.-F. Huang, V. Zima, C.-Y. Huang, H.-M. Lin, Y.-C. Jiang,F.-L. Liao, S.-L. Wang, Chem. Mater. 1998, 10, 2599.
    38 N. Guillou, Q.M. Gao, M. Nogues, R.E.Morris, M. Hervieu, G. Ferey, A. K. Cheetham, CR ACAD SCI Ⅱ C, 1999, 2, 387
    39 N. Guillou, Q.M. Gao, P. M. Forster, J. S. Chang, M. Nogues, S. E. Park, G. Ferey, A. K. Cheetham, Angew. Chem. Int. Ed Engl. 2001, 40, 2831
    40 S. Natarajan, M. P. Attfield, A. K. Cheetham, Angew. Chem. 1997, 109, 1013; Angew. Chem. Int. Ed. Engl. 1997, 36, 978.
    41 S. Natarajan, A. K. Cheetham, Chem. Commun. 1997, 1089.
    42 S. Natarajan, A. K. Cheetham, J. SolidState Chem. 1997, 134, 207.
    43 A. M. Chippindale, S. J. Brech, A. R. Cowley, W. M. Simpson, Chem.Mater. 1996,8, 2259.
    44 A. M. Chippindale, S. J. Brech, Chem. Commun. 1996, 2781.
    45 H. Du, J. Chen, W. Pang, Stud. Surf. Sci. Catal. 1997, 105, 397.
    46 Y. Xu, L. L. Koh, L. An, R. Xu, S. Qiu, J. Solid State Chem. 1995, 117, 373.
    47 L. L. Koh, Y. Xu, H. B. Du, W. Q. Pang, Stud. Surf. Sci. Catal. 1997, 105, 373.
    48 H. Du, J. Chen,W. Pang, J. Yu, I. D.Williams, Chem. Commun. 1997,781.
    49 I. D.Williams, J. Yu, H. Du, J. Chen,W. Pang, Chem. Mater. 1998, 10, 773.
    50 I. D. Williams, J. H. Yu, H. B. Du, J. S. Chen and W. Q. Pang, Chem. Mater., 1998, 10,773
    51 J. S. Chen, R. H. Jones, S. Natarajan, M. B. Hursthouse, J. M. Thomas, Angew. Chem. Int. Ed. 1994, 33, 639.
    
    
    52 P. Feng, X. Bu, G. D. Stucky, Nature 1997, 388, 735.
    53 P. Feng, X. Bu, G. D. Stucky, Science 1997, 278, 2080.
    54 Y. -F. Shen, R. N. DeGuzman, R. P. Zerger, S. L. Suib, C. L. O_Young, Stud. Surf. Sci. Catal. 1993, 83, 19, and references therein.
    55 S. L. Brock, Chem. Mater. 1998, 10, 2619
    56 R. L. Bedard, S. T. Wilson, L. D. Vail, J. M. Bennett and E. M. Flanigen, Stud Surf. Sci. Catal. A 1989, 49, 375.
    57 J. B. Parise, J. Chem. Soc. Chem. Commun. 1990, 1553.
    58 C. L. Cahill, Y. Ko and J. B. Parise, Chem. Mater. 1998, 10, 19.
    59 J. D. Martin and K. B. Greenwood, Angew. Chem. 1997, 109, 2162; Angew. Chem. Int. Ed. Engl. 1997, 36, 2072.
    60 W. Schnick and J. L, cke, Angew. Chem. 1992, 104, 208; Angew. Chem. Int. Ed. Engl. 1992, 31, 213.
    61 S. Horstmann, E. Irran and W. Schnick, Angew. Chem. 1997, 109, 2085; Angew. Chem. Int. Ed. Engl. 1997, 36, 1992.
    62 P. J. Hagrman, D. Hagrman and J. Zubieta, Angew. Chem., 1999, 111, 2798; Angew. Chem. Int. Ed. 1999, 38, 2638.
    63 B. F. Hoskins, R. Robson, and D. A. Slizys, J. Am. Chem. Soc.,1997, 119, 2952
    64 B. F. Hoskins, R. Robson, D. A. Slizys, Angew. Chem. Int. Ed., 1997, 36, 2336
    65 B. F. Abrahams, M. Moylan, S. D. Orchard, and R. Robson, Angew. Chem. Int. Ed., 2003, 42, 1848
    66 S.W. Keller, Angew. Chem. Int. Ed., 1997, 36, 247
    67 S. R. Batten, B. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1995, 117, 5385.
    68 Y. Tian, C. Cai, Y. Ji, X. You, S. Peng, and G. Lee, Angew. Chem. Int. Ed. 2002, 41, 1384-1386
    69 J. Y. Sun, L.H. Weng, Y.M. Zhou, J.X. Chen, Z.X. Chen, Z.C. Liu, D.Y. Zhao, Angew. Chem. Int. Edit. 2002, 41, 4471-4474.
    70 徐如人,无机化学合成,高等教育出版社,1991
    71 Cheetham, A. K.; Ferey, G.; Loiseau, T. Open-Framework Inorganic Materials. Angew. Chem., Int. Ed. Engl. 1999, 38, 3268-3292.
    72 G. Li, L. Li, S. Feng, M. Wang, X. Yao, Adv. Mater. 1999, 11, 146
    73 S. Feng, M. Greenblatt, Galvanic, Chem. Mater. 1992, 4, 1257
    
    
    74 Chen, Q. W.; Qian, Y. T.; Chen, Z. Y.; Tang, K. B.; Zhou, G. E.;Zhang, Y. H. Physica C1994, 224(3-4), 228-230.
    75 Y. Mao, G. Li, W. Xu, S. Feng, J Mater. Chem. 2000, 10, 479
    76 Zhao, C.; Feng, S.; Chao, Z.; Xu, R.; Shi, C.; Ni, J. Chem Commun. 1996, 1641-1642.
    77 S. Feng, D. Wang, R.Yu, L. Na,, Proceed-ings of the International Symposium on Solvo-Hydro-Thermal Processes; Org. Comm. Solvothermal Tech. Res.: Takamatsu, Japan, 1997; p12.
    78 C. Zhao, S. Feng, R. Xu, C. Shi, J. Ni, Chem. Commun. 1997, 945
    79 J. A. Baross, J. W. Deming, Nature, 1983,303, 423
    80 H. W. Jannasch, M. J. Mottle, Science 1985, 229, 717
    81 Gopalan, S.; Foster, N. R. Phenol Oxidation in Supercritical Water in MRS; American Chemical Society: Washengton, DC, 1995.
    82 D.M. Bibby, M. P. Dale, Nature, 1985, 317, 157
    83 R. H. Meinhold, D. M. Bibby, Zeolites, 1986, 6, 427
    84 J. W. Richarson, J. J. Pluth, J. V. Smith, J. Phys. Chem., 1988, 92, 243
    85 M. Sugimoto, K. Takatsu, N. Kawata and T. Konishi, Proc. Of the 7th International zeolite conf., Tokoyo, 1986, p193.
    86 ~1E. Narita, J. Cryst. Growth, 1986, 78, 1
    87 W. A. VanErp, H.w. Kouwenhoven, J. M. Narme, Zeolites, 1987, 7, 286
    88 Q. S. Huo, R. R. Xu, S. H. Feng, J. Chem. Soc, Chem. Commun, 1988, 1486
    89 C. H. Liu, S. G. Li, K. G. Tu, R. R. Xu, J. Chem. Soc, Chem. Commun, 1993, 1645
    90 A. Kuperman, et al., Nature, 1993, 365, 239
    91 S. F. Xiao, S. L. Qiu, W. Q. Pang, R. R. Xu, Advanced Materials, 1999, 11, 1091 J. S. Chen, W. Q. Pang, R. R. Xu, Topics in Catalysis, 1999, 9, 93
    92 R. H. Jones, J. M. Thomas, J. Chen, R. Xu, Q. Huo, S. Li, Z. Ma, A. M. Chippindale, J. SolidState Chem. 1993, 102, 204.
    93 E. G. Derouane, L. Maistriau, Z. Gaelica, A. Tuel, J. B. Nagy, R. Von Ballmoos, Appl. Catal.,1989,51, L13
    94 S. Oliver, A. Kuoerman, A. Lough, G. A. Ozin, Chem. Mater., 1996, 8, 1761
    95 S. Oliver, A. Kuoerman, A. Lough, G. A. Ozin, Chem. Mater.,1996, 8, 2391
    
    
    96 S. Oliver, A. Kuoerman, A. Lough, G. A. Ozin, J. Mater. Chem., 1997, 7, 807
    97 S. Oliver, A. Kuoerman, G. A. Ozin, Angew. Chem. Int. Ed.,1998, 37, 46
    98 H. Kessler, Stud. Surf. Sci. Catal. 1989, 52, 17.
    99 P.Chu, F. G.Dwyer and V.J. Charke,Eer. Pat., 1990, 358, 827
    100 X. Meng, W. Xu, S. Tang, W. Pang, Chin. Chem. Lett, 1992, 3, 69
    101 G.V.De Goor et. al., Microporous Mater. 1994, 2, 493
    102 S. Shimizu et. al., Adv. Mater. 1996, 8(9), 759
    103 S.Ueda, T. Fudaushima and M. Koizumi, J. Clay Sci. Soc. Japan 1982, 23,18
    104 G.V.De Goor, B.Lindlar, J.Felsche, P. Behrens, J. Chem. Soc. Chem Commun., 1995, 2559
    105 D.A. Bruce, A. P. Wilkinson, M. G. White, J.A. Bertrand, J. Chem. Soc. Chem Commun., 1995, 2059
    106 Coker E N, Jansen J. C., Martens J. A. et. al. Microporous Mesoporous Mater., 1998, 23, 119
    107 Zones S. I, Santili D S US 5 1997, 591,421
    108 M. Wagner P'Yoshikawa, M. Lovallo, K. Tsuji and M. E. Davis, Chem. Commun., 1997, (22), 2179.
    109 p. Wagner, S. I. Zones, M. E. Davis and R. C. Medrud, Angew, Chem. Int. Ed., 1999, 38, 1269.
    110 M. E. Davis, C. Saldarriaga, C. Montes, J. M. Garces, C. Crowder, Nature. 1988. 331. 698
    111 R. M. Dessau, J. G.. Schlenker, J. B.Hihhins. Zeolite 1990, 10, 522
    112 E. T. L.Vogt, J. N. Richardson, J.Solid State Chemistry 1990, 87, 469
    113 M. Estermann, L. B. McCusker, Ch. Baerlocher, A. Merrouche and H. A. Kessler, Nature, 1991, 352, 320
    114 HUO, Q. H. et al. J. Chem. Soc. Chem. Commun. 1992, 875
    115 T. Lieau, G.Ferey, J.SolidState Chem 1994,11,403
    116 K.Maeda, Jakimoto. Y.Kiyozumi, FG
    117 T.Jiang, A.J Lough, G.A.Ozin. D.Young, R.L.Bedard, Chem.Mater. 1995,7,245.
    118 M.I.Khan, L.M.Meyer, R.C Hausbalter, A.L.Schweitzer, J.Zubieta, J. L. Dye. Chem. Mater. 1996.8.34.
    119 T.Loiseau, G. Ferey. Mater. Res. Soc. Proc 1996.431.27
    120 C.C. Feryhardt, M..Tapatisis, R.F.Lobo, K.J.Balkus, Jr, M.E.Davis, Nature
    
    1996,381.295; R..F.lobo, M..Tapatisis, K.J.Balkus,Jr. S.I.Zone, M.E.Davis, J.Am. Chem.Soc.1997.119, 8474.
    121 M.CavELLEC, J.M.Greeneche, D.Riou, G.Ferey. Microporos Mater. 1997,8, 03.
    122 P.Wagner, M.Yashikawa, M.Lovallo, K.Tsuji, M.Taspatsis Mark E.Davis J. Chem.Soc. Chem. Commun. 1997,2179.
    123 H. Li, A. Laine, M. O_Keefe, O. M. Yaghi, Science, 1999, 283, 1145.
    124 H. Li, A. Laine, M. O_Keefe, O. M. Yaghi, Science, 1999, 283, 1145.
    125 N. Guillou, Q.M. Gao, M. Nogues, R.E.Morris, M. Hervieu, G. Ferey, A. K. Cheetham, CRACAD SCI Ⅱ C, 1999, 2,387
    126 G.Yang, S. C. Sevov, J. Am. Chem.Soc.1999.121.8389
    127 N. Guillou, Q.M. Gao, P. M. Forster, J. S. Chang, M. Nogues, S. E. Park, G. Ferey, A. K. Cheetham, Angew. Chem. Int. Ed. Engl. 2001, 40, 2831
    128 Y. Zhou, H. Zhu, Z. Chen, M. Chen, Y. Xu, H. Zhang & D. Zhao. Angew. Chem. Int. Ed. Engl., 2001, 40, 2166.
    129 C.H Lin, S.L. Wang, K.H. Lii, J. Am. Chem. Soc., 2001 123, 4649
    130 M.E. Davis and S.I. Zones, U.S. Pat. Appl. 2000
    131 A. Corma, Chem. Rev., 1997, 97, 2373.
    132 M. E. Davis and R. F. Lobo, Chem. Mater., 1992, 4, 756.
    133 W.W. Harrison, T. E. Gier and G. D. Stucky, Chem. Mater., 1996, 8(1), 145.
    134 P. Y. Feng, X. Bu, S. H. Tolbert and G. D. Stucky, J. Am Chem. Soc., 1997, 119(10), 2497.
    135 T. E. Gier, X. Bu, P. Feng and G. D. Stcky, Nature, 1998, 395,154.
    136 Y. Kinoshita, I. Matsubara, T. Higuchi & Y. Saito, Bull Chem. Soc. Jpn, 1959, 32, 1221
    137 H. Li, M. Eddaoudi, M. O. Keeffe, O. M Yaghi,. Nature, 1999, 402, 276.
    138 Chen, M. Eddaoudi, S. T. Hyde, M. O'Keeffe and O. M. Yaghi, Science, 2001, 291, 1021 S.S.Y. Chui, S. M.-F. Lo, J. P. H. Charmant,A. G. Orpen,I. D. Williams, Science, 1999, 283, 1148
    139 M. Eddaoudi, et al. Science, 2002, 295, 469
    140 K. Barthelet, J. Marrot, D. Riou and G. Ferey, Angew. Chem. Int. Ed. 2002, 41, 281
    141 J.S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. Jin, K. Kim, Nature, 2000, 404,
    
    982
    142 R. L. Bedard, S. T. Wilson, L. D. Vail, J. M. Bennett, E. M. Flanigen, Stud. Surf. Sci. Catal. A 1989, 49, 375.
    143 K. Tan, A. Darovsky, J. B. Parise, J. Am. Chem. Soc. 1995, 117, 7039.
    144 K. Tan, Y. Ko, J. B. Parise, A. Darovsky, Chem. Mater. 1996, 8, 448.
    145 C. L. Bowes, W. U. Huynh, S. J. Kirkby, A. Malek, G. A. Ozin, S. Petrov, M. Twardowski, D. Young, R. L. Bedard, R. Broach, Chem. Mater. 1996, 8, 2147.
    146 H. Li, A. Laine, M. O_Keefe, O. M. Yaghi, Science, 1999, 283, 1145.
    147 N. Zheng, X. Bu,2 B. Wang, P. Feng, Science, 2002, 298, 2366
    148 H. Li, M. Eddaoudi and O. M. Yaghi, Angew Chem., 1999, 111, 682; Angew. Chem. Int. Ed., 1999, 38, 653.
    149 T. E. Gier, X, Bu, P. Feng and G. Stucky, Nature, 1998, 395, 154.
    150 Y. Zhou, H. Zhu, Z. Chen, M. Chen, Y. Xu, H. Zhang, and D. Zhao, Angew. Chem. Int. Ed. 2001, 40, 2166.
    151 J. M. Thomas, Philos. Trans. R. Soc. London A, 1990, 333, 173; Chem. Eur. J. 1997, 3, 1557.
    152 J. M. Thomas, Angew. Chem. Int. Ed., 1999, 38, 3588.
    153 A. Corma, Chem. Rev., 1995, 95, 559.
    154 G. Ferey, Chem. Mater., 2001, 13, 3084.
    155 H. Eichhorm, PoggendorfAnn. Cristallogr, 1896, 19, 94.
    156 I. E. Maxwell, W. H. J. Stork, in Introduction to Zeolite Science and Practice, H. Van Bekkum, E. M. Flanigen, J. C. Jansen, eds, Studies in Surface Science and Catalysis, 58, Elsevier, Amsterdam, 1991, 571.
    157 P. B. Weisz and R. L. Golden, J. Catal., 1962, 4, 301.
    158 F. G. Dwyer, Catalusis of Organic Reactions. Marcel Dekker, New York, 1981, 39.
    159 N. Y. Chen, W. E. Garwood and F. G. Dwyer, Shape Selective Catalysis in Industrial Applications, 2th edn. Marcel Dekker, New York, 1996, 282.
    160 C. D. Chang, Catal. Rev. Sci. Eng., 1983, 25, 1.
    161 A. Corma, L. T. Nemeth, M. Renz & S. Valencia, Nature, 2002, 412, 423
    162 A. Corma, Chem. Rev., 1997, 97, 2373
    163 A. Corma, Chem. Rev., 1995, 95, 559-614.
    164 C. Mirodatos, D. Barthomeuf, J. Catal., 1985, 93,246.
    
    
    165 C. M. Zicovich-Wilson, A. Corma and P. Viruela, J. Phys. Chem., 1994, 98, 10863.
    166 N. Herron, Y. Wang and M. M. Eddy, J. Am. Chem. Soc., 1989, 111,530.
    167 N. J. Turro, Pure Appl. Chem., 1986, 58, 1219.
    168 J. Chen, Q. Li, H. Ding, W. Pang and R. Xu, Langmuir, 1997, 13, 2050.
    169 D. Demuth, K. Klaus, Unger and G. D. Stucky, Adv. Mater, 1994, 6, 931.
    170 G.A. Ozin, A. Kuperman and A. Stein, Angew. Chem. Int. Ed., 1989, 28, 359.
    171 Y. Li, X. Duan, Y. Qian, M. Ji and C. Li, J. Am. Chem. Soc., 1997,119,7869.
    172 J. Hedlund, B. Schoeman and J. Sterte, J. Chem. Commun., 1997, 1193.
    173 M. C. Lovallo and M. Tsapatsis, Chem. Mater, 1996, 8, 1579.
    174 N. Nishiyama, et al, J. Chem. Soc., Chem. Commun., 1995, 1967.
    175 Y. Iyozumi, F. Mizukami, K. Maeda, M. Roba and S. Niwa, Adv. Mater, 1996, 8(6), 517.
    176 Y. Yan, S. R. Chaudhuri and A. Sarkar, Chem. Mater, 1996, 8, 473.
    177 Z. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti,M. A. Amat, E. Kokkoli,O. Terasaki, R. W. Thompson, M. Tsapatsis, D. G. Vlachos, Science, 2003, 300, 456
    178 G. O. Brunner and W. M. Meier, Nature, 1989, 337,146
    179 X. Bu, P. Feng, G. D. Stucky, Science, 1997, 278, 2080
    180 D. E. Akporiaye, Angew. Chem. Int. Ed., 1998, 37, 2456.
    181 S. Hansen, Nature, 1990, 346, 800
    182 M. O'Keeffe, M. Eddaoudi,H. Li, T. Reineke and O. M. Yaghi, J. Solid State Chem., 2000, 152, 3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700