三维有序大孔碳球的合成、修饰和催化性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,基于三维有序多孔碳材料规整均一的孔道、可控的纳米结构、较高的比表面积、良好的导电性和优良物理性质,因此在光、电、磁、催化、生物医学、传感和纳米工程等领域展取得良好的应用前景,已受到材料和催化领域的普遍关注。随着多孔碳材料应用领域的不断延伸,众多孔径可调,孔道形状不一,形貌多样的多孔材料被不断合成出来,成为当前碳材料研究的热点课题之一。但是多孔材料的研究过程中仍然有许多未知和不足需要我们探索解决之道,如孔碳形貌可控,孔道均一并且长程有序。三维有序多孔规整碳材料的合成及其应用仍是一重大的挑战与机遇,以致大量工作需要我们去做。
     在本论文中,我们以葡萄糖为碳源,二氧化硅光子晶体球为模板,制备了三维有序大孔碳球(MPCS)。采用粉末X射线衍射(XRD)、低温N2吸附,扫描电镜(SEM)、投射电镜等对三维有序大孔碳球的结构进行了综合的表征。结果表明,三维有序大孔(250nm)彼此相连接成大的碳球(50μm)。
     以MPCS为催化剂载体,在其孔道负载Pt(PtNPs/MPCS),通过循环伏安法研究了PtNPs/MPCS的电催化甲醇氧化特性。结果表明,PtNPs/MPCS具有很好甲醇催化氧化性质并且具有很强的抗CO中毒的能力,是优良的催化剂载体。
     用半胱酰胺修饰MPCS的孔道(MPCS-CO-Cys),以其作电极材料检测(阳极溶出伏安法)重金属离子。结果表面,MPCS-CO-Cys具有很强的重金属离子响应能力,同时也研究了同时检测多种重金属离子的能力。证明MPCS-CO-Cys是很好的快速准确检测重金属离子的材料。
     用二氧化硅光子晶体作模板在低温下不完全碳化葡萄糖制备了MPCS,并在其孔道表面回流浓硫酸接上磺酸基,作为新型固体酸—MPCS-SO3H。通过催化乙酸乙酯酯化反应能力研究了MPCS-SO3H催化活性。结果表明,这种具有三维有序的大孔的固体酸(MPCS-SO3H)具有很好的酸催化能力和稳定性。
In recent years, ordered porous carbon nanomaterials received much attention dueto their ordered pores, tailorable textural properties, large surface area, highconductivities and excellent physical property. These outstanding structural propertiesmake porous carbon materials exhibit potential applications in catalysis,optics,electrics,magnetism,nanotechnology, and sensors, eta. With the development ofapplication of porous carbon nanomaterials, numerous porous nanomaterials withdifferent pore sizes and pore shapes have been prepared, which become a hot topic ofthe present carbon materials. However, there are lots of shortages and unknownremaining to explore and solve, for example, how to shape the porous carbon and howto control the pore and size of porous carbon. Preparing and applications of orderedthree dimensionally uniformed porous carbon materials with regular configuration arestill a opportunity and challenge, which need a lot of work to do. In this paper, highlyordered three dimensionally macroporous carbon spheres (MPCS) were successfullyprepared against removable colloidal silica crystal bead templates by carbonization ofglucose. The unique structural characteristics of the well-developed three dimensionallyinterconnected macropores were characterized by X-ray diffraction scanning (XRD),nitrogen adsorption, electron microscopy (SEM), transmission electron microscopy(TEM). The3DMPCS have diameter about50μm and the size of uniform large porestructures composing of MPCS is about250nm.
     MPCS were used as catalyst support and Pt nanoparticles were supported on thethree dimensionally interconnected macropores. It was found that the MPCS supportedPt exhibited high electrocatalytic activity for methanol oxidation.
     MPCS were covalently modified by cysteine (MPCS-CO-Cys). High sensitivitywas exhibited when this material was used as electrode material in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions.Simultaneous detection of heavy metal ions was also investigated. All these show thatMPCS-CO-Cys were a god-given material for rapidly detecting heavy metal ions withhigh accuracy.
     Highly ordered three dimensional macroporous carbon spheres bearing sulfonicacid groups (MPCS-SO3H) were prepared by incomplete carbonization of glucose insilica crystal bead template at low temperature, followed by sulfonation and removal ofthe template. The catalytic properties of the MPCS-SO3H were evaluated byesterification of ethanol with acetic acid, indicating that MPCS-SO3H possessremarkable catalytic performance (high stability and acid catalytic ability) for theesterification.
引文
[1] Holland B T, Blanford C F, Stein A, Synthesis of macroporous minerals with highly orderedthree-dimensional arrays of spheroidal voids, Science.1998,281,538-539.
    [2] Mercier L,Pinnavaia T, Acess in mesoporous materials: Advantages of a uniform pore structurein the design of a heavy metal ion adsorbent for environmental remediation, Adv. Mater.1997,9,500-503.
    [3] Mercier L,Pinnavaia T. Acess in mesoporous materials:advantages of a uniform pore structurein the design of a heavy metal ion adsorbent for environmental remediation, Adv. Mater.1997,9,500-503.
    [4] Han S J, Sohn K, Hyeon T, Fabrication of new nanoporous carbons through silica template andtheir application to the adsorption of bulky dyes, Chem. Mater.2000,12,3337-3341.
    [5] Chai G S, Yoon S B, Yu J S, Choi J H, Sung Y E, Ordered porous carbons with tunable pore sizeas catalyst supports in direct methanol fuel cell, J. Phys. Chem. B.2004,108,7074-7079.
    [6] Kabbour H, Baumann T F, Satcher J H, Jr, Saulnier A, Ahn C C, Toward New candidates forhydrogen storage: High-surface-area carbon aerogels, Chem. Mater.2006,18,6085-6087.
    [7] Liu S H, Yu W Y, Chen C H, Lo A Y, Hwang B J, Chien S H, Liu S B, Fabrication andCharacterization of Well-dispersed and Highly Stable PtRu Nanoparticles on CarbonMesoporous Material for Applications in Direct Methanol Fuel Cell, Chem. Mater.2008,20,1622-1628.
    [8] Cathie V G, Elzbieta F, Krzysztof J, Marcin F, Julien P, Fran ois B, Electrochemical energystorage in ordered porous carbon materials, Carbon.2005,43,1293-1302.
    [9] Yamada H, Hirai T, Moriguchi I, Kudo T, A highly active Pt catalyst fabricated on3D porouscarbon, Journal of Power Sources.2007,164,538-545.
    [10] Guo Y P, Qi J R, Jiang Y Q, Yang S F, Wang Z C, Xu H D, Performance of electrical doublelayer capacitors with porous carbons derived from rice husk, Mater. Chem. Phys.2003,80,704-709.
    [11] Lin Y R, Teng H S, A novel method for carbon modification with minute polyaniline depositionto enhance the capacitance of porous carbon electrodes, Carbon.2003,41,2865-2871.
    [12] Tai Y L, Teng H S, Modification of porous carbon with nickel oxide impregnation to enhancethe electrochemical capacitance and conductivity, Carbon.2004,42,2335-2338.
    [13] Kim B J, Lee Y S, Park S J, A study on hydrogen storage capacity of Ni-plated porous carbonnanofibers, Int. J. Hydrogen. Energ.2008,33,4112-4115.
    [14] Xia K S, Gao Q M, Song S Q, Wu C D, Jiang J H, Hu J, Gao L, CO2activation of orderedporous carbon CMK-1for hydrogen storage, Int. J. Hydrogen. Energ.2008,33,116-123.
    [15] Francisco R R, Juan de Dios L G, Carlos M C, Antonio G R, Immaculada Rodriguez-Ramos,Porous carbon as support for iron and ruthenium catalysts, Fuel.1984,63,1089-1094.
    [16] Rochester C H, Strachan A, The adsorption of dioxan by porous carbon, J Colloid Interf Sci.1995,173,500-514.
    [17] Ryu S K, Lee C H, Park K H, Kim H Y, Yang X P, Uniformly dispersed platinum nanoparticlesloading on porous carbons without using reduction agent, Mater. Chem. Phys.2008,111,309-312.
    [18] Ji L W, Zhang X W, Fabrication of porous carbon/Si composite nanofibers as high-capacitybattery electrodes, Electrochem Commun.2009,11,1146-1149.
    [19] Jiang J H, Gao Q M, Xia K S, Hu J, Enhanced electrical capacitance of porous carbons bynitrogen enrichment control of the pore structure, Micropor Mesopor Mat.2009,118,28-34.
    [20] Choi M, Jang J, Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon, JColloid Interf Sci.2008,325,287-289.
    [21] Wang G Q, Huang C C, Xing W, Zhuo S P, Micro-meso hierarchical porous carbon as low-costcounter electrode for dye-sensitized solar cells, Electrochim. Acta.2011,56,5459-5463.
    [22] Sattayasamitsathit S, Mahony A M O, Xiao X Y, Brozik S M, Washburn C M, Wheeler D R,Cha J, Burckel D B, Polsky R, Wang J, Highly dispersed Pt nanoparticles-modified3D porouscarbon: A metalized carbon electrode material, Electrochem. Commun.2011,13,856-860.
    [23] Yi J, Li X P, Hu S J, Li W S, Zhou L, Xu M Q, Lei J F, Hao L S, Preparation of hierarchicalporous carbon and its rate performance as anode of lithium ion battery, J. Power Sources.2011,196,6670-6675.
    [24] Li F B, Huang J, Zou J, Pan P L, Yuan G Q, Preparation and characterization of porous carbonbeads and their application in dispersing small metal crystallites, Carbon.2002,40,2871-2877.
    [25] Li F B, Qian Q L, Yan F, Yuan G Q, Nitrogen-oped porous carbon microspheres as supports forpreparing monodisperse nickel nanoparticles, Carbon.2006,44,128-132.
    [26] Sun R Q, Sun L B, Chun Y, Xu Q H, Catalytic performance of porous carbons obtained bychemical activation, Carbon.2008,46,1757-1764.
    [27] Singer J P, Mayergoyz A, Portet C, Schneider E, Gogotsi Y, Fischer J E, Enhanced volumetrichydrogen storage capacity of porous carbon powers by forming peels or pellets, MicroporousMesoporous Mater.2008,116,469-472.
    [28] Agnihotri S, Rood M J, Rostam-Abadi M, Adsorption equilibrium of organic vapors onsingle-walled carbon nanotubes, Carbon.2005,43,2379-2388.
    [29] AlcanizMonge J, DelaCasaLillo M A, CazorlaAmoros D, LinaresSolano A, Methane storage inactivated carbon fibres, Carbon.1997,35,291-297.
    [30] Sotiropoulou S, Gavalas V, Vamvakaki V, Chaniotakis N A, Novel carbon materials in biosensorsystems, Biosens. Bioelectron.2003,18,211-215.
    [31] Xiao X Y, Roberts M E, Wheeler D R, Washburn C M, Edwards T L, Brozik S M, Montano G A,Bunker B C, Burckel D B, Polsky R, Increased mass transport at lithographically defined3-Dporous carbon electrodes, Appl. Mater. Interfaces.2010,2,3179–3184.
    [32] Fang B Z, Zhou H S, Honma I, Ordered porous carbon with tailored pore size forelectrochemical hydrogen storage application, J. Phys. Chem. B.2006,110,4875–4880.
    [33] Yu J S, Kang S, Yoon S B, Chai G, Fabrication of ordered uniform porous carbon networks andtheir application to a catalyst support, J. Am. Chem. Soc,2002,124,9382-9383.
    [34] Zhang L S, Li W, Zhi-Min Cui, Song W G, Synthesis of porous and Graphitic carbon forelectrochemical detection, J. Phys. Chem. C.2009,113,20594-20598.
    [35] Wang H L, Gao Q M, Hu J, High hydrogen storage capacity of porous carbons prepared byusing activated carbon, J. Am. Chem. Soc.2009,131,7016-7022.
    [36] Xia Y, Yang Z X, Mokaya R, Simultaneous control of morphology and porosity in nanoporouscarbon: Graphitic mesoporous carbon nanorods and nanotubules with tunable pore size, Chem.Mater.2006,18,140-148.
    [37] Zakhidov A A, Baughman R H, Iqbal Z, Cui C X, Khayrullin I, Dantas S O, Marti J, RalchenkoV G, Carbon structure with three-dementional periodicity at optical wavelengths, Science.1998,282,897-901.
    [38] Shanmugam S, Gedanken A, Generation of hydrophilic, bamboo-Shaped multiwalled carbonnanotubes by solid-state pyrolysis and its electrochemical, J. Phys. Chem. B,2006,110,2037-2044.
    [39] Zeng J, Su F, Han Y F, Tian Z, Poh C K, Liu Z, Lin J, Lee J Y, Zhao X S, Pt NanoparticlesSupported on Sandwiched Ru/Carbon Nanocomposite as a Bimetallic Catalyst for MethanolElectrooxidation, J. Phys. Chem. C,2008,112,15908-15914.
    [40] Wang X Q, Liu R, Waje W W, Chen Z W, Yan Y S, Bozhilov K N, Feng P Y, SulfonatedOrdered Mesoporous Carbon as a Stable and Highly Active Protonic Acid Catalyst, Chem.Mater.2007,19,2395-2397.
    [41] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T,Reporting physisorption data for gas/solid systems with special reference to the determinationof surface area and porosity, Pure Appl. Chem.1985,57,603-619.
    [42] He H Z, Srinivasan M P,Yarning N. Novel activation process for preparing highly microporousand mesoporous activated carbons, Carbon.2001,39,877-886.
    [43] Kyotani T, Control of pore structure in carbon, Carbon.2000,38,269-286.
    [44] Zalusky A S, Olayo-Valles R, Wolf J H, Hillmyer M A, Ordered nanoporous polymers frompolystyrene-polylactide block copolymers, J. Am. Chem. Soc.2002,124,12761-12773.
    [45] Liang C D, Hong K L, Guiochon G A, Mays J W, Dai S, Synthesis of a large-scale highlyordered porous carbon film by self-assembly of block copolymers, Angew. Chem. Int. Ed.2004,4,5785-5789.
    [46] Liang C D, Dai S, Synthesis of mesoporous carbon materials via enhanced hydrogen-bondinginteraction, J. Am. Chem. Soc.2006,128,5316-5317.
    [47] Tanaka S, Nishiyama N, Egashira Y, Ueyama K, Synthesis of ordered mesoporous carbons withchannel structure from an organic-organic nanocomposite, Chem. Commun.2005,2125-2127.
    [48] Meng Y, Gu D, Zhang F Q, Shi Y F, Yang H F, Li Z, Yu C Z, Tu B, Zhao D Y, Orderedmesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templatingand direct transformation, Angew. Chem. Int. Ed.2005,43,7215-7221.
    [49] Meng Y, Gu D, Zhang F Q, Shi Y F, Cheng L, Feng D, Wu Z X, Chen Z X, Wan Y, Stein A,Zhao D Y, A family of highly ordered mesoporous polymer resin and carbon structures fromorganic-organic self-assembly. Chem. Mater.2006,18,4447-4464.
    [50] Huang Y, Cai H Q, Yu T, Zhang, F Q, Zhang F, Meng Y, Gu D, Wan Y, Sun X L, Tu B, Zhao DY, Formation of mesoporous carbon with a face-centered-cubic Fd(3) over-barm structure andbimodal architectural pores from the reverse amphiphilic triblock copolymer PPO-PEO-PPO,Angew. Chemie. Int. Ed.2007,46,1089-1109.
    [51] Deng Y H, Yu T, Wan Y, Shi Y F, Meng Y, Gu D, Zhang L J, Huang Y, Liu C, Wu X J, Zhao D Y,Ordered mesoporous silicas and carbons with large accessible pores templated fromamphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene, J. Am. Chem. Soc.2007,129,1690-169.
    [52] Ying J Y, Mehnert C P, Wong M S, Synthese und Anwendungen von mit supramolekularenTemplaten hergestellten mesopor sen Materialien, Angew. Chem. Int. Ed.,1999,111,58-82.
    [53] Ying J Y, Mehnert C P, Wong M S, Sythesis and application of supramolecular-templatedmesoporous materials, Angew. Chem. Int. Ed.1999,38,56-77.
    [54] Tanev P T, Chibwe M, Pinnavaia T J, Titanium-containing mesoporous molecular sieves forcatalytic oxidation of aromatic compounds, Nature.1994,368,321-323.
    [55] Attard G S, Glyde J C, Goltner G G, Liquid-crystalline phases as templates for the synthesis ofmesoporous silica, Nature.1995,378,366-368.
    [56] He X, Antonelli A, Synthesen und Anwendungen von übergangsmetallhaltigen mesopor senMolekularsieben, Angew. Chem. Int. Ed.2002,114,222-238.
    [57] Ying J Y, Mehner C P, Wong M S, Synthesis and Applications of Supramolecular-TemplatedMesoporous Materials, Angew. Chem. Int. Ed.1999,38,56-77.
    [58] Ryoo R, Joo R S H, Jun S, Synthesis of highly ordered carbon molecular sieves viatemplate-mediated structural transformation, J. Phys. Chem. B.1999,103,7743-7746.
    [59] Lu A H, Schüth F, A Versatile Strategy for Creating Nanostructured Porous Materials, Adv.Mater.2006,18,1793-1805.
    [60] Wan Y, Yang H F, Zhao D Y,"Host-guest" chemistry in the synthesis of ordered nonsiliceousmesoporous materials. Acc. Chem. Res,2006,39,423-43.
    [61] Lu A H, Schuth F, Nanocasting: A versatile strategy for creating nanostructured porousmaterials, Adv. Mater.2006,18,1793-1805.
    [62] Yang H F, Zhao D Y, Synthesis of replica mesostructures by the nanocasting strategy. J. Mater.Chem.2005,15,1217-1231.
    [63] Ryoo R, Joo S H, Jun S, Synthesis of highly ordered carbon molecular sieves viatemplate-mediated structural transformation. J. Phys. Chem. B.1999,10,7743-7746.
    [64] Lee J, Yoon S, Hyeon T, Oh S M, Kim K B, Synthesis of a new mesoporous carbon and itsapplication to electrochemical double-layer capacitors, Chem. Commun.1999,2177-217.
    [65] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki, O, Synthesis of newnanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc.2000,122,10712-10713.
    [66] Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki, O, Ryoo R, Ordered nanoporous arrays ofcarbon supporting high dispersions of platinum nanoparticles, Nature.2001,412,169-172.
    [67] Lee J, Lee D, Oh E, Kim J, Kim Y P, Jin S, Kim H S, Hwang Y, Kwak J H, Park J G, Shin C H,Kim J, Hyeon T, Preparation of a magnetically switchable bio-electrocatalytic systememploying cross-linked enzyme aggregates in magnetic mesocellular carbon foam, Angew.Chem. Int. Ed.2005,117,7593-7598.
    [68] Chai G S, Yoon S B, Yu J S, Choi J H, Sung Y E, Ordered porous carbon with tunable pore sizesas catalyst supports in direct methanol fuel cell, J. Phys. Chem. B.2004,108,7074-7079.
    [69] Chai G, Yoon S B, Choi J H, Sung Y E, Ahn Y S, Kim H S, Yu J S, Ordered uniform porouscarbon as a catalyst support in a direct methanol fuel cell. Electrochimi. Acta.2004,50,823-826.
    [70] Guo X F, Kim Y S, Kim G J, Hydrogenation of chiral nitrile on highly ordered mesoporouscarbon supported Pb catalysts. Catal. Today.2010,150,22-27.
    [71] Sun Z P, Zhang Z G, Tong H, Liang Y Y, Li H L, Sulfonation of ordered mesoporous carbonsupport Pb catalysts for formic acid electrooxidation. J. Colloid Interface Sci.209,337,614-618.
    [72] Lu A H, Li W C, Schmidt W, Kiefer W, Schüth F, Easy synthesis of an ordered mesoporouscarbon with hexagonally packed tubular structure, Carbon2004,42,2939-2948.
    [73] Yamada H, Hirai T, Moriguchi I, Kudo T, A highly active Pt catalyst fabricated on3D porouscarbon, J. Power Sources.2007,164,538-543.
    [74] Deshmukh R R, Rajagopal R, Srinivasan K V, Ultrasound promoted C-C bond formation: Heckreaction at ambient conditons in room temperature liquids, Chem. Commun,2001,1544-1545.
    [75] Zhao J W, Gao F, Fu Y L, Wang J, Yang P Y, Zhao D Y, Biomolecule separation using large poremesoporous SBA-15as a substrate in high performance liquid chromatography. Chem.Commun.2002,752-753.
    [76] Yan X X, Deng H X, Huang X H, Lu G Q, Qiao S Z, Zhao D Y, Yu C Z, Mesoporous bioactiveglasses. I. Synthesis and structural characterization, J. Non-Cryst. Solids.2005,351,3209-3217.
    [77] Kim M J, Lee T Y, Choi J H, Park J B, Lee J S, Kim S K, Yoo J B, Park C Y, Growth of carbonnanotubes with anodic oxide formed on the catalytic metal-coated Si substrate, Diamond Relat.Mater.2003,12,870-873.
    [78] Kim M J, Choi J H, Park J B, Kim S Y, Yoo J B, Growth characteristics of carbon nanotubes viaaluminum nanopore template on Si substrate using PECVD, Thin Soil Film,2003,435,312-317.
    [79] Che G, Lakshmi B B, Martin C R, Fish E R, Chemical vapor deposition based synthesis ofcarbon nanotubes and nanofibers using a template method, Chem. Mater.1998,10,260-267.
    [80] Han S, Kim M, Hyeon T. Direct fabrication of mesoporous carbons using in-situ polymerizedsilica gel network as a template, Carbon.2003,41,1525-1532.
    [81] Han S, Kim S, Lim H, Choi W, Park H, Yoon J, Hyeon T, New nanoporous carbon materialswith high adsorption capacity and rapid adsorption kinetics for removing humic acids,Microporous Macroporous Mater.2003,58,131-135.
    [82] Zakhidov A A, Baughman R H, Iqbal Z, Cui C X, Khayrullin I, Dantas S O, Marti J, RalchenkoV G, Carbon structure with three-dimensional periodicity at optical wavelengths, Science.1998,282,897-901.
    [83] Winans R E, Carrado K A, Novel forms of carbon as potential anodes for lithium batteries, J.Power. Sources.1995,54,11-15.
    [84] Kyotani T, Nagal T, Ioue S, Formation of new type of porous carbon by carbonization in zeolitenanochannels, Chem. Mater.1997,9,609-615.
    [85] Stacy A J, Elaines B, Partricia J O, Effect of micropore topology on the structure and propertiesof zeolite polymer replicas, Chem. Mater.1997,9,2448-2458.
    [86] Kyotani T, Control of pore structure in carbon, Carbon.2000,38,269-286.
    [87] Curtis J M, Simit D S, Sejal C P, Rita M S, Carol A B, Norman R D, Randolph A L, Esther S T,Template synthesis of carbon materials from zeolite (Y, Beta, and ZSM-5) and amontmorillonite clay (K10): physical and electrochemical characterization, J. Phys. Chem B.2001,105,2143-2152.
    [88] Ma Z X, Kyotani T, Liu Z, Terasaki O, Tomita A, Very high surface area microporous carbonwith three-dimentional nano-array structure: synthesis and its molecular structure, Chem. Mater.2001,13,4413-4415.
    [89] Ma Z X, Kyotani T, Tomita A, Synthesis methods for preparing microporous carbons with astructure regularity of zeolite Y, Carbon.2002,40,2367-2374.
    [90] Kyotani T, Ma Z X, Tomita A, Template synthesis of novel porous carbons using various typesof zeolites, Carbon.2003,41,1451-1459.
    [91] H. Li, H. Wang, A. Chen, B. Meng, X. Li, Ordered macroporous titania photonia balls bymicrometer-scale spherical assembly templating, J. Mater. Chem.15(2005)2551-2556.
    [92] W. St ber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the icronrange, J. Colloid Interface Sci.26(1968)62-69.
    [93] Lee K T, Lytle J C, Ergang N S, Oh S M, Stein A, Synthesis and rate performance of monolithicmacroporous carbon electrodes for lithium-ion secondary batteries, Adv. Funct. Mater.2005,15,547-556.
    [94] I. Moriguchi, F. Nakahara, H. Yamada, T. Kudo, Colloid crystal-templated porous carbon as ahigh performance electrical doubled-layed capacitor material, Electrochem. Solid-State Lett.2004,7, A221-A223.
    [95] Modak S, Ammar M, Mazaleyrat F, Das S, Chakrabarti P K, XRD, HRTEM and magneticproperties of mixed spinel nanocrystalline Ni-Zn-Cu-ferrite, J. Alloy. Compd.2009,473,15-1[96] Shao Y Y, Yin G P, Wang J J, Gao Y Z, Shi P F, In situ deposition of highly dispersedPt nanoparticles on carbon black electrode for oxygen reduction, J. Electrochem. Soc.2006,153, A1261-A1265.
    [97] Guo D J, Li H L, Highly dispersion and electrocatalytic properties of Pt nanoparticles on SWNTbundles, J. Electroanal. Chem.2004,573,197-202.
    [98] Liang H P, Zhang H M, Hu J S, Guo Y G, Wan L J, Bai C L, Pt hollow nanospheres: Facilesynthesis and enhanced electrocatalysts, Angew. Chem. Int. Ed.2004,43,1540-1543.
    [99] Liu Z L, Lee J Y, Chen W X, Han M, Gan L M, Physical and electrochemical characterizationsof icrowave-assisted polyol preparation of carbon-support PtRu nanoparticles, Langmuir.2004,20,181-187.
    [100] Guo S J, Dong S J, Wang E K, Polyaniline/Pt hybird nanofibers: High-efficiencynanoelectrocatalysts for electrochemical devices, Small.2009,5,1869-1876.
    [101] Jia J B, Cao L Y, Wang Z H, Wang T X, Properties of Poly(sodium4-styrenesulfonate)-IonicLiquid Composite Film and Its Application in the Determination of Trace Metals Combinedwith Bismuth Film Electrode, Electroanalysis.2008,20,542-549.
    [102] Achterberg E P, Braungardt C, Stripping voltammetry for the determination of trace metalspeciation and in-situ measurements of trace metal distributions in marine waters, Anal. Chim.Acta.1999,400,381-397.
    [103] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y H, Graphene based electrochemical sensorsand biosensors: A review, Electroanalysis.2010,22,1027-1036.
    [104] Li J, Guo S J, Zhai Y M, Wang E K, Nafion-graphene nanocomposite film as enhancedsensing platform for ultrasensitivive determination of cadmium, Electrochem. Commun.2009,11,1085-1088.
    [105] Radhi M M, Tan W T, Zaki M, Rahman Ab, Kassim A B, Voltammetric detection of Hg(ii) atC60, active carbon and MWCNT modified glassy carbon electrode, Res. J. Appl. Sci.2010,5,59.
    [106] Morton J, Havens N, Mugweru A, Wanekaya A K, Detection of trace heavy ion using carbonnanotube-modified eletrodes, Electroanalysis.21(2009)1597-1603.
    [107] Liu Y, Li Y, Yan X P, Preparation, Characterization, and Application of L-CysteineFunctionalized Multiwalled Carbon Nanotubes as a Selective Sorbent for Separation andPreconcentration of Heavy Metals, Adv. Funct. Mate.2008,18,1536-1543.
    [108] Nie X L, Hu W B, Fabrication of a Carbon Sphere-modified Electrode and SensitiveDetermination of Cadmium(II), Anal. Sci.2010,26,141-142.
    [109] Wang J, Electrochemical sensing of explosives, Electroanalysis.2007,19,415-423.
    [110] Wang J, Hocevar S B, Ogorevc B, Carbon nanotube-modified glassy carbon electrode foradsorptive stripping voltammetric detection of ultratrace levels of2,4,6-trinitrotoluene,Electrochem. Commun.2004,6,176-179.
    [111] Zhang L S, Wei L, Cui Z M, Song W G, Synthesis of porous and graphitic carbon forelectrochemical detection, J. Phys. Chem. C.2009,113,20594-20598.
    [112] Anastas P T, Kirchhoff M M, Origins, current status, and future challenges of green chemistry,Acc. Chem. Res.2003,35,686-694.
    [113] DeSimone J M, Practical approaches to green solvents, Science.2002,297,799.
    [114] Harton B, Careers and Recruitment, Nature.1999,400,797-799.
    [115] Anastas P T, Zimmermann J B, Peer review: Design through the12principles of greenengineering, Environ. Sci. Technol.37(2003)94A-101A.
    [116] Clark J H, Solids acids for green chemistry, Acc. Chem. Res.2002,35,791-797.
    [117] Misono M, Acid catalysts for clean production: Green aspects of hereopolyacid catalysts, C. R.Acad. Sci. Ser. Iic.2000,3,471-475.
    [118] Harmer M A, Farneth W E, Sun Q, Towards the sulfuric acid of solids AdV. Mater.1998,10,1255-1257.
    [119] Harmer M A, Sun Q, Solid acid catalysis using ion-exchange resins, Appl. Catal., A.2001,221,45-62.
    [120] Kiss A A, Dimian A C, Rothenberg G, Solid acid catalysts for biodiesel production-towardsustainable energy, Adv. Synth. Catal.2006,348,75-81.
    [121] Hara M, Yoshida T, Takagaki A, Takata T, Kondo J N, Hayashi S, Domen K, A carbon materialas a strong protonic acid, Angew. Chem. Int. Ed.2004,43,2955.
    [122] Toda M, Takagaki A, Okamura M, Kondo J N, Hayashi S, Domen K, Hara M, Greenchemistry-Biodiesel made with sugar catalyst, Nature.438(2005)178-178.
    [123] Peng L, Philippaerts A, Ke X X, Van Noyen J, Clippel F De, Tendeloo G van, Jacobs P A, SelsB F, Preparation of sulfonated ordered mesoporous carbon and its use for the esterification offatty acids, Catal. Today.2010,150,140-146.
    [124] Boehm H P, Surface oxides on carbon and their analysis: a critical assessment, Carbon.2002,40,145-149.
    [125] Okamura M, Takagaki A, Toda M, Kondo J N, Domen K, Tatsumi T, Hara M, Hayashi S,Acid-catalyzed reaction on flexible polycyclic aromatic carbon in amorphous carbon, Chem.Mater.2006,18,3039-3045.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700