独特形貌氧化锰纳米电极材料的可控制备及其电容性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锰材料由于资源丰富、价格低廉、环境友好、理论比电容高等优点,被认为是最具发展潜力的超级电容器电极材料之一。本论文采用水热法可控制备了一系列不同晶相和形貌的氧化锰纳米材料,探讨了水热制备条件对氧化锰纳米电极材料形貌和晶相的影响,系统研究了氧化锰纳米电极材料结构、比表面积、形貌及结晶性等参数对其电容性质的影响。论文的主要内容如下:
     (1)以高锰酸钾为锰源、有机胺/铵和无机铵为还原剂,发展了制备大比表面积介孔Birnessite型层状氧化锰纳米材料的简易方法。
     以尿素为反应还原剂,通过低温水热反应制备了片层状氧化锰。制备材料的BET比表面积为230m2/g,反应体系中的尿素对于氧化锰粒子的生成和氧化锰结构中介孔的形成起着至关重要的作用,且水热反应温度对制备材料的晶相和形貌有显著影响。以硫酸钱为反应还原剂时,制备得到了花状微球形氧化锰,花状微球由薄的纳米片组装而成,比表面积为280m2/g,平均孔径为3.8nm。制备形貌规则、粒径大小分布均匀层状氧化锰的最优条件是:高锰酸钾与硫酸铵物质的量之比为1:0.5,水热反应温度为90℃,反应时间为24小时,该方法是一种制备介孔结构层状氧化锰纳米材料的绿色策略。当CTAOH为反应还原剂原料时,成功制备了分级结构层状氧化锰纳米材料,其比表面积为105m2/g,平均孔径为7.8nm。反应中CTAOH既是还原剂,又是表面活性剂,CTAOH的引入对于氧化锰分级结构的形成起着非常重要的作用。水热反应温度对制备材料的晶相和形貌有显著影响,随着反应温度的升高,产物由花球状氧化锰转变为具有棒状形貌碱式氧化锰。
     (2)采用两步法制备了纳米带状高结晶性Birnessite型氧化锰材料。
     以高锰酸钾和乙醇反应所得碱式氧化锰为前驱物,在140℃的水热温度和10mol/L KOH溶液中反应72小时,制备得到了比表面积为53m2/g的带状Birnessite型层状氧化锰纳米材料。水热反应温度、反应时间和碱式氧化锰的加入量均会影响制备产物的晶相。在高浓度碱液中,碱式氧化锰经历了溶解-重结晶过程,最终转变为层状氧化锰纳米带。
     (3)发展了一维隧道型线状α-MnO2和棒状β-MnO2纳米材料制备新方法。
     以锰粉为锰源、K2S2O8为氧化剂,采用水热合成技术可控制备了一维隧道型线状α-MnO2和棒(?)β-MnO2纳米材料。该实验方法简单,无催化剂和模板剂添加,且产物纯度高。研究结果表明,水热反应温度、反应时间和体系中K+离子浓度均是影响产物晶相和形貌的重要因素。K+离子是α-MnO2的模板剂,且高的K+离子浓度可以保持在高温处理时α-MnO2晶相不发生变化。通过改变实验条件,可以实现α-MnO2纳米线向β-MnO2纳米棒的转变。温度和酸度共同促使α-MnO2转变为β-MnO2,两者缺一不可,高温和高的H+离子浓度有利于β-MnO2的生成。
     (4)采用循环伏安、恒流充放电和交流阻抗技术,系统研究了制备的不同形貌层状和隧道型氧化锰纳米材料的电容性质。
     通过比较和分析制备的氧化锰电极材料的电化学测试结果,发现影响氧化锰电容性质的因素是多方面的,如材料的晶相、结晶性、比表面积和形貌等。通常,层状氧化锰和具有较大孔道尺寸的隧道型氧化锰的比电容较高,而具有较小孔道尺寸的隧道型氧化锰由于电解质离子难以进入隧道而具有很低的比电容。低结晶性氧化锰材料由于晶格松弛,离子嵌入/脱出反应容易进行,因而比高结晶性材料电容性质优异。大比表面积氧化锰材料往往可以提供更多的氧化还原反应活性位点而具有更高的比电容。氧化锰材料的形貌与其比表面积相关,而且会影响离子嵌入/脱出的路径,因而也是决定材料电容性质的重要因素之一。分级结构氧化锰材料在进行能量存储时具有很大优势,因为其兼具纳米尺寸构筑单元和亚微米尺寸堆积结构的优点。
     (5)分级结构层状氧化锰纳米电极材料具有优异的电容性质。
     在不同形貌层状和隧道型氧化锰纳米材料中,分级结构层状氧化锰纳米电极材料具有优异的电容性质。优良电容性质归因于材料低的结晶度、高的比表面积和独特的分级结构。当扫描速度为5mV/s时,比电容为347F/g。循环寿命测试结果表明,在扫描速度为20mV/s的条件下,10000次循环后的比电容衰减仅为2.5%。同时,由该分级结构层状氧化锰电极和石墨烯电极组成的不对称超级电容器显示了高的能量密度和功率密度,功率密度为400W/kg时相应的能量密度为20.9Wh/kg。分级结构层状氧化锰纳米电极材料是组装性能优良超级电容器的候选电极材料。
Manganese oxides with different crystal structures and morphologies are considered as one of the most potential materials for supercapacitors due to their abundant resources, relatively low cost, environmentally friendly nature and high theoretical specific capacitance. In this paper, a series of manganese oxide nanomaterials with different crystal structures and morphologies have been prepared by the hydrothermal treatment method, and the hydrothermal treatment conditions are discussed systematically. On the basis of the preparation of manganese oxide nanomaterials with different crystal structures and morphologies, the effects of crystal structure, specific surface area, morphology and crystallinity on the capacitive properties of manganese oxide nanomaterials have also been investigated. The research contents are as follows:
     (1) KMnO4as manganese source and organic amine/ammonium and inorganic ammonium as reducing agent, a simple preparation method of manganese oxide nanomaterials with large surface area and layered structure is developed.
     Layered manganese oxide with plate-like morphology has been hydrothermally prepared at90℃for24h in a reaction system of KMnO4and urea. The BET specific surface area of the layered manganese oxide with plate-like morphology is230m2/g. Research results indicate that urea plays a crucial role for the formation of the manganese oxide nanomaterial with large surface area and layered structure. And hydrothermal temperature has great effects on the crystal phase and morphology of the prepared materials. When (NH4)2SO4is used as reductant, birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area has been prepared by hydrothermal treating a mixture solution of KMnO4and (NH4)2SO4at90℃for24h. Results indicate that the birnessite-type manganese oxide shows novel flower-like microsphere morphology and a specific surface area of280m2/g, and the flower-like microsphere consists of the thin nano-platelets. On the basis of the optimizing experiments, the optimization preparation conditions of the manganese oxide nanomaterial with large surface area and layered structure is a molar ratio of KMnO4to (NH4)2SO4=1:0.5. This preparation approach is a green strategy for synthesizing layered manganese oxide nanomaterials because no organic solvent or surfactant is added in the reaction system. When cetyltrimethylammonium hydroxide (CTAOH) is used as reductant, hierarchical manganese oxide nanomaterial has been simply prepared via a hydrothermal treatment technology in a mixed solution of KMnO4and cetyltrimethylammonium hydroxide (CTAOH) at90℃for12h. The obtained material has a specific surface area of105m2/g and the average pore size is7.8nm. CTAOH serves as both a reductant and a surfactant, and it plays a very important role in the formation of the hierarchical structure. Hydrothermal temperature has an obvious influence for the crystalline and morphology of the obtained materials. In company with the hydrothermal treatment temperature to180℃, the layered birnessite structure has completely transformed into purity y-MnOOH with rod-like morphology.
     (2) Birnessite manganese oxide material with belt-like morphology and high crystallinity has been prepared through two-step hydrothermal reaction.
     Firstly, MnOOH is prepared by reacting KMnO4and ethanol at140℃for24h. Then, the obtained MnOOH is hydrothermally treated at140℃for72h after it is well dispersed in10mol/L KOH aqueous solution. The specific surface area of the belt-like manganese oxide nanomaterial is53m2/g. Hydrothermal treatment temperature, reaction time and the amout of MnOOH all can affect the crystalline phases of the obtained materials. A transformation process has been observed. MnOOH is dissolved and followed by recrystallizing, and finally transformed into the birnessite manganese oxide material with belt-like morphology in a strong basic solution.
     (3) A new preparation method of both α-MnO2nanowires and β-MnO2nanorods has been developed.
     Manganese powder is used as manganese source and K2S2O8is used as oxidant. a-MnO2nanowires and β-MnO2nanorods are controllably prepared with a hydrothermal method at150℃and180℃for24h, separately. The method is simple for no catalysis or template reagent is added, and the products have high purity. Research results show that hydrothermal temperature, reaction time and the concentration of K+ions in the reaction system affect the crystal phase and moiphology of the products. K+ions serve as both template and structure stabilizer for a-MnO2. The crystal phase of a-MnO2maintains unchanged in aqueous solution with high K+ions concentration when treated under higher hydrothermal temperature. Under certain conditions, α-MnO2nanowires can transform into β-MnO7nanorods. Higher hydrothermal temperature and H+ions concentration favor the the formation of β-MnO2.
     (4) The electrochemical properties of the prepared manganese oxide nanomaterials with different crystallinities and morphologies have been systematically investigated.
     Research results indicate that the capacitive properties of the prepared manganese oxide nanomaterials with different crystallinities and morphologies connects with their crystal phase, crystallinity, specific surface area and morphology. Generally, the specific capacitance of layered manganese oxides and tunnel manganese oxides with larger cavity sizes is higher than that of tunnel manganese oxides with smaller cavity sizes. The capacitive behavior of manganese oxide nanomaterials with low crystallinity is superior to than those with high crystallinity due to their loose lattice. Manganese oxide nanomaterials possessing high specific surface area show high specific capacitance because they can provide more redox electroactive sites. Morphology of manganese oxide materials is related to their specific surface area and also affects the transport/diffusion path lengths for ions and electrons. Hierarchical structure manganese oxide materials have found to be one of the best systems for energy storage, because it offers both advantages of nanosized building blocks and submicrometer-sized structures.
     (5) Manganese oxide nanomaterial with hierarchical structure has good capacitance.
     The perfect electrochemical property of hierarchical manganese oxide nanomaterial is ascribed to the unique hierarchical structure, poor crystalline and relatively high specific surface area. Manganese oxide nanomaterial with hierarchical structure exhibits not only high specific capacitance of347F/g, but also excellent cycle stability (97.5%capacitance retention after10000cycles at a scan rate of20mV/s). An asymmetric supercapacitor based on the obtained manganese oxide as a positive electrode and graphene as a negative electrode is assembled. The assembled asymmetrical supercapacitor gives a high energy density of20.9Wh/kg at a power density of400W/kg. The hierarchical manganese oxide nanomaterial is a very promising electrode material for assembling supercapators with good capacitive performance.
引文
[1]J. S. Valentine. Manganese [J]. Chemical and Engineering News 2003,81(36):76.
    [2]冯雄汉,翟丽梅,谭文峰,刘凡,贺纪正.几种氧化锰矿物的合成及其对重金属的吸附和氧化特性[J].岩石矿物学杂志,2005,24(6):531-538.
    [3]H. Y. Lee, J. B. Goodenough. Supercapacitor Behavior with KC1 Electrolyte [J]. Journal of Solid State Chemistry 1999,144(1):220-223.
    [4]H. Y. Lee, V. Manivannan, J. B. Goodenough. Electrochemical Capacitors with KC1 Electrolyte [J]. Comptes Rendus de l'Academie des Sciences Serie Ⅱe:Chemie 1999,2(11-13):565-577.
    [5]M. Toupin, T. Brousse, D. Belanger. Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor [J]. Chemistry of Materials 2004,16(16):3184-3190.
    [6]D. Belanger, T. Brousse, J. W. Long. Manganese Oxides:Battery Materials Make the Leap to Electrochemical Capacitors [J]. Electrochemical Society Interface 2008, 17(1):49-52.
    [7]W. Xiao, D. Wang, X. Lou. Shape-Controlled Synthesis of MnO2 Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction [J]. Journal of Physical Chemistry C 2010,114(3):1694-1700.
    [8]C.-H. Chen, V. M. B. Crisostomo, W.-N. Li, L. Xu, S. L. Suib. A Designed Single-Step Method for Synthesis and Structural Study of Organic-Inorganic Hybrid Materials:Well-Ordered Layered Manganese Oxide Nanocomposites [J]. Journal of the American Chemical Society 2008,130(44):14390-14391.
    [9]Y.-S. Ding, X.-F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V. M. B. Crisostomo, S. L. Suib, M. Aindow. Synthesis and Catalytic Activity of Cryptomelane-Type Manganese Dioxide Nanomaterials Produced by a Novel Solvent-Free Method [J]. Chemistry of Materials 2005,17(21):5382-5389.
    [10]H. Liu, Y. Wu, E. Rahm, R. Holze, H. Wu. Cathode Materials for Lithium Ion Batteries Prepared by Sol-Gel Methods [J]. Journal of Solid State Electrochemistry 2004,8(7):450-466.
    [11]P. Yu, X. Zhang, Y. Chen, Y. Ma, Z. Qi. Preparation and Pseudo-Capacitance of Birnessite-type MnO2 Nanostructures via Microwave-Assisted Emulsion Method [J]. Materials Chemistry and Physics 2009,118(2-3):303-307.
    [12]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(1)[J].电池,2004,34(6):411-414.
    [13]S. Turner, P. R. Buseck. Todorokites:A New Family of Naturally Occurring Manganese Oxides [J]. Science 1981,212(4498):1024-1027.
    [14]M. H. Rossouw, D. C. Liles, M. M. Thackeray. Synthesis and Structural Characterization of a Novel Layered Lithium Manganese Oxide, Li0.36Mn0.91O2, and Its Lithiated Derivative, Li1.09Mn0.91O2 [J]. Journal of Solid State Chemistry 1993, 104(2):464-466.
    [15]Z. Liu, R. Ma, Y. Ebina, K. Takada, T. Sasaki. Synthesis and Delamination of Layered Manganese Oxide Nanobelts [J]. Chemistry of Materials 2007,19(26): 6504-6512.
    [16]P. Stouff, J. Boulegue. Synthetic 10-Aa and 7-Aa Phyllomanganates:Their Structures as Determined by EXAFS [J]. American Mineralogist 1988,73(9-10): 1162-1169.
    [17]S. L. Suib. Porous Manganese Oxide Octahedral Molecular Sieves and Octahedral Layered Materials [J]. Accounts of Chemical Research 2008,41(4):479-487.
    [18]L. Al-Attar, A. Dyer. Sorption Behaviour of Uranium on Birnessite, a Layered Manganese Oxide [J]. Journal of Materials Chemistry 2002,12(5):1381-1386.
    [19]X. Yang, H. Kanoh, W. Tang, Z.-H. Liu, K. Ooi. New Route for Preparation of Layered Manganese Oxides with Multivalent Metals in the Interlayer [J]. Chemistry Letters 2001,30(7):612-613.
    [20]A. Ogata, S. Komaba, R. Baddour-Hadjean, J.-P. Pereira-Ramos, N. Kumagai. Doping Effects on Structure and Electrode Performance of K-Birnessite-Type Manganese Dioxides for Rechargeable Lithium Battery [J]. Electrochimica Acta 2008,53(7):3084-3093.
    [21]Z.-H. Liu, K. Ooi, H. Kanoh, W. Tang, T. Tomida. Swelling and Delamination Behaviors of Birnessite-Type Manganese Oxide by Intercalation of Tetraalkylammonium Ions [J]. Langmuir 2000,16(9):4154-4164.
    [22]X. Yang, Y. Makita, Z.-H. Liu, K. Sakane, K. Ooi. Structural Characterization of Self-Assembled MnO2 Nanosheets from Birnessite Manganese Oxide Single Crystals [J]. Chemistry of Materials 2004,16(26):5581-5588.
    [23]L. Liu, Q. Feng, K. Yanagisawa. Characterization of Birnessite-Type Sodium Manganese Oxides Prepared by Hydrothermal Reaction Process [J]. Journal of Materials Science Letters 2000,19(22):2047-2050.
    [24]X. Shen, Y. Ding, J. Liu, K. Laubernds, R. P. Zerger, M. Polverejan, Y. C. Son, M. Aindow, S. L. Suib. Synthesis, Characterization, and Catalytic Applications of Manganese Oxide Octahedral Molecular Sieve (OMS) Nanowires with a 2 x 3 Tunnel Structure [J]. Chemistry of Materials 2004,16(25):5327-5335.
    [25]Q. Feng, K. Yanagisawa, N. Yamasaki. Transformation of Manganese Oxides from Layered Structures to Tunnel Structures [J]. Chemical Communications 1996, 14(14):1607-1608.
    [26]唐秀花,刘宗怀,张成孝,周青.二氧化钛柱撑层状氧化锰微孔材料的合成及表征[J].化学学报,2006,64(21):2178-2184.
    [27]Q. Feng, H. Kanoh, K. Ooi. Manganese Oxide Porous Crystals [J]. Journal of Materials Chemistry 1999,9(2):319-333.
    [28]S. L. Brock, N. Duan, Z. Tian, O. Giraldo, H. Zhou, S. L. Suib. A Review of Porous Manganese Oxide Materials [J]. Chemistry of Materials 1998,10(10): 2619-2628.
    [29]K. Ooi, Y. Miyai, J. Sakakihara. Mechanism of Lithium(1+) Insertion in Spinel-Type Manganese Oxide. Redox and Ion-Exchange Reactions [J]. Langmuir 1991,7(6):1167-1171.
    [30]Q. Feng, H. Kanoh, Y. Miyai, K. Ooi. Hydrothermal Synthesis of Lithium and Sodium Manganese Oxides and Their Metal Ion Extraction/Insertion Reactions [J]. Chemistry of Materials 1995,7(6):1226-1232.
    [31]Q. Feng, H. Kanoh, Y. Miyai, K. Ooi. Alkali Metal Ions Insertion/Extraction Reactions with Hollandite-Type Manganese Oxide in the Aqueous Phase [J]. Chemistry of Materials 1995,7(1):148-153.
    [32]Q. Feng, H. Kanoh, Y. Miyai, K. Ooi. Metal Ion Extraction/Insertion Reactions with Todorokite-Type Manganese Oxide in the Aqueous Phase [J]. Chemistry of Materials 1995,7(9):1722-1727.
    [33]Y. Shen, R. P. Zerger, R. N. DeGuzman, S. L. Suib, L. McCurdy, D. I. Potter, C. L O'young. Manganese Oxide Octahedral Molecular Sieves:Preparation, Characterization, and Applications [J]. Science 1993,260(5107):511-515.
    [34]R. N. DeGuzman, Y.-F. Shen, E. J. Neth, S. L. Suib, C.-L. O'Young, S. Levine, J. M. Newsam. Synthesis and Characterization of Octahedral Molecular Sieves (OMS-2) Having the Hollandite Structure [J]. Chemistry of Materials 1994,6(6): 815-821.
    [35]V. D. Makwana, L. J. Garces, J. Liu, J. Cai, Y.-C. Son, S. L. Suib. Selective Oxidation of Alcohols Using Octahedral Molecular Sieves:Influence of Synthesis Method and Property-Activity Relations [J]. Catalysis Today 2003,85(2-4): 225-233.
    [36]V. D. Makwana, Y.-C. Son, A. R. Howell, S. L. Suib. The Role of Lattice Oxygen in Selective Benzyl Alcohol Oxidation Using OMS-2 Catalyst:A Kinetic and Isotope-Labeling Study [J]. Journal of Catalysis 2002,210(1):46-52.
    [37]H. C. Genuino, S. Dharmarathna, E. C. Njagi, M. C. Mei, S. L. Suib. Gas-Phase Total Oxidation of Benzene, Toluene, Ethylbenzene, and Xylenes Using Shape-Selective Manganese Oxide and Copper Manganese Oxide Catalysts [J]. Journal of Physical Chemistry C 2012,116(22):12066-12078.
    [38]S. Liang, F. Teng, G. Bulgan, R. Zong, Y. Zhu. Effect of Phase Structure of MnO2 Nanorod Catalyst on the Activity for CO Oxidation [J]. Journal of Physical Chemistry C 2008,112(14):5307-5315.
    [39]H. Zhou, J. Wang, X. Chen, C. L. O'Young, S. L. Suib. Studies of Oxidative Dehydrogenation of Ethanol over Manganese Oxide Octahedral Molecular Sieve Catalysts [J]. Microporous and Mesoporous Materials 1998,21(4-6):315-324.
    [40]X. Chen, Y. Shen, S. L. Suib, C. L. O'Young. Catalytic Decomposition of 2-Propanol over Different Metal-Cation-Doped OMS-2 Materials [J]. Journal of Catalysis 2001,197(2):292-302.
    [41]A. Iyer, J. Del-Pilar, C. K. King'ondu, E. Kissel, H. F. Garces, H. Huang, A. M. El-Sawy, P. K. Dutta, Steven L. Suib. Water Oxidation Catalysis Using Amorphous Manganese Oxides, Octahedral Molecular Sieves (OMS-2), and Octahedral Layered (OL-1) Manganese Oxide Structures [J]. Journal of Physical Chemistry C 2012,116(10):6474-6483.
    [42]T. Takashima, K. Hashimoto, R. Nakamura. Mechanisms of pH-Dependent Activity for Water Oxidation to Molecular Oxygen by MnO2 Electrocatalysts [J]. Journal of the American Chemical Society 2012,134(3):1519-1527.
    [43]T. Sriskandakumar, N. Opembe, C.-H. Chen, A. Morey, C. King'ondu, S. L. Suib. Green Decomposition of Organic Dyes Using Octahedral Molecular Sieve Manganese Oxide Catalysts [J]. Journal of Physical Chemistry A 2009, 113(8):1523-1530.
    [44]S. R. Segal, S. L. Suib, L. Foland. Decomposition of Pinacyanol Chloride Dye Using Several Manganese Oxide Catalysts [J]. Chemistry of Materials 1997,9(11): 2526-2532.
    [45]C. Tournassat, L. Charlet, D. Bosbach, A. Manceau. Arsenic(III) Oxidation by Birnessite and Precipitation of Manganese(II) Arsenate [J]. Environmental Science and Technology 2002,36(3):493-500.
    [46]I. Atribak, A. Bueno-Lopez, A. Garcia-Garcia, P. Navarro, D. Frias, M. Montes. Catalytic Activity for Soot Combustion of Birnessite and Cryptomelane [J]. Applied Catalysis B:Environmental 2010,93 (3-4):267-273.
    [47]Q. Feng, N. Yamasaki, K. Yanagisawa, K. Ooi. Hydrothermal Synthesis and Metal Ion Adsorptive Property of Birnessite-Type Potassium Manganese Oxide [J]. Journal of Materials Science Letters 1996,15(11):963-965.
    [48]D. G. Beak, N. T. Basta, K. G. Scheckel, S. J. Traina. Linking Solid Phase Speciation of Pb Sequestered to Birnessite to Oral Pb Bioaccessibility:Implications for Soil Remediation [J]. Environmental Science and Technology 2008,42(3): 779-785.
    [49]S. S. Tripathy, J.-L. Bersillon, K. Gopal. Adsorption of Cd2+on Hydrous Manganese Dioxide from Aqueous Solutions [J]. Desalination 2006, 194(1-3):11-21.
    [50]C. L. Peacock, D. M. Sherman. Sorption of Ni by Birnessite:Equilibrium Controls on Ni in Seawater [J]. Chemical Geology 2007,238(1-2):94-106.
    [51]O. W. Duckworth, J. R. Bargar, G. Sposito. Sorption of Ferric Iron from Ferrioxamine B to Synthetic and Biogenic Layer Type Manganese Oxides [J]. Geochimica et Cosmochimica Acta 2008,72(14):3371-3380.
    [52]K. P. Lisha, S. M. Maliyekkal, T. Pradeep. Manganese Dioxide Nanowhiskers:A Potential Adsorbent for the Removal of Hg(II) from Water [J]. Chemical Engineering Journal 2010,160(2):432-439.
    [53]Q. Wang, J. Song, M. Sui. Characteristic of Adsorption, Desorption and Oxidation of Cr(III) on Birnessite [J]. Energy Procedia 2011,5:1104-1108.
    [54]H. Chen, J. He. Facile Synthesis of Monodisperse Manganese Oxide Nanostructures and Their Application in Water Treatment [J]. Journal of Physical Chemistry C 2008,112(45):17540-17545.
    [55]S. Chakrabarti, B. K. Dutta, R. Apak. Active Manganese Oxide:A Novel Adsorbent for Treatment of Wastewater Containing Azo Dye [J]. Water Science and Technology 2009,60(12):3017-3024.
    [56]B. Ammundsen, J. Paulsen. Novel Lithium-Ion Cathode Materials Based on Layered Manganese Oxides [J]. Advanced Materials 2001,13(12-13):943-956.
    [57]Y. Wang, G. Cao. Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries [J]. Advanced Materials 2008,20(12): 2251-2269.
    [58]M.-S. Wu, P.-C. J. Chiang, J.-T. Lee, J.-C. Lin. Synthesis of Manganese Oxide Electrodes with Interconnected Nanowire Structure as an Anode Material for Rechargeable Lithium Ion Batteries [J]. Journal of Physical Chemistry B 2005, 109(49):23279-23284.
    [59]Y. Lu, M. Wei, Z. Wang, D. G. Evans, X. Duan. Characterization of Structure and Electrochemical Properties of Lithium Manganese Oxides for Lithium Secondary Batteries Hydrothermally Synthesized from δ-KxMnO2 [J]. Electrochimica Acta 2004,49(14):2361-2367.
    [60]I. Y. Kim, H.-W. Ha, T. W. Kim, Y. Paik, J.-H. Choy, S.-J. Hwang. Origin of Improved Electrochemical Activity of β-MnO2 Nanorods:Effect of the Mn Valence in the Precursor on the Crystal Structure and Electrode Activity of Manganates [J]. Journal of Physical Chemistry C 2009,113(51):21274-21282.
    [61]J. Zhao, Z. Tao, J. Liang, J. Chen. Facile Synthesis of Nanoporous y-MnO2 Structures and Their Application in Rechargeable Li-Ion Batteries [J]. Crystal Growth and Design 2008,8(8):2799-2805.
    [62]F. Cheng, J. Zhao, W. Song, C. Li, H. Ma, J. Chen, P. Shen. Facile Controlled Synthesis of MnO2 Nanostructures of Novel Shapes and Their Application in Batteries [J]. Inorganic Chemistry 2006,45(5):2038-2044.
    [63]H. Kawaoka, M. Hibino, H. Zhou, I. Honma. Optimization of Sonochemical Synthesis Condition of Manganese Oxide/Acetylene Black Nanocomposite for High Power Lithium-Ion Batteries [J]. Journal of the Electrochemical Society 2005, 152(6):A1217-A1220.
    [64]X. Wang, X. Wang, W. Huang, P. Sebastian, S. Gamboa. Sol-Gel Template Synthesis of Highly Ordered MnO2 Nanowire Arrays [J]. Journal of Power Sources 2005,140(1):211-215.
    [65]M. Toupin, T. Brousse, D. Belanger. Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide [J]. Chemistry of Materials 2002,14(9):3946-3952.
    [66]L. Athouel, F. Moser, R. Dugas, O. Crosnier, D. Belanger, T. Brousse. Variation of the MnO2 Birnessite Structure upon Charge/Discharge in an Electrochemical Supercapacitor Electrode in Aqueous Na2SO4 Electrolyte [J]. Journal of Physical Chemistry C 2008,112(18):7270-7277.
    [67]R. Jiang, T. Huang, J. Liu, J. Zhuang, A. Yu. A Novel Method to Prepare Nanostructured Manganese Dioxide and Its Electrochemical Properties as a Supercapacitor Electrode [J]. Electrochimica Acta 2009,54(11):3047-3052.
    [68]O. A. Vargas, A. Caballero, L. Hernan, J. Morales. Improved Capacitive Properties of Layered Manganese Dioxide Grown as Nanowires [J]. Journal of Power Sources 2011,196(6):3350-3354.
    [69]S. Devaraj, N. Munichandraiah. Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties [J]. Journal of Physical Chemistry C 2008, 112(11):4406-4417.
    [70]X. Yang, X. Chen, X. Zhang, W. Yang, D. G. Evans. Intercalation of Methylene Blue into Layered Manganese Oxide and Application of the Resulting Material in a Reagentless Hydrogen Peroxide Biosensor [J]. Sensors and Actuators B:Chemical 2008,129(2):784-789.
    [71]M. T. Martinez, A. S. Lima, N. Bocchi, M. F. S. Teixeira. Voltammetric Performance and Application of a Sensor for Sodium Ions Constructed with Layered Birnessite-Type Manganese Oxide [J]. Talanta 2009,80(2):519-525.
    [72]J. Ge, L. Zhuo, F. Yang, B. Tang, L. Wu, C. Tung. One-Dimensional Hierarchical Layered KxMn02 (x< 0.3) Nanoarchitectures:Synthesis, Characterization, and Their Magnetic Properties [J]. Journal of Physical Chemistry B 2006,110(36): 17854-17859.
    [73]M. Zhou, X. Zhang, J. Wei, S. Zhao, L. Wang, B. Feng. Morphology-Controlled Synthesis and Novel Microwave Absorption Properties of Hollow Urchinlike α-MnO2 Nanostructures [J]. Journal of Physical Chemistry C 2011,115(5): 1398-1402.
    [74]L. Zhang, X. Zhao. Carbon-Based Materials as Supercapacitor Electrodes [J]. Chemical Society Reviews 2009,38(9):2520-2531.
    [75]Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang. Progress of Electrochemical Capacitor Electrode Materials:A Review [J]. International Journal of Hydrogen Energy 2009,34(11):4889-4899.
    [76]B. Conway. Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications [M]. New York:Kluwer Academic/Plenum Press,1999: 222.
    [77]P. Simon, Y. Gogotsi. Materials for Electrochemical Capacitors [J]. Nature Materials 2008,7:845-854.
    [78]E. Frackowiak. Carbon Materials for Supercapacitor Application [J]. Physical Chemistry Chemical Physics 2007,9(15):1774-1785.
    [79]A. G. Pandolfo, A. F. Hollenkamp. Carbon Properties and Their Role in Supercapacitors [J]. Journal of Power Sources 2006,157(1):11-27.
    [80]K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, J. Machnikowski. Electrochemical Capcitors Based on Highly Porous Carbons Prepared by KOH Activation [J]. Electrochimica Acta 2004,49(4):515-523.
    [81]H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu. Growth of Manganese Oxide Nanoflowers on Vertically-Aligned Carbon Nanotube Arrays for High-Rate Electrochemical Capacitive Energy Storage [J]. Nano Letters 2008,8(9): 2664-2668.
    [82]C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent. High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes [J]. Applied Physics Letters 1997, 70(11):1480-1482.
    [83]D. A. C. Brownson, D. K. Kampouris, C. E. Banks. An Overview of Graphene in Energy Production and Storage Applications [J]. Journal of Power Sources 2011, 196(11):4873-4885.
    [84]X. Du, P. Guo, H. Song, X. Chen. Graphene Nanosheets as Electrode Material for Electric Double-Layer Capacitors [J]. Electrochimica Acta 2010,55(16): 4812-4819.
    [85]Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen. Supercapacitor Devices Based on Graphene Materials [J]. Journal of Physical Chemistry C 2009, 113(30):13103-13107.
    [86]I. H. Kim, K. B. Kim. Electrochemical Characterization of Hydrous Ruthenium Oxide Thin-Film Electrodes for Electrochemical Capacitor Applications [J]. Journal of the Electrochemical Society 2006,153(2):A383-A387.
    [87]J. W. Long, K. E. Swider, C. I. Merzbacher, D. R. Rolison. Voltammetric Characterization of Ruthenium Oxide-Based Aerogels and Other RuO2 Solids: The Nature of Capacitance in Nanostructured Materials [J]. Langmuir 1999,15(3): 780-785.
    [88]J. K. Chang, M. T. Lee, W. T. Tsai. In situ Mn K-edge X-ray Absorption Spectroscopic Studies of Anodically Deposited Manganese Oxide with Relevance to Supercapacitor Applications [J]. Journal of Power Sources 2007,166(2): 590-594.
    [89]V. Subramanian, H. Zhu, B. Wei. Nanostructured MnO2:Hydrothermal Synthesis and Electrochemical Properties as a Supercapacitor Electrode Material [J]. Journal of Power Sources 2006,159(1):361-364.
    [90]Z. Xun, C. Cai, W. Xing, T. Lu. Electrocatalytic Oxidation of Dopamine at a Cobalt Hexacyanoferrate Modified Glassy Carbon Electrode Prepared by a New Method [J]. Journal of Electroanalytical Chemistry 2003,545(27):19-27.
    [91]M. Zheng, J. Cao, S. Liao, J. Liu, H. Chen, Y. Zhao, W. Dai, G. Ji, J. Cao, J. Tao. Preparation of Mesoporous Co3O4 Nanoparticles via Solid-Liquid Route and Effects of Calcination Temperature and Textural Parameters on Their Electrochemical Capacitive Behaviors [J]. Journal of Physical Chemistry C 2009, 113(9):3887-3894.
    [92]Y. Gao, S. Chen, D. Cao, G. Wang, J. Yin. Electrochemical Capacitance of Co3O4 Nanowire Arrays Supported on Nickel Foam [J]. Journal of Power Sources 2010, 195(6):1757-1760.
    [93]V. Gupta, S. Gupta, N. Miura. Al-Substituted a-Cobalt Hydroxide Synthesized by Potentiostatic Deposition Method as an Electrode Material for Redox-Supercapacitors [J]. Journal of Power Sources 2008,177(2):685-689.
    [94]C. Yuan, L. Yang, L. Hou, D. Li, L. Shen, F. Zhang, X. Zhang. Synthesis and Supercapacitance of Flower-Like Co(OH)2 Hierarchical Superstructures Self-Assembled by Mesoporous Nanobelts [J]. Journal of Solid State Electrochemistry 2012,16(4):1519-1525.
    [95]V. Gupta, T. Kawaguchi, N. Miura. Synthesis and Electrochemical Behavior of Nanostructured Cauliflower-Shape Co-Ni/Co-Ni Oxides Composites [J]. Materials Research Bulletin 2009,44(1):202-206.
    [96]M. Wu, Y. Huang, C. Yang, J. J. Jow. Electrodeposition of Nanoporous Nickel Oxide Film for Electrochemical Capacitors [J]. International Journal of Hydrogen Energy 2007,32(17):4153-4159.
    [97]G. Wee, H. Z. Soh, Y. L. Cheah, S. G. Mhaisalkar, M. Srinivasan. Synthesis and Electrochemical Properties of Electrospun V2O5 Nanofibers as Supercapacitor Electrodes [J]. Journal of Materials Chemistry 2010,20(32):6720-6725.
    [98]J. Chen, K. Huang, S. Liu. Hydrothermal Preparation of Octadecahedron Fe3O4 Thin Film for Use in an Electrochemical Supercapacitor [J]. Electrochimica Acta 2009,55(1):1-5.
    [99]S.-L. Kuo, N.-L. Wu. Composite Supercapacitor Containing Tin Oxide and Electroplated Ruthenium Oxide [J]. Electrochemical and Solid-State Letters 2003, 6(5):A85-A87.
    [100]A. A. F. Grupioni, E. Arashiro, T. A. F. Lassali. Voltammetric Characterization of an Iridium Oxide-Based System:The Pseudocapacitive Nature of the Ir0.3Mn0.7O2 Electrode [J]. Electrochimica Acta 2002,48(4):407-418.
    [101]T. P. Gujar, V. R. Shinde, C. D. Lokhande, S. Han. Electrosynthesis of Bi2O3 Thin Films and Their Use in Electrochemical Supercapacitors [J]. Journal of Power Sources 2006,161(2):1479-1485.
    [102]J. Rajeswari, P. S. Kishore, B. Viswanathan, T. K. Varadarajan. One-Dimensional MoO2 Nanorods for Supercapacitor Applications [J]. Electrochemistry Communications 2009,11(3):572-575.
    [103]S. R. Sivakkumar, R. Saraswathi. Performance Evaluation of Poly(N-methylaniline) and Polyisothianaphthene in Charge-Storage Device [J]. Journal of Power Sources 2004,137(2):322-328.
    [104]V. Gupta, N. Miura. High Performance Electrochemical Supercapacitor from Electrochemically Synthesized Nanostructured Polyaniline [J]. Materials Letters 2006,60(12):1466-1469.
    [105]H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang. Theoretical and Experimental Specific Capacitance of Polyaniline in Sulfuric Acid [J]. Journal of Power Sources 2009,190(2):578-586.
    [106]J. H. Kim, Y. S. Lee, A. K. Sharma, C. Liu. Polypyrrole/Carbon Composite Electrode for High-Power Electrochemical Capacitors [J]. Electrochimica Acta 2006,52(4):1727-1732.
    [107]R. Kotz, M. Carlen. Principles and Applications of Electrochemical Capacitors [J]. Electrochimica Acta 2000,45(15-16):2483-2498.
    [108]P. Sivaraman, A. Thakur, R. K. Kushwaha, D. Ratna, A. B. Samui. Poly(3-methyl thiophene)-Activated Carbon Hybrid Supercapacitor Based on Gel Polymer Electrolyte [J]. Electrochemical and Solid-State Letters 2006,9(9):A435-A438.
    [109]G. A. Snook, P. Kao, A. S. Best. Conducting-Polymer-Based Supercapacitor Devices and Electrodes [J]. Journal of Power Sources 2011,196(1):1-12.
    [110]Y. Huang, J. Liang, Y. Chen. An Overview of the Applications of Graphene-Based Materials in Supercapacitors [J]. Small 2012,8(12):1805-1834.
    [111]V. Subramanian, H. Zhu, R. Vajtai, P. M. Ajayan, B. Wei. Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures [J]. Journal of Physical Chemistry B 2005,109(43):20207-20214.
    [112]X. Tang, Z.-H. Liu, C. Zhang, Z. Yang, Z. Wang. Synthesis and Capacitive Property of Hierarchical Hollow Manganese Oxide Nanospheres with Large Specific Surface Area [J]. Journal of Power Sources 2009,193(2):939-943.
    [113]X. He, M. Yang, P. Ni, Y. Li, Z.-H. Liu. Rapid Synthesis of Hollow Structured MnO2 Microspheres and Their Capacitance [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010,363(1-3):64-70.
    [114]X. Tang, H. Li, Z.-H. Liu, Z. Yang, Z. Wang. Preparation and Capacitive Property of Manganese Oxide Nanobelt Bundles with Birnessite-Type Structure [J]. Journal of Power Sources 2011,196(2):855-859.
    [115]P. Umek, R. C. Korosec, A. Gloter, U. Pirnat. The Control of the Diameter and Length of α-MnO2 Nanorods by Regulation of Reaction Parameters and Their Thermogravimetric Properties [J]. Materials Research Bulletin 2011,46(2): 278-284.
    [116]S. W. Donne, A. F. Hollenkamp, B. C. Jones. Structure, Morphology and Electrochemical Behaviour of Manganese Oxides Prepared by Controlled Decomposition of Permanganate [J]. Journal of Power Sources 2010,195(1): 367-373.
    [117]N. Tang, X. K. Tian, C. Yang, Z. B. Pi, Q. Han. Facile Synthesis of α-MnO2 Nanorods for High-Performance Alkaline Batteries [J]. Journal of Physics and Chemistry of Solids 2010,71(3):258-262.
    [118]W. Xiao, H. Xia, J. Y. H. Fuh, L. Lu. Growth of Single-Crystal α-MnO2 Nanotubes Prepared by a Hydrothermal Route and Their Electrochemical Properties [J]. Journal of Power Sources 2009,193(2):935-938.
    [119]Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, R. Holze. Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors [J]. Journal of Physical Chemistry C 2009,113(31): 14020-14027.
    [120]P. Ragupathy, D. H. Park, G. Campet, H. N. Vasan, S. J. Hwang, J. H. Choy, N. Munichandraiah. Remarkable Capacity Retention of Nanostrucrured Manganese Oxide upon Cycling as an Electrode Material for Supercapacitor [J]. Journal of Physical Chemistry C 2009,113(15):6303-6309.
    [121]E. Beaudrouet, A. L. G. L. Salle, D. Guyomard. Nanostrucrured Manganese Dioxides:Synthesis and Properties as Supercapacitor Electrode Materials [J]. Electrochimica Acta 2009,54(4):1240-1248.
    [122]S. Li, L. Qi, L. Lu, H. Wang. Cotton-Assisted Preparation of Mesoporous Manganese Oxide for Supercapacitors [J]. RSC Advances 2012,2(17):6741-6743.
    [123]J. Yuan, Z.-H. Liu, S. Qiao, X. Ma, N. Xu. Fabrication of MnO2-Pillared Layered Manganese Oxide through an Exfoliation-Reassembling and Oxidation Process [J]. Journal of Power Sources 2009,189(2):1278-1283.
    [124]G. Zhang, L. Zheng, M. Zhang, S. Guo, Z.-H. Liu, Z. Yang, Z. Wang. Preparation of Ag-Nanoparticle-Loaded MnO2 Nanosheets and Their Capacitance Behavior [J]. Energy & Fuels 2011,26(1):618-623.
    [125]Q. Li, G. Luo, J. Li, X. Xia. Preparation of Ultrafine MnO2 Powers by the Solid State Method Reaction of KMnO4 with Mn(Ⅱ) Salts at Room Temperature [J]. Journal of Materials Processing Technology 2003,137(1-3):25-29.
    [126]张宝宏,张娜.纳米Mn02超级电容器的研究[J].物理化学学报,2003,19(3):286-288.
    [127]D.-L. Fang, B.-C. Wu, A.-Q. Mao, Y. Yan, C.-H. Zheng. Supercapacitive Properties of Ultra-Fine MnO2 Prepared by a Solid State Coordination Reaction [J]. Journal of Alloys and Compounds 2010,507(2):526-530.
    [128]A. Yuan, X. Wang, Y. Wang, J. Hu. Textural and Capacitive Characteristics of MnO2 Nanocrystals Derived from a Novel Solid-Reaction Route [J]. Electrochimica Acta 2009,54(3):1021-1026.
    [129]X. Wang, A. Yuan, Y. Wang. Supercapacitive Behaviors and Their Temperature Dependence of Sol-Gel Synthesized Nanostructured Manganese Dioxide in Lithium Hydroxide Electrolyte [J]. Journal of Power Sources 2007,172(2):1007-1011.
    [130]S. F. Chin, S. Pang, M. A. Anderson. Self-Assembled Manganese Dioxide Nanowires as Electrode Materials for Electrochemical Capacitors [J]. Materials Letters 2010,64(24):2670-2672.
    [131]S. Pang, M. A. Anderson, T. W. Chapman. Novel Electrode Materials for Thin-Film Ultracapacitors:Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide [J]. Journal of the Electrochemical Society 2000,147(2):444-450.
    [132]H. Adelkhani, M. Ghaemi, M. Ruzbehani. Evaluation of the Porosity and the Nano-Structure Morphology of MnO2 Prepared by Pulse Current Electrodeposition [J]. International Journal of Electrochemical Science 2011,6(1):123-135.
    [133]H. Wang, G. Yang, Q. Li, X. Zhong, F. Wang, Z. Li, Y. Li. Porous Nano-MnO2: Large Scale Synthesis via a Facile Quick-Redox Procedure and Application in a Supercapacitor [J]. New Journal of Chemistry 2011,35(2):469-475.
    [134]P. Yu, X. Zhang, Y. Chen, Y. Ma, Solution-Combustion Synthesis of ε-MnO2 for Supercapacitors [J]. Materials Letters 2010,64(1):61-64.
    [135]C. Yuan, L. Hou, L. Yang, D. Li, L. Shen, F. Zhang, X. Zhang. Facile Interfacial Synthesis of Flower-Like Hierarchical α-MnO2 Sub-Microspherical Superstructures Constructed by Two-Dimension Mesoporous Nanosheets and Their Application in Electrochemical Capacitors [J]. Journal of Materials Chemistry 2011,21(40): 16035-16041.
    [136]Z. Song, W. Liu, M. Zhao, Y. Zhang, G. Liu, C. Yu, J. Qiu. A Facile Template-Free Synthesis of α-MnO2 Nanorods for Supercapacitor [J]. Journal of Alloys and Compounds 2013,560:151-155.
    [137]A. Burke. Ultracapacitors:Why, How, and Where is the Technology [J]. Journal of Power Sources 2000,91(1):37-50.
    [138]S. Yoda, K. Ishihara. The Advent of Battery-Based Societies and the Global Environment in the 21st Century [J]. Journal of Power Sources 1999,81-82: 162-169.
    [139]A. Yoshino, T. Tsubata, M. Shimoyamada, H. Satake, Y. Okano, S. Mori, S. Yata. Development of a Lithium-Type Advanced Energy Storage Device [J]. Journal of the Electrochemical Society 2004,151(12):A2180-A2182.
    [140]M. Zhi, C. Xiang, J. Li, M. Li, N. Wu. Nanostructured Carbon-Metal Oxide Composite Electrodes for Supercapacitors:A Review [J]. Nanoscale 2013,5(1): 72-88.
    [141]Z.-R. Tian, W. Tong, J.-Y. Wang, N.-G. Duan, V. V. Krishnan, S. L. Suib. Manganese Oxide Mesoporous Structures:Mixed-Valent Semiconducting [J]. Science 1997,276(5314):926-930.
    [142]P. G. Bruce, A. R. Armstrong, R. L. Gitzendanner. New Intercalation Compounds for Lithium Batteries:Layered LiMnO2 [J]. Journal of Materials Chemistry 1999, 9(1):193-198.
    [143]M.-W. Xu, D.-D. Zhao, S.-J. Bao, H.-L. Li. Mesoporous Amorphous MnO2 as Electrode Material for Supercapacitor [J]. Journal of Solid State Electrochemistry 2007,11 (8):1101-1107.
    [144]D. Portehault, S. Cassaignon, N. Nassif, E. Baudrin, J.-P. Jolivet. A Core-Corona Hierarchical Manganese Oxide and Its Formation by an Aqueous Soft Chemistry Mechanism [J]. Angewandte Chemie International Edition 2008,120(34): 6541-6544.
    [145]Y. Oaki, H. Imai. One-Pot Synthesis of Manganese Oxide Nanosheets in Aqueous Solution:Chelation-Mediated Parallel Control of Reaction and Morphology [J]. Angewandte Chemie International Edition 2007,119(26):5039-5043.
    [146]A.-C. Gaillot, D. Flot, V. A. Drits, A. Manceau, M. Burghammer, B. Lanson. Structure of Synthetic K-rich Birnessite Obtained by High-Temperature Decomposition of KMnO4. Ⅰ. Two-Layer Polytype from 800℃ Experiment [J]. Chemistry of Materials 2003,15(24):4666-4678.
    [147]S. Ching, J. A. Landrigan, M. L. Jorgensen, N. Duan, S. L. Suib, Chi-Lin O'Young. Sol-Gel Synthesis of Birnessite from KMnO4 and Simple Sugars [J]. Chemistry of Materials 1995,7(9):1604-1606.
    [148]T. Gao, F. Krumeich, R. Nesper, H. Fjellvag, Poul Norby. Microstructures, Surface Properties, and Topotactic Transitions of Manganite Nanorods [J]. Inorganic Chemistry 2009,48(13):6242-6250.
    [149]O. P. Ferreira, L. Otubo, R. Romano, O. L. Alves. One-Dimensional Nanostructures from Layered Manganese Oxide [J]. Crystal Growth and Design 2006,6(2):601-606.
    [150]L. Zhang, L. Kang, H. Lv, Z. Su, K. Ooi, Z.-H. Liu. Controllable Synthesis, Characterization, and Electrochemical Properties of Manganese Oxide Nanoarchitectures [J]. Journal of Materials Research 2008,23(3):780-789.
    [151]Q. Feng, K. Yanagisawa, N. Yamasaki. Synthesis of Birnessite-Type Potassium Manganese Oxide [J]. Journal of Materials Science Letters 1997,16 (2):110-112.
    [152]X. Zhang, W. Yang, J. Yang, D. G. Evans. Synthesis and Characterization of α-MnO2 Nanowires:Self-Assembly and Phase Transformation to β-MnO2 Microcrystals [J]. Journal of Crystal Growth 2008,310(3):716-722.
    [153]J. C. Villegas, L. J. Garces, S. Gomez, J. P. Durand, S. L. Suib. Particle Size Control of Cryptomelane Nanomaterials by Use of H2O2 in Acidic Conditions [J]. Chemistry of Materials 2005,17(7):1910-1918.
    [154]A. K. Sinha, M. Basu, M. Pradhan, S. Sarkar, Y. Negishi, T. Pal. Thermodynamic and Kinetics Aspects of Spherical MnO2 Nanoparticle Synthesis in Isoamyl Alcohol:An Ex Situ Study of Particles to One-Dimensional Shape Transformation [J]. Journal of Physical Chemistry C 2010,114(49):21173-21183.
    [155]B. Li, G. Rong, Y. Xie, L. Huang, C. Feng. Low-Temperature Synthesis of α-MnO2 Hollow Urchins and Their Application in Rechargeable Li+ Batteries [J]. Inorganic Chemistry 2006,45(16):6404-6410.
    [156]S. J. Lee, A. Gavriilidis, Q. A. Pankhurst, A. Kyek, F. E. Wagner, P. C. L. Wong, K. L. Yeung. Effect of Drying Conditions of Au-Mn Co-Precipitates for Low-Temperature CO Oxidation [J]. Journal of Catalysis 2001,200(2):298-308.
    [157]M. Chigane, M. Ishikawa. Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism [J]. Journal of the Electrochemical Society 2000,147(6):2246-2251.
    [158]M. Chigane, M. Ishikawa, M. Izaki. Preparation of Manganese Oxide Thin Films by Electrolysis/Chemical Deposition and Electrochromism [J]. Journal of the Electrochemical Society 2001,148(7):D96-D101.
    [159]L. Kang, M. Zhang, Z.-H. Liu, K. Ooi. IR Spectra of Manganese Oxides with either Layered or Tunnel Structures [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy 2007,67(3-4):864-869.
    [160]S. Ching, E. J. Welch, S. M. Hughes, A. B. F. Bahadoor, S. L. Suib. Nonaqueous Sol-Gel Syntheses of Microporous Manganese Oxides [J]. Chemistry of Materials 2002,14(3):1292-1299.
    [161]J. Cai, J. Liu, S. L. Suib. Preparative Parameters and Framework Dopant Effects in the Synthesis of Layer-Structure Birnessite by Air Oxidation [J]. Chemistry of Materials 2002,14(5):2071-2077.
    [162]F. A. Al-Sagheer, M. I. Zaki. Synthesis and Surface Characterization of Todorokite-Type Microporous Manganese Oxides:Implications for Shape-Selective Oxidation Catalysts [J]. Microporous and Mesoporous Materials 2004,67(1):43-52.
    [163]M. Kruk, M. Jaroniec. Gas Adsorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials [J]. Chemistry of Materials 2001, 13(10):3169-3183.
    [164]C. Xu, B. Li, H. Du, F. Kang, Y. Zeng. Electrochemical Properties of Nanosized Hydrous Manganese Dioxide Synthesized by a Self-Reacting Microemulsion Method [J]. Journal of Power Sources 2008,180(1):664-670.
    [165]J. Xiao, Y. Zhu, Q. Ruan, Y. Liu, Y. Zeng, F. Xu, L. Zhang. Biomacromolecule and Surfactant Complex Matrix for Oriented Stack of 2-Dimensional Carbonated Hydroxyapatite Nanosheets as Alignment in Calcified Tissues [J]. Crystal Growth and Design 2010,10(4):1492-1499.
    [166]N. K. Chaudhari, H. C. Kim, D. Son, J.-S. Yu. Easy Synthesis and Characterization of Single-Crystalline Hexagonal Prism-Shaped Hematite a-Fe2O3 in Aqueous Media [J]. CrystEngComm 2009,11(11):2264-2267.
    [167]大连理工大学无机化学教研室.无机化学(第五版)[M].北京:高等教育出版社,2006:450,574.
    [168]K. Holland, J. Walker. Crystal Structure Modeling of a Highly Disordered Potassium Birnessite [J]. Clays and Clay Minerals 1996,44(6):744-748.
    [169]许乃才,马向荣,乔山峰,袁佳琦,刘宗怀.不同晶型和形貌Mn02纳米材料的可控制备[J].化学学报,2009,67(22):2566-2572.
    [170]H. M. Galindo, Y. Carvajal, E. Njagi, R. A. Ristau, S. L. Suib. Facile One-Step Template-Free Synthesis of Uniform Hollow Microstructures of Cryptomelane-Type Manganese Oxide K-OMS-2 [J]. Langmuir 2010,26(16): 13677-13683.
    [171]H. Chen, J. He, C. Zhang, H. He. Self-Assembly of Novel Mesoporous Manganese Oxide Nanostructures and Their Application in Oxidative Decomposition of Formaldehyde [J]. Journal of Physical Chemistry C 2007,111(49):18033-18038.
    [172]L. Wang, Y. Ebina, K. Takada, K. Kurashima, T. Sasaki. A New Mesoporous Manganese Oxide Pillared with Double Layers of Alumina [J]. Advanced Materials 2004,16(16):1412-1416.
    [173]J. Long, R. M. Stroud, D. R. Rolison. Controlling the Pore-Solid Architecture of Mesoporous, High Surface Area Manganese Oxides with Birnsssite Structure [J]. Journal of Non-Crystalline Solids 2001,285(1-3):288-294.
    [174]Y. Ma, J. Luo, S. L. Suib. Syntheses of Birnessites Using Alcohols as Reducing Reagents:Effects of Synthesis Parameters on the Formation of Birnessites [J]. Chemistry of Materials 1999,11(8):1972-1979.
    [175]N. Wang, Y. Gao, J. Gong, X. Ma, X. Zhang, Y. Guo, L. Qu. Synthesis of Manganese Oxide Hollow Urchins with a Reactive Template of Carbon Spheres [J]. European Journal of Inorganic Chemistry 2008,2008(24):3827-3832.
    [176]J. Fei, Y. Cui, X. Yan, W. Qi, Y. Yang, K. Wang, Q. He, J. Li. Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment [J]. Advanced Materials 2008,20(3):452-456.
    [177]C.-C. Hu, Y.-T. Wu, K.-H. Chang. Low-Temperature Hydrothermal Synthesis of Mn3O4 and MnOOH Single Crystals:Determinant Influence of Oxidants [J]. Chemistry of Materials 2008,20(9):2890-2894.
    [178]D. Portehault, S. Cassaignon, E. Baudrin, J.-P. Jolivet. Design of Hierarchical Core-Corona Architectures of Layered Manganese Oxides by Aqueous Precipitation [J]. Chemistry of Materials 2008,20(19):6140-6147.
    [179]T. Kohler, T. Armbruster, E. Libowitzky. Hydrogen Bonding and Jahn-Teller Distortion in Groutite, α-MnOOH, and Manganite, γ-MnOOH, and Their Relations to the Manganese Dioxides Ramsdellite and Pyrolusite [J]. Journal of Solid State Chemistry 1997,133(2):486-500.
    [180]J. Luo, A. Huang, S. H. Park, S. L. Suib, C.-L. O'Young. Crystallization of Sodium-Birnessite and Accompanied Phase Transformation [J]. Chemistry of Materials 1998,10(6):1561-1568.
    [181]Z. Yang, Y. Zhang, W. Zhang, X. Wang, Y. Qian, X. Wen, S. Yang. Nanorods of Nanganese Oxides:Synthesis, Characterization and Catalytic Application [J]. Journal of Solid State Chemistry 2006,179(3):679-684.
    [182]R. Ma, Y. Bando, L. Zhang, T. Sasaki. Layered MnO2 Nanobelts:Hydrothermal Synthesis and Electrochemical Measurements [J]. Advanced Materials 2004,16(11): 918-922.
    [183]B. Lanson, V. A. Drits, E. Silvester, A. Manceau. Structure of H-Exchanged Hexagonal Birnessite and Its Mechanism of Formation from Na-Rich Monoclinic Buserite at Low pH [J]. American Mineralogist 2000,85 (5-6):826-838.
    [184]X. Yang, W. Tang, Q. Feng, K. Ooi. Single Crystal Growth of Birnessite-and Hollandite-Type Manganese Oxides by a Flux Method [J]. Crystal Growth and Design 2003,3(3):409-415.
    [185]J.-H. Kang, S.-M. Paek, S.-J. Hwang, J.-H. Choy. Pre-Swelled Nanostructured Electrode for Lithium Ion Battery:TiO2-Pillared Layered MnO2 [J]. Journal of Materials Chemistry 2010,20(10):2033-2038.
    [186]D. Yan, P. Yan, S. Cheng, J. Chen, R. Zhuo, J. Feng, G. Zhang. Fabrication, In-Depth Characterization, and Formation Mechanism of Crystalline Porous Birnessite MnO2 Film with Amorphous Bottom Layers by Hydrothermal Method [J]. Crystal Growth and Design 2009,9(1):218-222.
    [187]Z. Fang, K. Tang, L. Gao, D. Wang, S. Zeng, Q. Liu. Facile and Large-Scale Synthesis of Single-Crystalline Manganese Oxyhydroxide/Oxide Nanostructures [J]. Materials Research Bulletin 2007,42(9):1761-1768.
    [188]徐如人,庞文琴,于吉红,霍启升,陈接胜.分子筛与多孔材料化学[M].北京:高等教育出版社,2004:146-147.
    [189]Y. Huang, X. Duan, Q. Wei, C. M. Lieber. Directed Assembly of One-Dimensional Nanostructures into Functional Networks [J]. Science 2001,291(5504):630-633.
    [190]A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk. Nanostructured Materials for Advanced Energy Conversion and Storage Devices [J]. Nature Materials 2005,4(5):366-377.
    [191]A. Singhal, G. Skandan, G. Amatucci, F. Badway, N. Ye, A. Manthiram, H. Ye, J. Xu. Nanostructured Electrodes for Next Generation Rechargeable Electrochemical Devices [J]. Journal of Power Sources 2004,129(1):38-44.
    [192]W. Li, X. Yang, L. Chen, J. Wang, Adsorption/Desorption of NOX on MnO2/ZrO2 Oxides Prepared in Reverse Microemulsions [J]. Catalysis Today 2009,148(1-2): 75-80.
    [193]W. Zhang, H. Wang, Z. Yang, F. Wang. Promotion of H2O2 Decomposition Activity over β-MnO2 Nanorod Catalysts [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2007,304(13):60-66.
    [194]L. Wang, Y. Ebina, K. Takada, T. Sasaki. Ultrathin Hollow Nanoshells of Manganese Oxide [J]. Chemical Communications 2004,4(9):1074-1075.
    [195]S. Bach, M. Henry, N. Baffler, J. Livage. Sol-Gel Synthesis of Manganese Oxides [J]. Journal of Solid State Chemistry 1990,88(2):325-333.
    [196]W.-N. Li, J. Yuan, X.-F. Shen, S. Gomez-Mower, L.-P. Xu, S. Sithambaram, M. Aindow, S. L. Suib. Hydrothermal Synthesis of Structure-and Shape-Controlled Manganese Oxide Octahedral Molecular Sieve Nanomaterials [J]. Advanced Functional Materials 2006,16(9):1247-1253.
    [197]M. Fang, X. Tan, M. Liu, S. Kang, X. Hu, L. Zhang. Low-Temperature Synthesis of Mn3O4 Hollow-Tetrakaidecahedrons and Their Application in Electrochemical Capacitors [J]. CrystEngComm 2011,13(15):4915-4920.
    [198]H.-J. Guo, Q.-H. Li, X.-H. Li, Z.-X. Wang, W.-J. Peng. Novel Synthesis of LiMn2O4 with Large Tap Density by Oxidation of Manganese Powder [J]. Energy Conversion and Management 2011,52(4):2009-2014.
    [199]H. Zhang, C. Liang, Z. Tian, G. Wang, W. Cai. Single Phase Mn3O4 Nanoparticles Obtained by Pulsed Laser Ablation in Liquid and Their Application in Rapid Removal of Trace Pentachlorophenol [J]. Journal of Physical Chemistry C 2010, 114(29):12524-12528.
    [200]L. Gong, X. Liu, L. Lu. Synthesis of MnO2 Nanorods from a ZnO Template and Their Capacitive Performances [J]. Materials Letters 2012,67 (1):226-228.
    [201]D. Zheng, S. Sun, W. Fan, H. Yu, C. Fan, G. Cao, Z. Yin, X. Song. One-Step Preparation of Single-Crystalline β-MnO2 Nanotubes [J]. Journal of Physical Chemistry B 2005,109 (34):16439-16443.
    [202]T. Chen, H. Dou, X. Li, X. Tang, J. Li, J. Hao. Tunnel Structure Effect of Manganese Oxides in Complete Oxidation of Formaldehyde [J]. Microporous and Mesoporous Materials 2009,122(1-3):270-274.
    [203]D. Walanda, G. Lawrance, S. Donne. Hydrothermal MnO2:Synthesis, Structure, Morphology and Discharge Performance [J]. Journal of Power Sources 2005, 139(1-2):325-341.
    [204]X. Wang, Y. Li. Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods [J]. Chemistry A European Journal 2003,9(1):300-306.
    [205]N. Sui, Y. Duan, X. Jiao, D. Chen. Large-Scale Preparation and Catalytic Properties of One-Dimensional a/(3-MnO2 Nanostructures [J]. Journal of Physical Chemistry C 2009,113(20):8560-8565.
    [206]L. Gao, L. Fei, H. Zheng. Preparation of a-MnO2 Nanowires through a y-MnOOH Precursor Route [J]. Materials Letters 2007,61(8-9):1785-1788.
    [207]G. Qiu, H. Huang, S. Dharmarathna, E. Benbow, L. Stafford, S. L. Suib. Hydrothermal Synthesis of Manganese Oxide Nanomaterials and Their Catalytic and Electrochemical Properties [J]. Chemistry of Materials 2011,23(17): 3892-3901.
    [208]X. Wang, Y. Li. Selected-Control Hydrothermal Synthesis of a-and β-MnO2 Single Crystal Nanowires [J]. Journal of the American Chemical Society 2002, 124(12):2880-2881.
    [209]X. Huang, D. Lv, H. Yue, A. Attia, Y. Yang. Controllable Synthesis of a-and β-MnCO2 Cationic Effect on Hydrothermal Crystallization [J]. Nanotechnology 2008,19(22):225606-225612.
    [210]M. Xu, L. Kong, W. Zhou, H. Li. Hydrothermal Synthesis and Pseudocapacitance Properties of a-MnO2 Hollow Spheres and Hollow Urchins [J]. Journal of Physical Chemistry C 2007,111(51):19141-19147.
    [211]H. Huang, S. Sithambaram, C.-H. Chen, C. K. Kithongo, L. Xu, A. Iyer, H. F. Garces, S. L. Suib. Micro wave-Assisted Hydrothermal Synthesis of Cryptomelane-Type Octahedral Molecular Sieves (OMS-2) and Their Catalytic Studies [J]. Chemistry of Materials 2010,22(12):3664-3669.
    [212]N. Xu, Z.-H. Liu, X. Ma, S. Qiao, J. Yuan. Controlled Synthesis and Characterization of Layered Manganese Oxide Nanostructures with Different Morphologies [J]. Journal of Nanoparticle Research 2009,11(5):1107-1115.
    [213]S. Ching, R. P. Neupane, T. P. Gray. Synthesis and Characterization of a Layered Manganese Oxide:Materials Chemistry for the Inorganic or Instrumental Methods Lab [J]. Journal of Chemical Education 2006,83(11):1674-1676.
    [214]Z. Sun, D. Shu, H. Chen, C. He, S. Tang, J. Zhang. Microstructure and Supercapacitive Properties of Buserite-Type Manganese Oxide with a Large Basal Spacing [J]. Journal of Power Sources 2012,216:425-433.
    [215]Y.-H. Lin, T.-Y. Wei, H.-C. Chien, S.-Y. Lu. Manganese Oxide/Carbon Aerogel Composite:An Outstanding Supercapacitor Electrode Material [J]. Advanced Energy Materials 2011,1(5):901-907.
    [216]M. Winter, R. J. Brodd. What Are Batteries, Fuel Cells and Supercapacitors [J]. Chemical Reviews 2004,104(10):4245-4270.
    [217]J. Zhang, L. Gong, K. Sun, J. Jiang, X. Zhang. Preparation of Activated Carbon from Waste Camellia Oleifera Shell for Supercapacitor Application [J]. Journal of Solid State Electrochemistry 2012,16(6):2179-2186.
    [218]S.-L. Chou, J.-Z. Wang, S.-Y. Chew, H.-K. Liu, S.-X. Dou. Electrodeposition of MnO2 Nanowires on Carbon Nanotube Paper as Free-Standing, Flexible Electrode for Supercapacitors [J]. Electrochemistry Communications 2008,10(11): 1724-1727.
    [219]D. Susanti, D.-S. Tsai, Y.-S. Huang, A. Korotcov, W.-H. Chung. Structures and Electrochemical Capacitive Properties of RuO2 Vertical Nanorods Encased in Hydrous RuO2 [J]. Journal of Physical Chemistry C 2007,111(26):9530-9537.
    [220]Y. Chen, Y. Huang, K. Lee, D. Tsai, K. Tiong. Characterization of IrO2/CNT Nanocomposites [J]. Journal of Materials Science-Materials in Electronics 2011, 22(7):890-894.
    [221]X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li. Hydrogenated TiO2 Nanotube Arrays for Supercapacitors [J]. Nano Letters 2012,12(3):1690-1696.
    [222]M. Aghazadeh. Electrochemical Preparation and Properties of Nanostructured Co3O4 as Supercapacitor Material [J]. Journal of Applied Electrochemistry 2012, 42(2):89-94.
    [223]J.-H. Kim, K. Zhu, Y. Yan, C. L. Perkins, A. J. Frank. Microstructure and Pseudocapacitive Properties of Electrodes Constructed of Oriented NiO-TiO Nanotube Arrays [J]. Nano Letters 2010,10(10):4099-4104.
    [224]F. Ataherian, N.-L. Wu.1.2 Volt Manganese Oxide Symmetric Supercapacitor [J]. Electrochemistry Communications 2011,13(11):1264-1267.
    [225]W. Wei, X. Cui, W. Chen, D. G. Ivey. Manganese Oxide-Based Materials as Electrochemical Supercapacitor Electrodes [J]. Chemical Society Reviews 2011, 40(3):1697-1721.
    [226]L. Deng, G. Zhu, J. Wang, L. Kang, Z.-H. Liu, Z. Yang, Z. Wang. Graphene-MnO2 and Graphene Asymmetrical Electrochemical Capacitor with a High Energy Density in Aqueous Electrolyte [J]. Journal of Power Sources 2011,196(24): 10782-10787.
    [227]Y. Yuan, Y. Pei, S. Guo, J. Fang, J. Yang. Sparse MnO2 Nanowires Clusters for High-Performance Supercapacitors [J]. Materials Letters 2012,73:194-197.
    [228]J. Zhu, J. He. Facile Synthesis of Graphene-Wrapped Honeycomb MnO2 Nanospheres and Their Application in Supercapacitors [J]. ACS Applied Materials & Interfaces 2012,4(3):1770-1776.
    [229]A. Lewandowski, A. Olejniczak, M. Galinski, I. Stepniak. Performance of Carbon-Carbon Supercapacitors Based on Organic, Aqueous and Ionic Liquid Electrolytes [J]. Journal of Power Sources 2010,195(17):5814-5819.
    [230]W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu. Preparation of Ruthenic Acid Nanosheets and Utilization of Its Interlayer Surface for Electrochemical Energy Storage [J]. Angewandte Chemie International Edition 2003,42(34):4092-4096.
    [231]L. Hou, C. Yuan, D. Li, L. Yang, L. Shen, F. Zhang, X. Zhang. Electrochemically Induced Transformation of NiS Nanoparticles into Ni(OH)2 in KOH Aqueous Solution toward Electrochemical Capacitors [J]. Electrochimica Acta 2011,56(22): 7454-7459.
    [232]S. Li, L. Qi, L. Lu, H. Wang. Facile Preparation and Performance of Mesoporous Manganese Oxide for Supercapacitors Utilizing Neutral Aqueous Electrolytes [J]. RSC Advances 2012,2(8):3298-3308.
    [233]C. Xu, C. Wei, B. Li, F. Kang, Z. Guan. Charge Storage Mechanism of Manganese Dioxide for Capacitor Application:Effect of the Mild Electrolytes Containing Alkaline and Alkaline-Earth Metal Cations [J]. Journal of Power Sources 2011, 196(18):7854-7859.
    [234]X. Zhang, W. Yang, D. G. Evans. Layer-By-Layer Self-Assembly of Manganese Oxide Nanosheets/Polyethylenimine Multilayer Films as Electrodes for Supercapacitors [J]. Journal of Power Sources 2008,184(2):695-700.
    [235]S. Chen, J. Zhu, Q. Han, Z. Zheng, Y. Yang, X. Wang. Shape-Controlled Synthesis of One-Dimensional MnO2 via a Facile Quick-Precipitation Procedure and Its Electrochemical Properties [J]. Crystal Growth and Design 2009,9(10): 4356-4361.
    [236]H. Chen, X. Dong, J. Shi, J. Zhao, Z. Hua, J. Gao, M. Ruan, D. Yan. Templated Synthesis of Hierarchically Porous Manganese Oxide with a Crystalline Nanorod Framework and Its High Electrochemical Performance [J]. Journal of Materials Chemistry 2007,17(9):855-860.
    [237]Q. Qu, L. Li, S. Tian, W. Guo, Y. Wu, R. Holze. A Cheap Asymmetric Supercapacitor with High Energy at High Power:Activated Carbon//Ko.27Mn02-0.6H20 [J]. Journal of Power Sources 2010,195(9): 2789-2794.
    [238]Y. Wu, C. Hu. Effects of Electrochemical Activation and Multiwall Carbon Nanotubes on the Capacitive Characteristics of Thick MnO2 Deposits [J]. Journal of the Electrochemical Society 2004,151(12):A2060-A2066.
    [239]R. Reddy, R. Reddy. Sol-Gel MnO2 as an Electrode Material for Electrochemical Capacitors [J]. Journal of Power Sources 2003,124(1):330-337.
    [240]J.-L. Liu, L.-Z. Fan, X. Qu. Low Temperature Hydrothermal Synthesis of Nano-Sized Manganese Oxide for Supercapacitors [J]. Electrochimica Acta 2012, 66:302-305.
    [241]T. Brousse, M. Toupin, R. Dugas, D. Belanger. Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors [J]. Journal of the Electrochemical Society 2006,153(12):A2171-A2180.
    [242]J. Gamby, P. Taberna, P. Simon, J. Fauvarque, M. Chesneau. Studies and Characterisations of Various Activated Carbons Used for Carbon/Carbon Supercapacitors [J]. Journal of Power Sources 2001,101(1):109-116.
    [243]M.-S. Wu. Electrochemical Capacitance from Manganese Oxide Nanowire Structure Synthesized by Cyclic Voltammetric Electrodeposition [J]. Applied Physics Letters 2005,87(15):153102-153104.
    [244]C. Xu, H. Du, B. Li, F. Kang, Y. Zeng. Asymmetric Activated Carbon-Manganese Dioxide Capacitors in Mild Aqueous Electrolytes Containing Alkaline-Earth Cations [J]. Journal of the Electrochemical Society 2009,156(6):A435-A441.
    [245]D.-W. Wang, F. Li, H.-M. Cheng. Hierarchical Porous Nickel Oxide and Carbon as Electrode Materials for Asymmetric Supercapacitor [J]. Journal of Power Sources 2008,185(2):1563-1568.
    [246]Z.-S. Wu, W. Ren, D.-W. Wang, F. Li, B. Liu, H.-M. Cheng. High-Energy MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors [J]. ACS Nano 2010,4(10):5835-5842.
    [247]Q. Qu, Y. Shi, S. Tian, Y. Chen, Y. Wu, R. Holze. A New Cheap Asymmetric Aqueous Supercapacitor:Activated Carbon/ZNaMnO2[J]. Journal of Power Sources 2009,194(2):1222-1225.
    [248]X. Xie, W. Liu, L. Zhao, C. Huang. Structural and Electrochemical Behavior of Mn-V Oxide Synthesized by a Novel Precipitation Method [J]. Journal of Solid State Electrochemistry 2010,14(9):1585-1594.
    [249]M. Ghaemi, F. Ataherian, A. Zolfaghari, S. M. Jafari. Charge Storage Mechanism of Sonochemically Prepared MnO2 as Supercapacitor Electrode:Effects of Physisorbed Water and Proton Conduction [J]. Electrochimica Acta 2008,53(14): 4607-4614.
    [250]H. Kim, B. N. Popov. Synthesis and Characterization of MnO2-Based Mixed Oxides as Supercapacitors [J]. Electrochimica Acta 2003,150(3):D56-D62.
    [251]J. Chang, W. T. Tsai. Material Characterization and Electrochemical Performance of Hydrous Manganese Oxide Electrodes for Use in Electrochemical Pseudocapacitors [J]. Journal of the Electrochemical Society 2003,150(10): A1333-A1338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700