锌铬复合胁迫对大豆根系土壤微生物学特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国工业的快速发展,人口剧增以及城市化进程,土壤重金属污染日益严重。土壤重金属污染不仅抑制农作物生长发育、降低产量,而且经农作物的吸收通过食物链危害人体健康。本实验是作物生产安全性系列研究之一,以成都平原紫色土为供试土壤,以重要农作物大豆为材料,按照国家环境质量标准(GB15618-1995)(旱地pH>7.5)设计重金属锌和铬浓度,采用根袋法栽种作物—大豆。通过研究锌铬复合胁迫大豆根际土与非根际土的土壤呼吸强度、微生物数量、微生物量碳(SMBC)、微生物量氮(SMBN)、微生物量磷(SMBP)、土壤脲酶活性(URASE)、土壤过氧化氢酶活性(CAT)以及土壤蔗糖酶活性(INVERTASE),利用PCR-DGGE技术分析了供试土样的根际土壤微生物多样性,揭示了在锌铬复合胁迫下,根际土壤与非根际土壤微生物学特性,为大豆的安全生产提供一定理论依据。研究结果如下:
     (1)在锌铬复合胁迫条件下,大豆根际土壤呼吸强度强于非根际土壤呼吸强度。当Zn为0,100mg.kg-1时,随铬浓度的增加,表现为先升再降的趋势。当Zn为250,500 mg.kg-1时,随铬浓度的增加,表现为逐渐降低的趋势;当Cr为0,90mg.kg-1时随锌浓度的增加,都表现为先升后降低的趋势。当Cr为300,400.kg-1时,随着锌浓度的增加,表现为降低的趋势。
     (2)在锌铬复合胁迫条件下,大豆土壤中,细菌数量为主导地位,其次是放线菌和真菌。当Zn为0,100mg.kg-1时,随铬浓度的增加,根际土壤细菌数量表现为先升后降的趋势;当Zn为250,500 mg.kg-1时,随铬浓度的增加,根际土壤细菌数量均表现降低的趋势;当Cr为0,90mg.kg-1时随锌浓度的增加,都表现为先升后降的趋势;当Cr为300,400 mg.kg-1时,随锌浓度的增加,细菌数量表现为逐渐降低的趋势;当Zn或Cr为0mg.kg-1时,根际土壤放线菌及非根际土壤细菌数量随铬或锌浓度的增加,都表现为先升后降的趋势;当Zn为100,250,500 mg.kg-1时,则随铬浓度的增加,非根际土壤细菌数量及根际土壤放线菌数量都表现为逐渐降低的趋势;当Cr为90,300,400mg.kg-1时,则随锌浓度的增加,非根际土壤细菌数量及根际土壤放线菌数量都表现为逐渐降低的趋势。真菌数量在根际与非根际土壤呈现相同的趋势。根际土壤与非根际土壤以及非根际放线菌数量都随锌或铬浓度增加,逐渐降低。
     (3)当Zn为0,100 mg.kg-1,根际SMBC、SMBN,随着铬浓度增加,SMBC、SMBN先增后降,当Zn为250,500 mg.kg-1时,SMBC、SMBN随铬浓度增加,逐渐降低。当铬一定时,根际SMBC、SMBN、SMBP以及非根际SMBC、SMBN、SMBP都随锌浓度增加而降低。当锌一定时,根际SMBP随铬浓度的增加而逐渐降低。当锌为0 mg.kg-1时,非根际SMBC、SMBN随铬浓度的增加,先升后降,当Zn为250,500 mg.kg-1,非根际SMBC、SMBN随铬浓度的增加,而逐渐降低。
     (4)大豆根际土壤酶活性大于非根际土让酶活性。当锌一定时,根际与非根际土壤URASE随着铬浓度的增加而逐渐降低;当铬为0 mg.kg-1时,根际与非根际土壤URASE,随着锌浓度增加,先升后降,当Cr为90,300,400 mg.kg-1,随着锌浓度增加,根际与非根际土壤URASE逐渐降低。当Zn为0 mg.kg-1时,根际与非根际CAT,非根际INVERTASE随着铬浓度增加先升后降,Zn为100,250,500 mg.kg-1,根际与非根际URASE、INVERTASE随着铬浓度增加而逐渐降低。当铬一定时,非根际土壤CAT,根际与非根际INVERTASE随着锌浓度的增加而逐渐降低。Cr为0,90 mg.kg-1,根际土壤过CAT随着锌浓度的增加,先升后降;Cr为300,400 mg.kg-1,根际土壤CAT随着锌浓度的增加,逐渐降低。Zn为0,100 mg.kg-1,根际土壤INVERTASE随着铬浓度增加,先升后降低;Zn为250,500 mg.kg-1,根际土INVERTASE随着铬浓度增加,逐渐降低。
     (5)根际土壤呼吸商小于非根际土壤呼吸商。当Zn为0,100mg.kg-1,根际与非根际土壤呼吸商随着铬浓度增加而升高,当Zn为250 mg.kg-1时,根际土壤呼吸商随着铬浓度增加,先升后降;当Zn为500 mg.kg-1时,随着铬浓度的增加,根际土壤呼吸商逐渐降低,Zn为250,500 mg.kg-1,随着铬浓度增加,非根际土壤呼吸商逐渐下降。当铬一定,根际与非根际土壤呼吸商随锌浓度先升后降。
     (6)真菌种群的均匀度介于0.9494-0.9994。聚类分析发现,所有真菌样品之间的相似性在37%-68%之间,真菌的种群结构有差异。细菌的均匀度非常接近,在0.9857-0.9993之间,而多样性指数在2.6368-3.2513之间。细菌之间的相似性在21%-80%之间,细菌的种群结构有差异。
With the industrial development,population explosion and acceleration of urbanization,heavy metal pollution becomes more and more severe in soil.The heavy metals contamination in soil could inhibit the crop growth and reduce the yields.The heavy metals could enter into the food chain by the crop's absorption and eventually threat the human health.This experimeant is one of the crop safety production studies. Purple soil from Sichuan Agricultural University were chosen for pot experiment.Zinc (Zn) and chromium(Cr) were added to the soil according to the national environmental quality standard (GB15618-1995)(dry land pH>7.5).The soybean was planted by root bag method.Soil respiratory intensity,microbial quantity, SMBC, SMBN, SMBP, URASE, CAT and INVERTASE of the rhizosphere and non-rhizosphere soil and the rhizosphere soil microbial diversity by PCR-DGGE were determined.On this basis,the change of the microbiology characteristics of the soybean soil under Zn and Cr stress was studied. Based on this,under Zn and Cr compound stress,the effects and discipline on microbial characteristics in rhizosphere and non-rhizosphere soil were revealed;meanwhile,this could provide theoretical basis for soybean production safety.The results were as follows:
     (1)The respiration of the rhizosphere soil was stronger than that of the non-rhizosphere soil. When Zn wasO and 100mg.kg'1,with the increase of the Cr concentration,the respiration of rhizosphere and non-rhizosphere soil increased first,and then decreased.When Zn was 250 and 500 mg.kg-1, with the increase of the Cr concentration,it gradually decreased.When Cr was 0 and 90mg.kg-1, with the increase of the Zn concentration,the respiration of rhizosphere and non-rhizosphere soil increased first,and then decreased. When Cr was 300 and 400mg.kg-1 with the increase of the Zn concentration,gradually decreased.
     (2)The bacteria was dominant in soybean soil followed by actinomycetes and fungi.When Zn was 0,100mg.kg-1,with the increase of the Cr,rhizosphere bacteria increased first,and then decreased;when Zn was 250 and 500 mg.kg-1,with the increase of the Cr,the bacteria gradually decreased.When Cr was 0 and 90mg.kg-1,with the increase of the Zn,bacteria showed an increase first and then a decrease;when Cr was 300 and 400 mg.kg-1, with the increase of the Zn,the bacteria gradually decreased. When Zn or Cr was 0 mg.kg-1, actinomycetes in rhizosphere soil and bacteria in non-rhizosphere demonstrated an increase first and then a decrease with the increase of Cr or Zn concentrations;when Zn was 100,250 and 500 mg.kg-1,with the increase of the Cr concentration,bacteria in the non-rhizosphere soil and the actinomycetes in rhizosphere soil showed a decrease;when Cr was 90,300 and 400 mg.kg-1, with the increase of Zn concentration, bacteria in the non-rhizosphere soil and the actinomycetes in rhizosphere showed a decrease. With the increase of the Zn and Cr,fungi in rhizosphere and non-rhizosphere soil gradually decreased.And the actinomycetes in non-rhizosphere soil decreased with the increase of the Zn or Cr concentration.
     (3)When Zn was 0 and 100 mg.kg-1,with the increase of Cr concentration,SMBC and SMBN in rhizosphere soil increased first and then decreased;when Zn was 250 and 500 mg.kg-1,SMBC and SMBN gradually decreased with the Cr increase.When the Cr concentration is certain,SMBC,SMBN and SMBP in rhizosphere and non-rhizosphere soil gradually decreased with the Zn increase. When the Zn is certain,SMBP in the rhizosphere soil gradually decreased with the Cr increase.When Zn was 0 mg.kg-1,SMBC and SMBN in non-rhizosphere soil increased first and then decreased with the Cr increase;when Zn was 250 and 500 mg.kg-1,SMBC and SMBN in non-rhizosphere soil gradually decreased with the Cr increase.
     (4) Soil enzyme activities in rhizosphere soil were higher than those in the non-rhizosphere soil.When Zn was certain, URASE in rhizosphere and non-rhizosphoere soil increased first and then decreased with the Cr increase;when Cr was 0 mg.kg-1, URASE in the rhizosphere and non-rhizosphoere soil increased first and then decreased with the Zn increase;when Cr was 90,300 and 400mg.kg-1,with the Zn increase, URASE in the rhizosphere and non-rhizosphoere soil decreased.When the Zn wasO mg.kg-1,CAT in the rhizosphere and non-rhizosphoere soil and I in the non-rhizosphoere soil increased first and then decreased with the Cr increase;when Zn was 100,250 and 500 mg.kg-1, URASE and INVERTASE in rhizosphere and non-rhizosphoere soil gradually decreased with the Cr increase.When Cr was certain,CAT in the non-rhizosphoere soil, URASE and INVERTASE in rhizosphere and non-rhizosphoere soil gradually decreased with the Zn increase.When Cr was 0 and 90 mg.kg-1,CAT in the rhizosphere soil increased first and then decreased with the Zn increase;when Cr was 300 and 400 mg.kg-1,that gradually decreased with the Zn increase.When Zn was 0 and 100 mg.kg-1, INVERTASE in the rhizosphere soil increased first and then decreased with the Cr increase;when Zn was 250 and 500 mg.kg-1,that gradually decreased with the Cr increase.
     (5) MQ in rhizosphere soil was weaker than that in the non-rhizosphere soil.When Zn was 0 and 100 mg.kg-1,MQ in rhizosphere and non-rhizosphere soil increased with the Cr increase;when Zn was 250 mg.kg-1, MQ in the rhizosphere soil increased first and then decreased with the Cr increase;when Zn was 500 mg.kg-1,MQ in the rhizosphere soil gradually decreased with the increase of Cr;when Zn was 250 and 500 mg.kg-1,MQ in the non-rhizosphere soil gradually decreased with the increase of Cr.When Cr was certain,MQ in rhizosphere and non-rhizosphere soil first increased and then decreased with the Zn increase.
     (6) The evenness of the fungi species was among 0.9494-0.9994.The cluster analysis found the similarity of all the sample fungi was among 37%-68%,which meant that the difference existed in fungi species structure.The evenness of the bacteria species(0.9857-0.9993) was very close,and the H was among 2.6368-3.2513.The similarity of the bacteria was 21%-80%,which meant the difference existed in bacteria species structure.
引文
[1]刘俊杰,王光华等.磷浓度处理对大豆根际土壤微生物群落结构的影响[J].大豆科学,2008,27(5):801-805.
    [2]王晓娟,李成才,等.利用垃圾堆肥改良水稻土Ⅱ:对水稻土中重金属含量和花卉生长的影响[J].应用与环境生物学报,2003,9(4):400404.
    [3]潘洁,毛建华,陆文龙.垃圾肥对上壤和农产品重金属含量的影响[J].农业环境保护,1998,17(3):109-112.
    [4]施泽明,倪师军,张成江,等.成都市城市土壤中重金属的现状评价[J].成都理工大学学报:自然科学版,2005,32(4):391-395.
    [5]刘红樱,谢志仁,陈德友等.成都地区土壤环境质量初步评价[J].环境科学学报,2004,24(2):297-303.
    [6]刘重芃,尚英男,尹观,等.成都市农业土壤重金属污染特征初步研究[J].广东微量元素科学,2006,13(3):41-45.
    [7]Brooks P.C.,McGrath S.P. Effects of metal toxicity on the size of the soil microbial biomass[J] Journal of soil science,1984,35:341-346.
    [8]龙健,黄昌勇,等.重金属污染矿区复垦土壤微生物生物量及酶活性的研究[J].中国生态农业学报,2004,12(3):146-148.
    [9]高焕梅,孙燕,等.重金属污染对土壤微生物种群数量及活性的影响[J].江西农业学报,2007,19(8):83-85.
    [10]吴建军,蒋艳梅,等.重金属复合污染对水稻土微生物生物量和群落结构的影响[J].土壤学报,2008,45(6):1102-1109.
    [11]余晓华,罗勇,等.电子废物不当处置的重金属污染及其环境风险评价生[J].生态毒理学报,2008,3(5)443-450.
    [12]张彦,张惠文,等.长期重金属胁迫对农田土壤微生物生物量、活性和种群的影响[J].应用生态学报,2007,18(7):1491-1497.
    [13]张玲,叶正钱,等.铅锌矿区污染土壤微生物活性研究[J].水土保持学报,2006,20(3):136-140.
    [14]Khan K S,Xie Z M,Huang C Y. Effect of cadmium,lead and zinc on size of microbial biomass in red soil [J]. Pedosphere,1998,8:27-32.
    [15]王新,周启星.重金属与土壤微生物的相互作用及污染土壤修复[J].环境污染治理技术与设备,2004,5(11)1-5.
    [16]滕应,黄昌勇,等.重金属复合污染下红壤微生物活性及其群落结构的变化土壤学报,2005,42(5):819-828.
    [17]吴春艳,陈义,等.Cd2+和Cu2+对水稻土微生物及酶活性的影响[J].浙江农业科学,2006,3:303-307.
    [18]王慧,王远鹏,等.应用PCR—DGGE研究铜冶炼厂附近根际土壤微生物生态变化[J].农业环境科学学,2006,25(4):903~907.
    [19]滕应,黄昌勇,龙健,等.矿区侵蚀土壤的微生物活性及其群落功能多样性研究[J].水土保持学报,2003,17(1):115-118.
    [20]陈承利,廖敏,曾路生.污染土壤微生物群落结构多样性及功能多样性测定方法[J].生态学报,2006,26(10):3404-3409.
    [21]Pennanen T A.Frostgard H Fritze,Baath E.Phospholioid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal polluted gradients in coniferous forests[J].Applied Environmental and Microbiology,1996,62:420-428.
    [22]王校焕.污染生态学[M].第2版.北京:高等教育出版社,2002.
    [23]康敏明,陈红跃,等.重金属污染下台湾相思和尾叶桉根区土壤微生物群落多样性[J].华东师范大学学报,2009.2:50-61.
    [24]周启星,黄国宏.环境生物地球化学及全球环境变化[M].北京:科学出版社,2001.
    [25]雷鸣,廖柏寒,秦普丰.矿区污染土壤Pb、Cd、Cu和Zn的形态分布及其生物活性的研究[JJ.生态环境,2007,16(3):807-811.
    [26]刘涛,刁治民,等.根际微生物及对植物生长效应的初步研究[J].青海草业,2008,17(4):41-45.
    [27]Chaboud A. Isolation, Purification and chemical composition of maize root cap slime [J]. Plant and Soil, 1983,73:395-404.
    [28]陆雅海,张福锁.根际微生物研究进展[J].土壤,2006,38(2):113-121.
    [29]苗果园,贾志红,等.不同作物根际微生物差异的研究[J].山西农业大学学报,2004,2:93-96.
    [30]郭艳玲.增产菌在青贮玉米上的试验研究[J].内蒙古农业科技,2005,6:35-37.
    [31]孙爱华,鲁鸿佩.增产菌对复种燕麦产草量影响的试验[J].四川草原,2004,18:23-24.
    [32]Abdul G Khan,Role of soil microbes in the rhizospheres of plants growing on the trace metal contaminated soils in phytoremediation[J].J Trace Elem Med Biol,2005,18:355-364.
    [33]Braud A,Jezequel K,Vieille E,et al.Changes in extractability of Cr and Pb in polycontaminated soil after bioaugmentation with microbial producers of biosurfactants,organic acids and siderophores[J].Water,Air and Soli Pollution,2006,6:261-279.
    [34]Baum C,Hrynkiewicz K,Leinewber P,et al.Heavy-metal mobilization and uptake by mycorrhizal and non mycorrhizal willows[J].Journal of Plant Nutrition and Soil Science,2006,169:516-522.
    [35]Lebeau T,BRAUD A,Jezequel K.Performace of bioaugmentation-assisted phytoextraction applied to metal contaminated soiIs:a review[J].Environ Pollut,2008,153:479-522.
    [36]王海鸥,徐海洋,等.根际微生物对植物修复重金属污染土壤作用的研究进展[J].安徽农业科学,2009,37(30):14832-14834,14903.
    [37]Blake R C,Choate D M Bardhan S,et al.Chemical transformation of toxic metals by a Pseudomonas strain from atoxic waste site Environ[J].Toxicol Chem,1993,12:1365-1376.
    [38]Lasat M M.Phytoextraction of toxic metals:a review of biological mechanism[J]Journal of Environmental Quality,2002,31.109-120
    [39]盛下放,江春玉,等.生物表面活性剂产生菌的筛选及其对土壤重金属铅的活化作用[J].环境科学学报,2006,26(10):1631-1636.
    [40]Diels L,Lelie N V D,Bastiaens L. New developments in treatment of heavy metal contaminated soils[J].Review in Environment Science and Biotechnology,2002,1:75-82.
    [41]万忠梅,吴景贵.土壤酶活性影响因子研究进展西北农林科技大学学报:自然科学版[J].2005,33(6):87-92.
    [42]龙健,黄昌勇等矿区重金属污染对土壤环境质量微生物学指标的影响[J].农业环境科学学报2003,22(1):60-63.
    [43]段学军,盛清涛.土壤重金属污染的微生物生态效应[J].中原工学院学报,2005,16(1):1-5.
    [44]杨志新,刘树庆.重金属Cd、Zn、Pb复合污染对土壤酶活性的影响[J].环境科学学报,2001,21(1):60-63.
    [45]Dodd J C,Burton C C.Burns RG,Jeffries P.Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi[J].New Philologist,1987,107:163-172.
    [46]Tarafdar J C.Claassen N.Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms[J].Biol Fertil Soils.1988,5:308-312.
    [47]李倩茹,符夏梨.红树林土壤微生物与土壤酶活性分析[J].广东农业科学.2009,7:93-96.
    [48]郭继勋,姜世成,林海俊,等.不同草原植被碱化草甸土的酶活性[J].应用生态学报.1997,8(4):412-416.
    [49]王新,周启星.土壤重金属污染生态过程、效应及修复[J].生态科学,2004,23(3):278-281.
    [50]卢显芝,金建华.不同土层土壤酶活性对重金属汞和镉胁迫的响应[J].农业环境科学学报,2009,28(9):1844-1848.
    [51]高大翔,郝建朝.重金属汞、镉单一胁迫及复合胁迫对土壤酶活性的影响[J].农业环境科学学报,2008,27(3):903-908.
    [52]Kunar V,Singe M.Inhibition of soil urease activity and nitrification with some metallic cations[J]. Australian Journal of Soil Research,1986,24(4):527-532.
    [53]Lebedeva L A,Lebedev S N,Edemskaya N L.The effect of heavy metals and lime on urease activity podzalic soil[J].Moscow University Soil Science Bulletin,1995,50(2):68-71.
    [54]石汝杰,陆引罡,丁美丽.植物根际土壤中铅形态与土壤酶活性的关系[J].山地农业生物学报,2005,24(3):225-229.
    [55]于寿娜,廖敏,黄昌勇.镉、汞复合污染对土的影响[J].应用生态学报,2008,19(8):1841-1847.
    [56]吴桂容,刘景春.重金属Cd对桐花树土壤酶活性的影响[J].2008,47(2):118-122.
    [57]罗虹,刘鹏.重金属镉、铜、镍复合污染对土壤酶活性的影响[J].水土保持学报,2006,20(2):94-97.
    [58]李永青,方振东.重金属复合污染对土壤活性酶影响的神经网络模型初探[J].重庆工业高等专科学校学报,2003,18(1):36-39.
    [59]闰文德,田大伦.湘潭锰矿废弃地土壤酶活性与重金属含量的关系[J].中南林学院学报,2006:26(3):1-4.
    [60]秦建桥,夏北成.粤北大宝山矿区尾矿场周围土壤重金属含量对土壤酶活性影响[J].生态环境,2008,17(4):1503-1508.
    [61]郝建朝,吴沿友,连宾,等.土壤多酚氧化酶性质研究及意义[J].土壤通报,2006,37(3):470-474.
    [62]覃勇荣,韦丹妮.不同植被恢复模式对石漠化地区土壤多酚氧化酶的影响[J].河池学院学报,2007,27(2):41~45.
    [63]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [64]李阜棣,喻子牛,何绍江.农业微生物学实验技术[M].北京:中国农业出版社,1996:28-37.
    [65]林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进[J].生态学杂志,1999,18(2):63-68.
    [66]李世清,李生秀.土壤微生物体氮测定方法的研究[J].植物营养与肥料学报,2000,6(1):75-83.
    [67]曹承锦.土壤酶活性的测定方法[M].北京:中国林业出版社,1985,14-60.
    [68]Brant J. Bassam, Gustavo Caetano-Anolles and Peter M. Gresshoff. Fast and sensitive silver staining of DNA in polyacrylamide gels[J]. Analytical Biochemistry 1991,196(l):80-83.
    [69]秦永生,刘振乾Cu、Pb和丁草胺污染对土壤呼吸强度的影响[J].生态科学,2009,28(1):56-61.
    [70]陈莹莹,王金花,陆贻通.丁草胺与镉复合污染对土壤呼吸强度的影响[J].环境与污染防治,2006,28(10):723-730.
    [71]刘廷凤,丁克强,王荣俊铜和丁草胺污染对土壤呼吸强度的影响[J].安徽农业科学,2009,337(36):18073-18074,1809.
    [72]蒋先军,骆永明,赵其国.重金属污染土壤的微生物学评价[J].土壤,2000,3:130-134.
    [73]郭朝晖,廖柏寒,黄昌勇.模拟酸雨下Cd、Cu、Zn复合污染对土壤微生物量碳和酶活性的影响[J].应用与环境生物学报,2003,9(4):382-385.
    [74]曾路生,廖敏,黄昌勇,等.镉污染对水稻土微生物量、酶活性及水稻生理指标的影响[J].应用生态学报,2005,16(11):2162-2167.
    [75]荆延德,何振立,杨肖娥.汞污染对水稻土微生物和酶活性的影响[J].应用生态学报,2009,20(1):218-222.
    [76]吴建军,蒋艳梅,吴愉萍,等.重金属复合污染对水稻土微生物生物量和群落结构的影响[J].土壤学报,2008,45(6):1102-1109.
    [77]Fritze H,Niini S,Mikkola K,et al. Soil microbial effects of a Cu-Ni smelter in southwestern Finland.Bio.Ferti. Soils 1989,8:87-94.
    [78]李晔,孙丽娜,杨继松,等.细河流域不同重金属污染土壤微生物种群及微生物量的研究[J].安徽农业科学.2008,36(27):11864-11865,11868.
    [79]张涪平,曹凑贵,李苹,等.藏中矿区重金属污染对土壤微生物学特性的影响[J].农业环境科学学报.2010,29(4):698-704.
    [80]高大翔,郝建朝,金建华,等.重金属汞、镉单一胁迫及复合胁迫对土壤酶活性的影响[J].农业环境科学学报.2008.27(3):903-908.
    [81]杨正亮,冯贵颖.重金属对土壤脲酶活性的影响[J].干旱地区农业研究.2002,20(3):41-43.
    [82]王娟,和文祥,孙铁珩.铜对土壤脲酶活性特征的影响[J].西北农林科技大学学报(自然科学版).2007,35(11):135-140.
    [83]王金花,朱鲁生,王军,等.除草剂阿特拉津对土壤脲酶活性的影响[J]应用生态学报,2003,14(12):2281-2284.
    [84]李永红,高玉葆.土壤中单嘧磺隆对谷子生长及土壤微生物若干生化功能的影响[J].农业环境科学学报,2004,23(4):633-637.
    [85]闫峰,吴雄平,梁东丽,等.外源重金属Cr、Cu、Se和Zn对土娄土酶活性的影响[J].西北农林科技大学学报(自然科学版),2008,36(7):91-98.
    [86]徐冬梅,刘广深,李克斌,等.酸雨胁迫下有机-无机复合污染对土壤过氧化氢酶活性的影响[J].农业环境科学学报,2003,22(1):31-33.
    [87]杨志新,冯圣东,刘树庆.镉、锌、铅单元素及其复合污染与土壤过氧化氢酶活性关系的研究[J].中国生态农业学报,2005,13(4):138-141.
    [88]周世萍,段昌群,刘宏程.氯氰菊酯对土壤蔗糖酶、脲酶活性的影响[J].环境科学导刊,2008,27(4):14-16.
    [89]刘姣,曹靖,南忠仁,等.白银市郊区重金属复合污染对土壤酶活性的影响[J].兰州大学学报(自然科学版),2010,46(5):39-43.
    [90]陈红军,孟虎,陈钧鸿.两种生物农药对土壤蔗糖酶活性的影响[J].生态环境,2008,17(2):584-588.
    [91]李江遐,杨肖娥,陈声明.铅污染对青紫泥微生物活性的影响[J],水土保持学报,2005,19(6):182-185,189.
    [92]陈薇薇,李悦铭,郭平.长春市土壤重金属化学形态与土壤微生物量、微生物商和呼吸商之间的关系[J],东北师大学报(自然科学版),2010,42(4):144-149.
    [93]Pankurst C.E.,Double B.M.,Gupta V.S.R Bioindicators of soil health.CAB international.wallingford,1996:397.
    [94]滕应,赵祥伟,骆永明,等.重金属复合污染农田土壤DNA的快速提取及其PCR-DGGE分析[J],土壤学报,2004,41(1):113-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700