大宝山矿区重金属元素(Zn,Ni,Cr)和氟环境地球化学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广东大宝山多金属矿山开采带来以重金属为代表的环境污染,对矿区及下游流域水体和土壤污染严重,严重影响了人类健康。本研究运用现场调查、实验室分析、水质分类、形态分析及溶出模拟等方法对大宝山矿区及辐射流域中的金属锌镍铬与氟的环境地球化学效应进行研究,并根据统计方法对研究区域污染进行相关分析和污染评价,得到以下结论:
     (1)在硫酸钙(Ca-SO_4)型水质中,锌含量平均值达到最高值:19.897mg/L;在硫酸钙镁(Ca-Mg-SO_4)型水质中,镍含量平均值达到最高值:0.107mg/L;在硫酸钙(Ca-SO_4)型水质中,铬含量平均值达到最高值:0.187 mg/L。
     (2)在研究区域内从上游到下游,锌浓度呈降低趋势,矿山水>河水>饮用水;矿山硫化物氧化促进了锌释放,下游水系受到了来自矿山锌的污染。水体环境中镍和铬的空间分布与锌相同。
     (3)金属锌从尾矿到河流沉积物和耕作土壤中累积效应都较强,而且土壤中锌总量分布呈现了明显的空间特征,槽对坑尾矿库和铁龙土壤环境中锌含量很高,最高分别达到了1397.10 mg/kg,1266.20 mg/kg。凉桥和上坝村河流沉积物中易迁移形态分别占总量的24.28 %,47.25 %。上坝村稻田土壤受锌污染程度高,迁移性强,酸提取态锌含量为473.20 mg/kg,占总量百分比为46.68%。
     大宝山矿区金属镍和铬含量较少。槽对坑表层镍酸提取态占总量的32.34%,在剖面形态含量分布中,槽对坑表层镍酸提取态相对较多,表层以下土壤环境中残渣态所占总量的比例都在85%以上。研究区域内不同类型土壤表层中铬含量分布范围是35.331~ 75.089 mg/kg,其中槽对坑尾矿土含铬总量最高,但残渣态所占比例都在90%以上。
     (4)溶出实验中,pH对锌溶出有重要影响,尾矿坑是金属锌的重要污染源;相应pH的溶出锌浓度由大到小的顺序为:铁龙>槽对坑尾矿库>上坝稻田;而按深度来划分,槽对坑尾矿库锌溶出量由大到小的顺序为:地表>50 cm>100 cm。镍的溶出量均较小且较接近,最大溶出量为6.997 mg/kg。与镍分布相同,铬的溶出量均较小且较接近,最大溶出量为11.906 mg/kg。
     (5)相关分析表明水体环境中所含的硫酸根、pH与电导率对水体中金属锌和镍含量有影响。因子分析的结果符合研究的规律,同时给出了不同地点重金属污染评价。分别有3个主因子影响着水体和土壤重金属内重金属的分布,他们的整体贡献率分别达到75.664%,80.103%。
     (6)水化学类型对水中氟含量有影响,硫酸镁型水质尾矿水中氟含量较高,最高达到16.68 mg/L;雨季水样中氟含量普遍低于旱季;从尾矿库区到横石河下游水体中氟含量呈降低趋势,矿山水>河水>饮用水;相关分析表明氟和水中主要阴阳离子存在相关性,验证了氟起源于矿山的氟化钙等含氟矿物的可能性,同时氟离子与铁离子存在正相关关系。土样溶出模拟实验pH和硫酸根的变化规律显示硫化物矿山尾矿酸化严重。氟化物的溶出实验进一步证明氟起源于矿山。
The exploitation of Dabaoshan polymetallic mine, Guangdong, produces environmental pollutions represented by heavy metal pollution; the pollutions of mining area, river and soil downstream were severe and seriously affected human health. Onsite investigation, laboratory analysis, water chemistry, sequential extraction and dissolving simulation were used to study the environmental geochemical effect of metal element zinc, nickel, chromium and fluorine in the Dabaoshan mine area and downstream, conclusions as follow:
     (1) Ca-SO_4 was the primary type with highest zinc concentration, the average value reached as high as 19.897 mg/L; Ca-Mg-SO_4 was the primary type with highest nickel concentration, the average value reached as high as value 0.107mg/L; Ca-SO_4 was the primary type with highest chromium concentration, the average value reached as high as value 0.187 mg/L;
     (2) Zinc concentration decreased from the tailings reservoir to Hengshi river, mine water> river> drinking water; sulfide oxidation promoted the release of zinc from the tailings, the acid drainage had deleterious effect on downstream water quality. Nickel and chromium had the same spatial distribution with zinc in water environment.
     (3) From the tailings to river sediment and paddy soil, zinc had strong cumulative effect, and zinc content of soil had clear geographical characteristics, which was higher in Caoduikeng and Tielong tailings reservoir, respectively achieved 1397.10 mg/kg, 1266.20 mg/kg. The metal zinc contents of acid extractable and reducible and oxidizable fractions were high in Liangqiao and Shangba village river sediments, respectively achieved 24.28 %,47.25 % in sum. Zinc pollution was serious in Shangba paddy soil and had strong migration, which was 473.20 mg/kg and 46.68% of total zinc content.
     Dabaoshan mine had less Ni and Cr content. Acid extracted zinc content was 32.34% of total zinc in Caoduikeng topsoil, Content distribution in the profile, acid extracted nickel content of topsoil was relatively higher, reducible nickel content was relatively higher and all exceed 85% of total content from 20 to 100 cm depth. Chromium content distribution was form 35.331 to 75.089 mg/kg in varied soil sample of research area, the highest chromium content was Caoduikeng, but the residual chromium content all achieved 90% of total zinc content.
     (4) The dissolving experiment results showed pH was a major contributor to the zinc dissolving, tailings reservoir was the important pollution resource of zinc; zinc concentration of topsoil decreased in the following order: sediment of Tielong tailings sand reservoir > Caoduikeng tailings reservoir > Shangba paddy soil, zinc content of Caoduikeng tailings reservoir in depth as the following order: topsoil> 50cm >100cm.The dissolving nickel contents were all less and closer, the highest dissolving content reached 6.997 mg/kg. The dissolving chromium contents was the same with nickel, the highest dissolving content reached 11.906 mg/kg.
     (5) Correlation analysis showed sulfide, pH and EC affected zinc, nickel content in the water environment. Factor analysis had similar result with the relative research, and factor analysis showed the metal pollution evaluation in different locations. In water and soil factor analysis of metal, three main factors separately affected metal distribution in research area, their contributions rates respectively achieved 75.664%,80.103%.
     (6) The water chemical types have affected the fluorine content in the water, Mg-SO4 was the primary type with highest fluoride concentration which could reach as high as value 16.68 mg/L; fluoride concentration was lower in rainy season than in arid season; fluoride concentrations decreased from the tailings reservoir to Hengshi river, mine water> river> drinking water; which indicated that fluoride come from the mining area. Correlation analysis showed the correlation between fluoride and water main ions, verifying the origin of fluorine in fluoride mineral, while fluoride and iron had positive correlation. The dissolving experiment results showed acidification of tailings soils was severe and dissolving experiment further suggested that the fluoride resource was the mine area.
引文
[1]阎敬,杨福海,李富平.冶金矿山土地复垦综述.河北理工学院学报,1999,21(增刊)41-47.
    [2]牛一乐,刘云国,路培等.中国矿山生态破坏现状及治理技术研究进展[J].环境科学与管理,2005,30(5):59-611.
    [3] Cooke, J.A., Morrey, D.R. Heavy metals and fluoride in soils and plants associated with metalliferous mine wastes in the Northern Pennines[J]. Environmental Pollution,1981, 153-164.
    [4] J.A. Cooke, M.S. Johnson, A.W. Davidson, etc. Fluoride in plants colonising fluorspar mine waste in the peak district and weardale[J]. Environmental Pollution (1970),1976, 11(1):9-23.
    [5] N.A. Geeson , P.W. Abrahams, M.P. Murphy, etc. Fluorine and metal enrichment of soils and pasture herbage in the old mining areas of Derbyshire, UK, Agriculture, [J].Ecosystems and Environment,1998(68):217-231.
    [6] Roque?íN, Ugarte L.C, etal. Fluoride contamination of water stream in Moscona Mine area, Asturias[A]. International mine water congress,507-511.
    [7] Martin H.W., Mills W.R. Water pollution caused by inactive ore and mineral mines. A national assessment[M].1976, Cincinnati: U.S. Environmental Protection Agency:0-185.
    [8] Armitage PD, Blackburn JH. Chironomidae in a Pennine stream receiving mine drainage and organic enrichment[J].Hydrobiologia,1985,121:165-172.
    [9] Jarvis AP, Younger PL. Dominating chemical factors in mine water-induced impoverishment of the invertebrate fauna of two streams in the Durham coalfield, UK[J]. Chemistry and Ecology,1997,13:249-270.
    [10] DongarràG., Manno E., Sabatino G, etc. Geochemical characteristics of waters in mineralised area of Peloritani Mountains[J]. Applied Geochemistry,2009,24(5): 900-914.
    [11] Paulson, A.J., Balistrieri, L.S. Modelling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters[J]. Environ. Sci. Technol,1999,33,3850-3856.
    [12] Kimball B.A., Broshears R.E., Bencala K.E., etc. Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage[J]. Environ. Sci. Technol,1994,28,2065-2073.
    [13] Lorraine H. Fllipek, D. Kirk Nordstrom, Waiter H. Ficklin. Interaction of Acid Mine Drainage with Waters and Sediments of West Squaw Creek in the West Shasta Mining District[J]. California Environ. Sci. Technol.,1987,21(4):388-396.
    [14]孙殿军,魏红联,申红梅.中国西部地区地方病防治策略[J].中国预防医学杂志,2002,3(2):154-155.
    [15]李永华,王五一,侯少范.我国地方性氟中毒病区环境氟的安全阈值[J].环境科学,2002,23(4):118-120.
    [16]陈志.我国地方性氟中毒的分布状况[J].中国公共卫生,1997,13(3):133-134.
    [17]廖国礼,吴超.矿山不同片区土壤中Zn、Pb、Cd、Cu和As的污染特征[J].环境科学,2005(26):157-161.
    [18]李玲,张国平,刘虹等.广西大厂多金属矿区河流中Sb和As的迁移及环境影响[J].环境科学研究,2009(22):682-687.
    [19]高芳蕾,董岩翔,王世纪.矿区土壤重金属元素的形态分布及生物活性[J].安徽农业科学,2009,37(12):5614-5616.
    [20]彭晖冰,刘云国,李爱阳等.铅锌矿尾渣土壤中重金属的形态及潜在生态风险[J].湖南农业大学学报(自然科学版),2007(33):345:347.
    [21]许乃政,袁旭音,陶于祥等.硫多金属矿床开采对水环境的影响——以福建大田地区矿产开发为例[J].地质通报,2003(22):718-723.
    [22]朱其顺,许光泉.中国地下水氟污染的现状及研究进展[J].环境科学与管理,2009(31):42-44.
    [23]许海,刘兆普,焦佳国等.太湖上游不同类型过境水氮素污染状况[J].生态学杂志,2008,27(1):43-49.
    [24]郑宝山.土壤的苏打盐渍化与地方性氟中毒[J].环境科学学报,1983,3(2): 113-122.
    [25]王喜宽,黄增芳,赵锁志等.河套地区盐碱化和砷氟中毒问题探讨[J].岩矿测试,2007(26):328-330.
    [26]邓英春.安徽省含氟地下水形成因及其分布特征[J].江淮水利科技,2006(2):22-24.
    [27]陈履安.贵州高氟地下水的分类特征及其形成机理[J].贵州地质,2001(18):244-246.
    [28]艾尼瓦尔?买买提,地里拜尔?苏力坦.污灌土壤中氟及硫的形态分布特征[J].水土保持研究,2006(13):238-240.
    [29]蔡锦辉,刘家齐.粤北大宝山多金属矿床矿物包裹体特征研究及应用.矿物岩石,1993,3(1):33-40.
    [30]蔡锦辉,刘家齐.粤北大宝山多金属矿区岩浆岩的成岩时代[J].广东地质, 1993,8(2):45-52.
    [31]姚敬劬.矿山环境问题分类[J].国土资源科技管理,2003,20(3):44-47.
    [32]蔡锦浑,吴明光,汪雄武,王晓地.广东大宝山多金属矿山环境污染问题及启示.华南地质与矿产.2005,4:50-51.
    [33]付善明,周永章,曾锋等.广东大宝山铁多金属矿废水对河流沿岸土壤的重金属污染.环境科学,2007,28(4):805-811.
    [34]付善明,周永章,高全洲.金属硫化物矿山环境地球化学研究述评[J].地球与环境,2006,34(3):23-28.
    [35]邹晓锦,仇荣亮,周小勇,等.2008.大宝山矿区重金属污染对人体健康风险的研究[J].环境科学学报,28(7):1406-1412
    [36]林初夏,黄少伟,童晓立,等.大宝山矿水外排的环境影响;Ⅲ.综合治理对策[J].生态环境,2005, 14(2):173-177.
    [37]周建民,党志,司徒粤,等.大宝山矿区周围土壤重金属污染分布特征研究[J].农业环境科学学报, 2004,23(6):1172-1176.
    [38]刘奕生,高怡,王康玮等.广东消化道恶性肿瘤高发村的病因学研究[J].中国热带医学,2005,5950:1139-1140.
    [39]林初夏,龙新宪,童晓立等.广东大宝山矿区生态环境退化现状及治理途径探讨[J].生态科学,2003(3):205-208.
    [40]周永章,付善明,张澄博等.华南地区含硫化物金属矿山生态环境中的重金属元素地球化学迁移模型——重点对粤北大宝山铁铜多金属矿山的观察[J].地学前缘,2008(15):248-255.
    [41]付善明,周永章,张澄博等.粤北大宝山矿尾矿铅污染迁移及生态系统环境响应[J].现代地质,2007(21):570-576.
    [42]朱继保,陈繁荣,卢龙,等.广东凡口Pb-Zn尾矿中重金属的表生地球化学行为及其对矿山环境修复的启示[J].环境科学学报,2005,25(3):414-422.
    [43]周建民,党志,蔡美芳等.大宝山矿区污染水体中重金属的形态分布及迁移转化[J].环境科学研究,2005(18),5-10.
    [44]陈炳辉,韦慧晓,周永章.粤北大宝山多金属矿山的生态环境污染原因及治理途径[J].中国矿业,2005(15):40-42.
    [45] Tessier A., Campbell P.G.C., Bisson M., Sequential extraction procedure for speciation of particulate trace metals[J]. Analytical Chemistry,1979,51:844-752.
    [46] Zemberyova M., Bartekova J., Hagarova I. The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins[J]. Talanta, 2006,70, 973-978.
    [47]高祥宝,董寒青.数据分析与SPSS应用[M].北京:清华大学出版社,2007:342- 357.
    [48]徐晓燕,杨肖娥,杨玉爱.锌从土壤向食物链的迁移[J].广东微量元素科学, 1996,3(7):21-29.
    [49]刘福来.土壤-植物系统中锌的研究概况[J].土壤肥料,1998(5):10-14.
    [50]锌离子[EB/OL].互动百科,2010.4.15
    [51]王孝堂.土壤酸度对重金属形态分布分配的影响[J].土壤学报,1991,(1): 103-107.
    [52]丁疆华,温琰茂,舒强.土壤环境中镉、锌形态转化的探讨[J].2001(14):47-49.
    [53]麦克德莫特,等.希氏内科学[M].王贤才.呼和浩特:内蒙古人民出版社,1991. 403-404.
    [54]刘哲华.锌对人体健康影响的研究进展[J].微量元素与健康研究,2000,17(4): 72-73.
    [55]杨定清,土壤-植物系统中镍研究进展评述[J].西南农业学报,1996,9(4):109- 116.
    [56]镍[EB/OL].中国化工网,MSDS,2010.4.3.
    [57]黄昌勇.土壤学[M].北京:中国农业出版社,2001:41-46,209-211.
    [58]廖金凤.海南土壤中的镍[J].中山大学学报(自然科学版),1998(增刊2):16-19.
    [59]杨定清.土壤-植物系统中镍研究进展评述[J].西南农业学报,1996,9(4):109- l16.
    [60]蔡信德,仇荣亮,陈桂珠.镍污染对土壤微生物的生态效应[J].生态科学,2004, 23(3):273-277.
    [61]李学垣.土壤化学[M].北京:高等教育出版社,2001:388-397.
    [62]谢忠雷,杨佰玲,包国章,等.茶园土壤不同形态镍的含量及其影响因素[J].吉林大学学报(地球科学版),2006,36(4):599-604.
    [63] Sauerbeek DR. Hein A. The nickel uptake from different soils and its prediction by chemical extractions. Water Air & Soil pollution.1991,(57-58):861-871.
    [64]南忠仁,李吉均,等.干旱区土壤小麦根系界面Pb、Ni行为的环境影响[J].中国沙漠, 2001,21(1):34-38.
    [65]扶惠华,王煌,田延亮.镍在植物生命活动中的作用[J].植物生理学通讯,1996, 32(1):45-49
    [66]王夔.生命科学中的微量元素[M].北京:中国计量出版社,1996.
    [67]徐镜波.环境毒理学[M].长春:东北师范大学出版社.2003.
    [68]康立娟,孙凤春.镍与人体健康及毒理作用[J].世界元素医学,2006,13,(3):39-42.
    [69]康立娟,刘迎春.Ni对水稻生长发育的影响和残留规律的研究[J].农业环境保护, 1997,16(3):135-137.
    [70]段玉梅.必需微量金属元素在人体中的作用及毒性[J].生物学通报,2004, 39,(6):25-26.
    [71]马放,玛玉杰,任南琪.环境生物技[M].北京:化学工业出版社,2003:125-131.
    [72]吴敦敖,鲁文毓.铬在土壤-地下水系统中的污染研究[J].环境科学学报,1991,11(3): 276-282.
    [73] Adriano D C. Biogeochemistry of Trace Metals [M]. Boca Raton:Lewis Publishing , 1992,19-190.
    [74]王云,魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社,1993.91- 100.
    [75]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1993. 263.
    [76]廖自基.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社,1993.
    [77] Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals [J].Nature,1988,333,134-139.
    [78] Weng C H , Huang C P , Paul F S. Effect of pH on Cr (Ⅵ) leaching from soil enriched in chromium ore processing residue [J]. Environment Geochemistry and Health,2001, 23:207-211.
    [79]刘德超.微量元素铬研究进展[J].粮食与饲料工业,1994,12:22-26.
    [80]李然,李嘉,赵文谦.水环境中重金属污染研究概述[J].四川环境,1997,16(1): 18-22.
    [81]杨璐,胡澄.铬污染水体修复技术研究进展[J].广西轻工业,2008(7):96-97.
    [82] Anju D KB. Heavy metal levels and solid phase speciation in street dusts of Delhi, India[J]. Environmental Pollution, 2003,123:95-105.
    [83]陈英旭,何增耀,吴建平.土壤中铬的形态及其转化[J].环境科学,1994,15(3): 53-56.
    [84]李惠英,曾江海,土壤铬污染及其改良措施[J].环境科技,1989,5-7.
    [85] Armienta M A , Rodriguez R , Ceniceros N. Distribution , origin and fate of chromium in soils in Guanajuato , Mexico[J ]. Environmental Pollution, 1996, 91 (3) : 391-397.
    [86] Massmi F , Ken N. Chromium (Ⅲ) binding abilities of humic acids [J]. Analytica Chemic Acta ,1995,317 : 195-206.
    [87] Neylan D. Effects of pH and chelator EDTA on Cr toxicity and accumulation in lemnaminor [J ] . Chemosphere , 1998 ,37 (4) : 771-783.
    [88]刘云惠,魏显有,王秀敏.土壤中铬的吸附与形态提取研究[J].河北农业大学学报,2000,23,(1):16-20.
    [89]李静萍,杜亚利.铬对人体的作用[J].甘肃科技,2003,19(12):118-119.
    [90]崔伟,郭成吉,罗杰.浅析铬与人体健康[J].微量元素与健康研究,2008,25(6): 66-67.
    [91]唐志坚,苏庆平,李朝华等.氟的主要环境地球化学及形态分析[J].化学工程师,2008,154(7):37-37.
    [92]谢正苗,吴卫红,徐建民.环境中氟化物的迁移和转化及其生态效应[J].环境科学进展,1999,7(2):40-53.
    [93]李日邦.土壤吸附氟的能力及其生态学意义[J].环境科学学报, 1991, 11(3):265-268.
    [94]吴卫红.土水其界面间氟的迁移机理及其生态效应[D].杭州:浙江大学,2002.
    [95] WHO.Fluorides and human health. Geneva[S].World Health Organization, 1984,136.
    [96] James R MeClenahen. Distribution of soil fluorides near an airborne fluoride source. J Environ Qual, 1976,5(4):472-475.
    [97]陈国阶,佘大富等.环境中的氟[M].科学出版社,1990,185.
    [98] Elrashidi W A, Lindsy WL. Soil Sci. [J],1986 ,141 (4) :274-281.
    [99]何振立.污染及有益元素的土壤化学平衡[M].中国环境科学出版社,1998, 307- 310
    [100]唐志坚,苏庆平,李朝华等.氟的环境地球化学及形态分析[J].2008,154(7): 34-35.
    [101]孙殿军,魏红联,申红梅.中国西部地区地方病防治策略[J].中国预防医学杂志,2002,3(2):154-155.
    [102]李永华,王五一,侯少范.我国地方性氟中毒病区环境氟的安全阈值[J].环境科学, 2002, 23(4): 118-120.
    [103] KUMAR J V, MOSS M E. Fluorides in dental public health programs[J]. Dental clinics of North America,2008,52:387-401.
    [104] GB 5749-2006,生活饮用水卫生标准[S].中华人民共和国标准,2006.
    [105]李端生.环境氟与人体健康[J].吉林地质,2002,21(3):101-102.
    [106] ?ENGELOGLU Y, KLR ESENGüL, ERS?Z MUSTAFA. Removal of fluoride from aqueous solution by using red mud [J].Purificaton Technology, 2002,28:81-82.
    [107]陈清敏,张晓军,胡明安.大宝山铜铁矿区水体重金属污染评价[J].环境科学与技术,2006,29(6):64-71.
    [108]陈强.大宝山铜选厂技改实践[J].南方金属2004,136:31-33.
    [109]陈强,黎国进,黄火根.大宝山矿铜选厂磁黄铁矿型铜矿石选矿试验[J].南方金属, 2003(2):17-19.
    [110]林初夏,卢文洲,吴永贵,等.大宝山矿水外排的环境影响:Ⅱ.农业生态系统[J].生态环境,2005, 14(2):169-172.
    [111]蔡美芳,党志,文震,等.矿区周围土壤中重金属危害性评估研究[J].生态环境,2004,13 (1):6-8.
    [112] Holmes P A,Crundwell F K.The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen:An electro-chemical study[J].Geochim Cosmochim Atca,2000,64(2): 263-274.
    [113] Nordstrom D K.Aqueous pyrite oxidation and the consequent formation of econdary minerals[A].Madison.Acid Sulfate Weathering[M].Soil Sci.Soc.,1982, 37-56.
    [114]倪善芹,琚宜文,侯泉林等.铁氧化物在重金属元素迁移风化过程中的作用对比及碳酸盐岩中重金属元素的富集[J].自然科学进展,2009,19(1):61-66.
    [115]栾兆坤,汤鸿霄.硫酸铁氧化物的表征及其对重金属吸附作用的研究[J].环境科学学报,1994,14(2):129-136.
    [116]付善明,周永章.广东上坝村重金属污染与潜在生态风险[A].中国可持续发展论坛(3):283-292.
    [117]杨振,胡明安,黄松.大宝山矿区河流表层沉积物重金属污染及潜在生态风险评价[J].桂林工学院学报,2007,27(1):45-48.
    [118] Galley F A, Lloyd O L. Grass and surface soils asmonitors of atmospheric metal pollution in central Scotland [J]. Water, Air and Soil Pollution,1985,24:1-18.
    [119]王济,张凌云.贵阳市表层土壤重金属污染元素之间的相关分析[J].贵州师范大学学报(自然科学版),2006,24(3):33-36.
    [120]夏汉平.土壤-植物系统中的镉研究进展[J].应用与环境生物学报, 1997, 3 (3) : 289-298.
    [121]王永华,刘振宇,刘伟,等.巢湖合肥区底泥污染物分布评价与相关特征研究[J].北京大学学报:自然科学版,2003, 39 (4) :502-506.
    [122]许超,夏北成,秦建桥.广东大宝山矿山下游地区稻田土壤的重金属污染状况的分析与评价[J].农业环境科学学报2007, 26 (增刊):549- 553.
    [123] Sanghoon Lee. Geochemistry and partitioning of trace metals in paddy soils affected by metal mine tailings in Korea[J]. Geoderma,2006, 135( 11) : 26- 37.
    [124] P M. Huang etal. Mechanism of reaction of natural fluoride solution with layer silicates and oxides of soils[J]. Soil Sci Soc. Am. J,1965,19(6).
    [125] J ennings S R , Dollhopf D J , Inskeep W P. Acid production f rom sulfide minerals using hydrogen peroxide weathering[J]. Applied Geochemist ry , 2000 , 15 (2) :235 - 243
    [126] SCHULTZ-LAM S, FORTIN D, DAVIS B S, et al. Mineralization of bacterial surfaces[J].Chemical Geology, 1996, 132: 171-182.
    [127]陈天虎,冯军会,徐晓春.尾矿中硫化物风化氧化模拟实验研究[J].岩石矿物学杂志, 2002,21(3):298-302.
    [128] Wu J,Laird D A,Thompson ML. Sorption and desotption of copper on soil clay components[J].J of Environmental Quality,1999,28:334-338.
    [129]沈学优,陈曙光,王烨等.不同粘土处理水中重金属的性能研究[J].环境污染与防治,1998,20(3):15-18.
    [130]刘峙嵘,韦鹏,曾凯等.镍污染土壤与腐殖酸修复研究[J].现代化工,2006,26增刊(2):132-135.
    [131]高红阁,李白英,陈丽惠等.铬在土壤和地下水中的相互迁移规律及地下水中铬的去处方法[J].环境研究,2002,1:30-32.
    [132]朱立军,李景阳,牟成刚.黔中岩土水系统中氟的环境地球化学研究[J].中国岩溶, 1999,18(2):109-115.
    [133]李静.重金属和氟的土壤环境质量评价及健康基准的研究[D].杭州:浙江大学,2006: 13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700