波导腔叠像系统及其在数字全息检测的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在激光材料处理及加工技术中,对激光光束的功率分布提出了较高的要求。为了实现对作用区域,激光能量的精确控制,通常希望获得矩形、均匀的激光功率分布,因此,研究激光光束的均匀化系统具有重要意义。方形波导腔叠像器具有结构简单,调节方便,能够获得边界整齐、方形分布、能量分布较均匀的光强分布。但由于激光的高相干性,不可避免伴随出现细密的干涉条纹,影响了这种系统的实际应用。如何减小和消除这些干涉条纹是一个值得研究的课题。本论文在研究方形波导腔叠像光学系统特性的基础上,提出了通过实时改变入射到波导腔叠像器入口处聚焦光点的空间位置,达到有效消除干涉条纹,提高光强均匀度的效果。通过平行板波导腔模拟实验,验证了该方法的可行性。在考虑光能的充分利用,系统便于冷却的要求,提出了在波导腔入口前面增加反射转镜和电光晶体的两种针对大功率激光光束均匀化的实用装置。
     近年来,随着微电子技术的飞速发展,CCD的分辨率越来越高,性价比进一步提高,这些技术的进步促进了数字全息技术的快速发展。数字全息检测技术具有非接触、灵敏度高,特别是可以实现全场检测的能力,因此备受人们的关注。目前在数字全息检测技术中,如何获得大尺寸、高质量的再现像,在彩色数字全息检测技术中如何获得尺寸统一的再现像都是研究的热点问题。本文从理论上对数字全息的可变放大率波面重建方法进行了深入研究,提出了通过频域滤波获得建立无干扰数字全息图,并将该方法用于彩色数字全息,形成彩色数字全息非插值干扰波面重建的算法,实验结果表明,再现像的质量明显改善,这为彩色数字全息技术应用于材料的无损检测提供了有益的参考。
     在数字全息实验中,通常是细光束经针孔滤波、扩束、准直后,变成平行光照射物体形成物光。然而,在试件尺寸较大时,必须将光束扩得很大才能照射到整个试件。由于激光束的光场分布是高斯或准高斯分布,扩束光斑的均匀性差这一弱点便显现出来。作者在对波导腔叠像器系统特性研究的基础上,在国内外首次提出将波导腔叠像器系统应用于反射式数字全息检测,即利用波导腔叠像器系统输出的矩形分布的均匀光斑照射漫反射物体,由于波导腔叠像器系统输出光斑上存在的细密干涉条纹的宽度为十几微米的数量级,而物光来自散射表面的漫反射,因此,干涉条纹不会对数字全息记录产生影响。由于物光场的均匀性明显提高,再现像的光强均匀度会更好,有利于后续通过图像处理提取测量信息,此外由于光斑区域外光强几乎为零,提高了光能的利用率,增强了物光信息,也有利于全息图的记录。为了验证以上设想,我们编制了模拟仿真软件,对物光的均匀化对再现像质量的影响进行了模拟仿真研究,模拟结果表明物光的均匀化对再现像的质量有显著影响。为了进行实验验证,我们自行设计制作了方形波导腔,并进行了数字全息对比实验。数字全息实验结果表明,物光的均匀性对再现物光的确有显著影响,经过波导腔叠像器均匀化系统输出的均匀光束作为物光照射物体可以获得比普通扩束光斑质量更高的再现物光场。波导腔叠像器系统输出光斑上存在的细密条纹不会对数字全息记录产生影响。
     为了证实波导腔叠像器系统确实可以应用于大尺寸物体的数字全息检测,并且可以获得比普通扩束光束照射质量更好的再现像及数字全息检测结果,论文作者自主设计、制做了两种大尺寸(约80mm)实验模型。模型采用不锈钢薄板经激光加工制成。一种是利用空气加压的立方体压力容器模型,另一种长方形容器在水的静压力下的形变模型。这两种模型的最大优点是在加、减载荷时装置具有极高的稳定性和重复性,并且两种模型的形变都是离面位移,边界处形变为零,对应于零级条纹,这两种模型还便于通过ANSYS模拟仿真进行结果比较。数字全息实验采用经波导腔叠像器系统输出的较均匀方形光斑照射实验模型,利用消零级可变放大率波面重建算法获得再现物光,再通过两幅不同载荷条件下物光的干涉形成形变场干涉条纹,根据干涉条纹得到形变场。结果表明数字全息检测的形变场的结果与ANSYS模拟仿真结果吻合甚好,表明了方形波导腔叠像器系统的确可以应用于数字全息检测。这一研究结果无疑将为大尺寸物体的数字全息检测提供了一种有效手段。最后,本文根据方形空气压力模型的最大挠度与材料的弹性模量、泊松比、厚度及长宽尺寸有关,且存在精确解析解这一事实,提出了一种测量板状金属材料弹性模量的新方法。
In the application of laser material treating and processing, the high requirement is proposed for the uniformity of the laser beam distribution. In order to control the treatment region and laser energy precisely, usually, the square uniform laser distribution is required. Therefore, the study of the laser beam transformation optic system is of big significance. The square image superposition wave-guide is an optic transform system which is simple and adjustable, and the uniform square light energy distribution with shape boundary can be obtained with it. However, due to the high coherent property of laser, the fine interference fringes appear unavoidably. The existence of the intensity fringes limits the application of this optic transform system. How to eliminate these fringes is a subject worth studying. In this thesis, after studying the property of the square image superposition wave-guide system, the author has proposed a method by changing the space position of the focus spot at the entering plane of the wave-guide. The simulation experiment has performed using a parallel plane wave-guide and verified the feasibility of the approach. Considering the utilizing the laser energy efficiently and the cooling of the system, two systems suitable for practical high power laser application have been presented.
     With the rapid development of microelectronics, the pixels of the CCD become higher and the price become lower. The progress of these techniques has pushed the rapid development of digital holography, Digital holography has such advantages as being touch less, sensitive, and especially fulfilling the whole field measurement. Since the color digital hologram brings more information than monochromatic digital holography, for example, the measurement of three dimension displacement. Therefore the color digital holography is becoming a hot study area. At present, the wave-front reconstruction algorithm is one subject to be studied. Based on the deeply theoryitical study on the adjustable amplification reconstruction approach of the digital holography, we proposed an approach to obtain reconstruction object light field free from the zero-order diffraction interruption by filtering in frequency space. Then we applied this approach to color digital holograph and formed the non-interpolation wave-front reconstruction algorithm. The experiment result demonstrates that the quality of the reconstruction object wave field has been improved remarkably. This result has provided a useful reference for the application of color digital holography in the material testing and measurement.
     In the digital holography experiment, the object light waves and the reference light waves usually are obtained by laser beam filtering through pin-hole space filter, then expanding, and becoming parallel light through lens, the distribution of the expanding light is not uniform on the whole area. While the test object size is so large that it has to be placed far away from the CCD, so the light beam should be expanding even large to illuminate the whole object, and the light coming from the test object becomes very weak, under this condition, the uniformity of the light wave field distribution becomes a serious problem to affect the quality of the reconstruction image In this thesis, based on the study of the property of the square image superposition wave-guide, we first presented the ideal of applying image superposition wave-guide uniformity optical system in the digital holography, that is, the square uniform light pattern comes from image superposition wave-guide uniformity optical system is projected on the test object, the light waves scattered from the rough surface of the test object enters the window of CCD and becomes object light, since fringes separation is about several tens micrometer, the fine interference fringes on the square light pattern has no effect on the recording hologram. After passing through image superposition wave-guide optical system the light distribution become much uniform. Since the energy is concentrated within the light pattern with sharp boundary, the intensity of the object light is increased and carrying more object surface information, which is also helpful for the recording of the hologram. Due to the improvement of uniformity of the object light, the uniformity of the reconstruction image becomes better, this is valuable for the retrieve information from holograms in the proceeding treatments. In order to confirm its validation. We designed and made an image superposition wave-guide and performed digital holography experiments. The experimental results show that the quality of the reconstruction image have been improved and the fine fringes on the square light spot have no effect on the digital holography recording.
     In order to confirm the feasibility that the square image superposition wave-guide can be applied in the digital holography technique for large size object test, the author has designed and manufactured two test models(about80mm) with stainless steel sheet by laser processing. One is a square seal air pressure vessel; the other is a rectangular water pressure vessel. Both test models have a very high stability and repeatability while adding load or reducing load, and deformation fields are out-of-plane displacement, and the boundary is corresponding to the zero order fringes, and the results are convenient for comparing with ANSYS simulation results. The adjustable amplification reconstruction approach free from the zero-order diffraction interruption is implemented to obtain the object wave fields. The interference field of the two object waves fields under different load conditions, then the deformation field is achieved. The experiment results demonstrate that the experimental results coincide well with the ANSYS simulation results, thus approve that the square image superposition wave-guide can be applied to digital holographic detection. This research result will undoubtedly provide an effective means for digital holographic detection for large sized object. Finally, according to the fact that the maximum deformation at center of each side of square air pressure vessel has exact analytical solution and depends on the elastic modulus, Poisson ratio, thickness and the length and width geometry size, a new method for measuring the elastic modulus of plate metallic material is proposed.
引文
[1]王世华,张凌云,李安,等.先进材料与高性能零件快速凝固激光加工研究进展,世界科技研究与发展.2004,第三期.
    [2]Li J C, Merlin J. The optical design of a device allowing the transformation of a high-power laser beam into a square spot. Journal of Optics-Nouvelle Revued Optique,1998, Vol.29, No.6:376-382
    [3]Ma Guangyi. Experimental study on laser bending of thin silicon chip. Dalian Univeristy of Technology,2007,5-8
    [4]Y Kawamura, R. Suzuki, K Toyada and S Nambal. A simple Optical Device for Generating Square Flat-Top Intensity Irradiation from a Gaussian Laser Beam. Optics Comm.,1983,48:44-49
    [5]Ye Shenglin, Ma Junshan, Huang Xin. Simulation of temperature field in laser cutting of brittle material. Optical Technique,2007,33(4):599-601
    [6]Liu J C, Li L J, Zhang Y Z, et al. Attenuation of laser power of a focused Gaussian beam during interaction between a laser and powder in coaxial laser cladding, Journal of Physics D-Applied Physics,2005, Vol.38, No.10:1546-1550
    [7]Fu Y C, A Loredo, B Martin, et al. A theoretical model for laser and powder particles interaction during laser cladding. Journal of Materials Processing Technology,2002, Vol.6,No2:106-112
    [8]S Costil, H Liao, O Chretien, et al. Influence of laser surface cleaning combined with substrate laser preheating on thermal spray coating adhesion. Laser in Engineering, 2005 vol.15, No.5:25-34
    [9]De Oliveira U, V Ocelik, De Hosson. Analysis of coaxial laser cladding processing conditions. surface & coatings technology,2005, Vol.197, No.2:127-136
    [10]Guo L F, Yue T M, Man H C, A finite element method approach for thermal analysis of laser cladding of magnesium alloy with preplaced Al-Si powder. Journal of Laser Applications,2004, Vol.16, No.4:229-235
    [11]李俊昌.激光的衍射及热作用计算.科学出版社,2002
    [12]J W Goodman, R W Lawrence. Digital Image Formation from Electronically Detetcted Holograms. Appl. Phys. lett.,1967,11(3):77-79
    [13]Huang T. Digital holography. Proc of IEEE,1971, (159):1335-1346
    [14]Kronrod M A, Merzlyakov N S, Yaroslavskii L P. Reconstruction of a hologram with a computer. Sov Phys Tech Phys,972,17:333-334
    [15]T Kreis. Handbook of holographic Interferometry Optical and Digital methods. Belin: Wiley VCH,2004
    [16]Schnars U, Juptner W. Digital Holography-digital Hologram Recording, numerical Reconstruction and Related Techniques. Belin Heidelberg, New York,2005
    [17]熊秉衡,李俊昌.全息干涉计量—原理和方法.北京:科学出版社,2009
    [18]钱克矛,徐伯钦,伍小平.光学干涉计量中的位相测量方法.实验力学,2001,16(3):239-245
    [19]S C Lai, B King and M A Neifeld. Wave front reconstruction by means of phase-shifting digital in-line holography. Opt. Commun.,2000,173 (1-6):155-160
    [20]S De Nicola, P Ferraro, A Finizio, et al. Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography. Opt. Laser Eng.,2002,37(4):331-340
    [21]Y Awatsuji, M Sasada, T Kubota. Parallel quasi-phase-shifting digital holography. Appl Phys Lett,2004,85(60):1069-1071
    [22]I.Yamaguchi, J Kato, S Ohta, et al. Image formation in phase-shifting digital holography and applications to microscopy. Appl Optics.2001,40 (34):6177-6186
    [23]T M Kreis. Frequency analysis of digital holography. Opt Eng,2001,41(4):771-778
    [24]E Cuche, P Marquet and C Depeursinge. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl Optics.2000,39(23):4070-4075
    [25]G. Pedrini, S Schedin and H J Tiziani. Spatial filtering in digital holographic microscopy. Journal of Modern Optics.2000,47 (8):1447-1454
    [26]李俊昌,熊秉衡,等著.信息光学教程.北京:科学出版社,2011,210-215
    [27]Zhang F and Yamaguchi I. Algorithm for reconstruction of digital holograms with adjustable magnification,2004 Opt. Lett.29:1668-1673
    [28]桂进斌,李俊昌,宋庆和,等.大尺寸物光波面彩色数字全息高质量重建研究.光子学报,2011,41(9):126-131
    [29]李俊昌,彭祖杰,Tankam Patrice,等.散射光彩色数字全息光学系统及波面重建 算法研究.物理学报,2010,59(07):4646-4655
    [30]Li J C, Patrice T, Peng Z J, et al. Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification.2009, Opt. Lett,34: 572-577
    [31]Collins S A, Laser-system diffraction integral written in terms of matrix optics. J. Optics. Soc. Am,1970, Vol.60:1168-1175
    [32]李俊昌,陈仲裕,赵帅,等.柯林斯公式的逆运算及其在波面重构中的应用.中国激光,2005,(11):1489-1494
    [33]李俊昌,熊秉衡.信息光学理论与计算,北京:科学出版社,2009.P82-85
    [34]Li J C. Etude theorique d'un dispositif optique et de ses variantes pour uniformser l'eclairement d'un faisceau TEM00. Journal of Optics,1987,18(2):73-80
    [35]李重光.波导腔光束变换系统的优化设计及材热物性研究.昆明理工大学博士论文,2006
    [36]Li J C, Merlin J. The optical design of a device allowing the transformation of a high-power laser beam into a square spot. Optics-Nouvelle Revue de Optique,1998, Vol.29, No.6:376-382
    [37]邓锡铭,梁向春,陈泽尊,等.用透镜列阵实现大焦斑的均匀照射.中国激光,1985,12:257-262
    [38]Dickey F M, Holswade S C. Laser Beam Shaping:Theory and Techniques. New York: Marcel Dekker.2000
    [39]胡晓军,郑子文,戴一帆,等.控制三维光场的纯相位衍射光学元件优化设计.应用光学,2007,28(6):778-782
    [40]陈怀新,隋展,陈祯培.采用液晶空间光调制器进行激光光束的空间整形.光学学报,2001,21(9):1107-1111
    [41]窦任生,林海,胡继承.控制液晶器件产生的程控透镜和微透镜阵列.光学学报,2005,25(7):959-964
    [42]叶一东,吕百达,蔡邦维.强激光的时间整形和空间整形——利用双折射透镜组实现激光束的空间整形.激光技术,1996,20(6):324-328
    [43]杨向通,辽范薇.利用双折射透镜组实现激光束空间整形.光学学报,2006,26(11):1698-1674
    [44]J C Li, J Merlin et J Perez. Etude comparative de differents dispositifs permettant de transformer un faisceau laser de puissance avec une repartition energetique gaussienne en une repartition uniforme. Revue de Physique Appliquee, Vol.21,1986: 425-433
    [45]J C LI, Rogerio Lopes, Christine Vialle & Jean-Francois Sacadura. Study of an optical device for energy homogenization of a high power laser. Journal of Laser Applications,1999, Vol.11, No.6:279-284
    [46]Li Chongguang, Li Junchang, Delmas Agens. Optical device to homogenize a laser beam. Chin. Opt. Lett.,2005, Vol.3, No.12:698-700
    [47]Chongguang Li, Agnes Delmas and Junchang Li. Optimization of an optical system used for laser beam transformation. The European Physical Journal Applied Physics, 2006, Vol.33, No.3:183-187
    [48]Xin Gao, Hiroyoki Ohash, Hiroshi Okamoto, et. al. Beam-shaping technique for improving the beam quality of a high power laser-diode stack. Optics Letters,2006, 31(11):1654-1656
    [49]沈永欢.实用数学手册.北京:科学出版社,1992
    [50]Sigeman A E. Laser. California:university science Books Mill Valley,1986:719
    [51]Junchang Li, Chongguang Li, Delmas. A. Calculation of diffraction pattern in spatial surface. Journal of Optical Society of America-A,2007,24(7):1590-1594
    [52]李俊昌.激光热处理与优化控制研.北京:冶金工业出版社,1995
    [53]王楚,汤俊雄编.光学.北京大学出版社,2001年
    [54]RenChung Liu and Ken Y. Hsu. Phase-encoded computer-generated hologram implemented with liquid crystal television. Proc. of SPIE,2002,4803:190-196.
    [55]S Zembutsu and Y Toli. Computer Generated Holograms Using Based cogenigs Amorphous Film. Opt. Comm.1980,34(1):19-22
    [56]M A Kronrod, N S Merzlyakov and L P Yaroslavsky. Reconstruction of Holograms with a Computer. Sov. Phys. Tech. Phys.,1972,17:333-334
    [57]M A Kronrod, L P Yaroslavsky and N S Merzlyakov. Computer synthesis of transparency holograms. Sov. Phys. Tech. Phys.,1972,17:329-332
    [58]A K Evans. Resolution limits and noise reduction in digital holographic Microscopy, Proc. of SPIE,2002,4659:35-43
    [59]Schnars, T Kreis and W Juptner. Digital recording and numerical reconstruction of holograms:reduction of the spatial frequency spectrum. Opt. Eng.35,1996:977-982
    [60]徐莹,赵建林,向强等.无透镜傅里叶变换全息图数值再现中的图像处理.光 学学报,2004,24(11):1503-1506
    [61]G Shen, R Wei. Digital holography particle image velocimetry for the measurement of 3D flows. Opt. Las. Eng.,2005,43:1039-1055
    [62]L Denis, C Fournier and T Fournel. Direct extraction of the mean particle size from a digital hologram. Appl. Opt.,2006,45(5):944-952
    [63]P Ferraro, G Coppola and S D Nicola. Digital holography for characterization and testing of MEMS structures. IEEE,2002,0-7803-7595-5:125-126
    [64]G Coppola, S D Nicola and P Ferraro. Characterization of MEMS structures by microscopic digital holography. Proc. of SPIE,2003,4945:71-78
    [65]E Novak. MEMS metrology techniques. Proc. of SPIE,2005,5716:173-181
    [66]F Montfort, Y Emery and F Marquet. Process engineering and failure analysis of MEMS and MOEMS by digital holography microscopy (DHM). Proc. of SPIE,2007, 6463:64630G:1-7
    [67]V Kebbel, H J Hartmann and W P O Juptner. Characterization of micro-optics using digital holography. Proc.of SPIE,2000,4101:477-577
    [68]J Kuhn, F Charrierea and T Colomba. Digital holographic microscopy for nanometric quality controlof micro-optical components. Proc. of SPIE,2007,6475:64750V: 1-12
    [69]E Cuche, P Marquet and C Depeursinge. Simultaneous amplitude contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt.,1999,38(34):6994-7001
    [70]B Kemper, P Langehanenberg and I Bredebusch. Techniques and applications of digital holographic microscopy for life cell imaging. SPIE-OSA,2008,6633:D1-D9.
    [71]B Kemper, G V Bally. Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt.,2008,47(4):A52-A61
    [72]P Marqueta B Rappazb and F Charrierec. Analysis of cellular structure and dynamics with digital holographic microscopy. SPIE-OSA Biomedical Optics,2007,6633: 66330F:1-5
    [73]P Tankam, P Picart. Use of digital color holography for carck investingation in electronic components. Optics and Lasers in Engineering,49(2011):1335-1342
    [74]周灿林,亢一澜.数字全息干涉法用于变形测量.光子学报,2004,33(2002):171-173
    [75]J L Valin, E Goncalves and F Palacios. Methodology for analysis of displacement using digitalholography. Opt. Las. Eng.,2005,43:99-111
    [76]A E Ennos. Measurement of in-plane surface strain by hologram interferometry. Journal of Physics E:Scientific Instruments.2002,1 (7):731-736
    [77]W Dezhong, Z Tiange. The measurement of 3D asymmetric temperature field by using real time laser interferometric tomography. Opt. Las. Eng.,2001,36:289-297
    [78]S Priti, S F Mohammad and S Chandra. Measurement of temperature of an axis ymmetric flame using shearing interferometry and Fourier fringe analysis technique. Opt. Las. Eng.,2004,43(2):387-392
    [79]C Shakher, M M Hossain, D S Mehta, G Sheoran. Measurement of temperature field in steady laminar free convection flow using digital holography. Proc.of SPIE,2008, 71551X:1-9
    [80]B Rappaz, P Marquet, E Cuche, et al. Measurement of the integral refractive index and dynamic cellmorphometry of living cells with digital holographic microscopy. Opt.Exp.,2005,13(23):9361-9373
    [81]M D Angelis, S D Nicola and A Finizio. Digital holography refractive index profile measurementof phase gratings. Appl. Phy. Lett.,2006,88:1114-1-3
    [82]F Charriere, A Marian, F Montfort, et al. Cell refractive index tomography by digital holographicmicroscopy. Opt. Lett.,2006,31(2):178-180
    [83]Pascal Picart, Julien Leval, Denis Mounier, et al. Some opportunities for vibration analysis with time averaging in digital Fresnel holography. Appl. Optics.,2005(3): Vol.44:337-343
    [84]Pan Feng, Xiao Wen, Liu Shou, et al. Application of three-dimensional spatial correlation properties of coherent noise in phase noise suppression for digital holographic microscopy. Optics and Laser Technology,2013, Vol.51:67-71
    [85]H Arimoto, W Watanabe, K Masaki, et al. Measurement of refractive index change induced by dark reaction of photopolymer with digital holographic quantitative phase microscopy. Opt. Comm.,285 (24):4911-4917
    [86]侯学比,成铎,陈国夫.透过高散射介质成像的超短脉冲激光电子学全息系统.中国激光,1999,26(8):729-733
    [87]C Wagner, W Osten and S Seebacher. Direct shape measurement by digital wavefront reconstructionand multiwavelength contouring.Opt. Eng.,2000,39(1):79-85
    [88]D Kim, B Javidi.3D object recognition using single exposure on-line digital holography. Proc. of SPIE,2006,6027:602703-1-7
    [89]B Javidi, I Moon, S Yeom, et al. Three-dimensional imaging and recognition of micro organism using single-exposure on-line (SEOL) digital holography. Opt. Exp.,2005, 13(12):4492-506
    [90]S K Gil, S H Jeon, N Kim, et al. Successive encryption and transmission with phase-shifting digitalholography. Proc.of SPDE,2006,6136:613615-1-8
    [91]X F Meng, L Z Cai and M Z He. Cross-talk free image encryption and watermarking by digitalholography and random composition. Opt. Com.,2007,269:47-52
    [92]D S Monaghan, U Gopinathan and B M Hennelly. Digital holography and optical encryption. Proc.of SPIE,2005,5908:1-15
    [93]李俊昌,彭祖杰,T Patrice, et al.散射光彩色数字全息光学系统及其波面重建算法研究.Opt.Comm.,2004,240:261-267
    [94]P Pascal, T Patrice, M Denis, et al. Spatial bandwidth extended reconstruction for digital color Fresnel holograms. Optics Express,2009,7:9145-9156
    [95]Li J C, P Tankam, Peng Z J, et al. Digital holographic reconstruction of larger object using a convolution approach and adjustable magnification. Optcis Express,2009, 34:572-574
    [96]佟景伟,李鸿琦.光力学原理及测试技术.科学出版社.2005
    [97]徐芝纶.弹性力学(上、下).高等教育出版社.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700