基于细观层次的钢筋混凝土构件力学性能的数值方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据内部结构组成和研究的需要,混凝土材料从分析尺度上可分为宏观、细观和微观三个不同层次。混凝土的力学性能可以通过宏观和细观两个层次下的模型来进行预测。在细观层次上,通常将混凝土看作由粗骨料、硬化水泥砂浆和界面粘结带组成的三相非均质复合材料,其中,硬化水泥砂浆或骨料可分别视为各向同性材料。细观刚体弹簧元法是在细观层次上应用刚体弹簧元法的原理对混凝土进行力学分析的方法。本文采用细观刚体弹簧元法模拟分析了混凝土试件及钢筋混凝土构件在静态加载下的力学性能,并与试验结果进行了对比分析,验证了该方法在钢筋混凝土结构力学性能模拟上的有效性和可行性。具体开展工作及结论如下:
     (1)系统总结了细观刚体弹簧元法的理论框架,包括粗骨料的生成过程(方法)、细观刚体单元的划分原理、刚体弹簧模型的确定方法、细观本构关系的建立过程等,并评述了国内外细观刚体弹簧元法的最新研究进展及研究成果。
     (2)考虑劈裂试验的加载特点,对劈裂试件刚体单元的划分方法进行了局部调整,建立了适用于劈裂分析的数值模型。模拟了不同尺寸混凝土试件的劈裂抗拉试验,与试验结果的对比表明:试件破坏形态和劈裂抗拉强度均与试验结果保持良好的一致性,其中小尺寸试件所表现出的尺寸效应要明显于大尺寸试件所表现出的尺寸效应。对不同垫片宽度混凝土劈裂抗拉数值模拟结果表明,垫片宽度对混凝土的劈裂抗拉强度有重大影响,但当垫片宽度b与试件宽度D的比值(b/D)小于0.04时,垫片宽度对混凝土的劈裂抗拉强度影响不大,劈裂强度基本不变;当b/D为0.058时,劈裂抗拉强度与轴心抗拉强度近似相等。
     (3)砂浆-骨料界面是混凝土的薄弱环节,在细观数值模拟中,界面本构模型对混凝土力学性能的数值模拟结果有重要影响。本文将不同的界面拉伸软化本构模型以及界面剪切本构模型用于细观刚体弹簧元模型的数值模拟中。通过数值模拟结果和试验结果的对比表明,在断裂能相同的情况下,不同软化曲线下的数值模拟结果差别不大;各界面剪切本构模型均可用于混凝土的细观数值模拟中。
     (4)在混凝土细观刚体弹簧元模型的基础上,钢筋采用梁单元模拟,进行了配有箍筋的钢筋混凝土受弯构件正截面和斜截面承载力的细观数值模拟研究。并与试验结果进行了对比分析,结果表明:数值计算结果与试验结果吻合较好,本文建立的模型能够较为合理地描述钢筋混凝土梁的破坏形态、荷载位移响应及加载过程中钢筋的应力变化过程。另外,对不同尺寸钢筋混凝土梁弯曲破坏过程的计算分析表明,随着梁有效高度的增加,梁的名义弯曲强度整体上呈现降低的趋势,但当试件有效高度大于240mm时趋于稳定。
In terms of the composites of concrete material and researching consideration, there are several different levels:macrolevel, mesolevel and microlevel. All the mechanical properties of concrete are available to be predicted through the levels of macro or micro. On mesoscale, concrete is usually regarded as a three-phase composite, consisting of coarse aggregates, mortar and the bond zone between these two compositions. Among them, the mortar or aggregate can be regarded as isotropic materials, respectively. Mesoscopic Rigid Body Spring Model (RBSM) is an approach to analyze the properties of concrete by the method of RBSM on mesolevel. In this paper, the mesoscopic RBSM is used to simulate the behavior of concrete and reinforced concrete members under static loading. By comparing the simulation results with experimental data, the mesoscopic RBSM is confirmed to be effective and feasible for simulating the mechanical properties of reinforced concrete members. The main contents are summarized as follows:
     (1) This paper systematically summarizes the theoretical background of the mesoscopic RBSM, covering the generation process of coarse aggregates, the meshing technique of elements, the construction of the mesoscopic RBSM and the development of constitutive law of the springs. In addition, the latest research advances and results on the application of mesoscopic RBSM are reviewed.
     (2) Regarding of the loading characteristics of splitting test in simulation, the adjustment of element meshing is adopted for the sample in order to be able to represent the test condition. The article simulates the concrete splitting tensile tests under different sample sizes, which is compared with the results from the experiments. It is shown that both the failure modes and splitting tensile strengths are similar with those from test results, and the size effect is more evident in small size samples. The influence of bearing widths on splitting tensile strength of concrete is also analyzed. The results show that ratio of bearing width b to sample width D has a significant impact on splitting tensile strength of concrete, but if the ratio b/D is less than 0.04 that splitting tensile strength of concrete is not obvious; if b/D equals to 0.058, splitting tensile strength is almost the same with axial tensile strength of concrete.
     (3) Mortar-aggregate interface is the weak zone in concrete. The constitutive model of the interface has an important effect on the mechanical properties of concrete for the mesoscopic simulation. In this thesis, different tensile softening constitutive models and shear constitutive models for interface are used in the mesoscopic RSBM. Compared with test results, it is shown that the difference among different constitutive models is not to much when the fracture energy is kept constant; different shear constitutive models are all effective in mesoscopic simulation of concrete.
     (4) Based on the mesoscopic RBSM, and reinforcing bars are modeled as beam elements. Both the flexure and shear bearing capacity of reinforced concrete members are simulated. Compared with the experimental results, it is shown that RBSM on mesoscale can be sucessfully applied to the simulation of the failure mode, load-displacement response and the stress variation of reinforcement subjected to loading. In addition, the results from the failure progress of reinforced concrete beams under different sizes show that the nominal compressive strength goes lower with the growth of effect depth of beams, and the strength does not change if the effect depth of beam is larger than 240mm.
引文
[1]王宗敏,朱明霞,赵晓西.混凝土断裂问题研究的层次方法[J].郑州工业大学学报.2000,21(4):16-22.
    [2]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟[J].水利学报,2004,35(10):27-35.
    [3]尚岩,杜成斌.基于细观损伤的混凝土力学性能数值模拟研究进展[J].水利与建筑工程学报,2004,2(1):23-28.
    [4]彭一江,黎保琨,刘斌.碾压混凝土细观结构力学性能的数值模拟[J].水利学报,2001,32(6):19-22.
    [5]马怀发,陈厚群,黎保琨.混凝土细观力学研究进展及评述[J].中国水利水电科学研究院学报,2004,2(2):46-52.
    [6]陈爱玖,章青,刘仲秋,等.混凝土细观分析的研究现状[J].混凝土,2008,(6):21-25.
    [7]Bazant Z P, Oh B H. Crack band theory for fracture of concrete [J]. Materiaux et constructions,1983, 16(3):155-177.
    [8]Bazant Z P, Prat P C. Microplane model for brittle-plastic material. I:theory[J]. Journal of Engineering Mechanics,1988,114(10):1672-1688.
    [9]Bazant Z P, Prat P C. Microplane model for brittle-plastic material. II:verification.[J]. Journal of Engineering Mechanics,1988,114(10):1689-1702.
    [10]郑建军,李庆勇,曾洪波,等.混凝土微平面模型的参数研究与应用[J].四川建筑科学研究,2004,(2):92-94.
    [11]Bazant Z P, Tabbara M R, Kazemi M T, et al. Random particle model for fracture of aggregate or fiber composites[J]. Journal of Engineering Mechanics,1990,116(8):1686-1705.
    [12]王立久,程伟峰.基于细观力学的混凝土数值模拟研究进展(一)[J].建材技术与应用,2008,(8):1-3.
    [13]Zhong X, Chang C S. Micromechanical modeling for behavior of cementitious granular materials[J]. Journal of Engineering Mechanics,1999,125(11):1280-1285.
    [14]Schlangen E, Garboczi E J. Fracture simulations of concrete using lattice models:computational aspects[J]. Engineering Fracture Mechanics,1997,57(2-3):319-332.
    [15]杨强,张浩,吴荣宗.二维格构模型在岩石类材料开裂模拟中的应用[J].岩石力学与工程学报,2000,19(z1):941-945.
    [16]杨强,张浩,周维垣.基于格构模型的岩石类材料破坏过程的数值模拟[J].水利学报,2002,33(4):46-50.
    [17]肖建庄,杜江涛,刘琼.基于格构模型再生混凝土单轴受压数值模拟[J].建筑材料学报,2009,12(5):511-514.
    [18]王立久,曹庆坚.基于网格模型的混凝土细观结构数值模拟[J].建材技术与应用,2005,(6):9-11.
    [19]刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂[J].清华大学学报(自然科学版),1996,36(1):84-89.
    [20]唐欣薇,张楚汉.基于改进随机骨料模型的混凝土细观断裂模拟[J].清华大学学报(自然科学版),2008,48(3):348-351.
    [21]党发宁,梁昕宇,田威,等.混凝土随机骨料模型尺寸效应的细观数值分析[J].岩土力学,2009, 30(s2):518-523.
    [22]黎保琨,彭一江.碾压混凝土试件细观损伤断裂的强度与尺寸效应分析[J].华北水利水电学院学报,2001,22(3):50-53.
    [23]Wittmann F H, Roelfstra P E, Sadouki H. Simulation and analysis of composite structures[J]. Materials science and engineering,1985,68(2):239-248.
    [24]高政国,刘光廷.二维混凝土随机骨料模型研究[J].清华大学学报(自然科学版),2003,43(5):710-714.
    [25]Wang Z M, Kwan A, Chan H C. Mesoscopic study of concrete Ⅰ:generation of random aggregate structure and finite element mesh[J]. Computers & structures,1999,70(5):533-544.
    [26]侯宇星,王立成.混凝土细观分析中随机多边形骨料生成方法[J].建筑科学与工程学报,2009,26(4):59-65.
    [27]Mohamed A R, Hansen W. Micromechanical modeling of concrete response under static loading—part Ⅰ:model development and validation[J]. ACI Materials Journal,1999,96(2):196-203.
    [28]Zhu W C, Teng J G, Tang C A. Mesomechanical model for concrete. Part Ⅰ:Model development[J]. Magazine of Concrete Research,2004,56(6):313-330.
    [29]Teng J G, Zhu W C, Tang C A. Mesomechanical model for concrete. Part Ⅱ:Applications[J]. Magazine of Concrete Research,2004,56(6):331-345.
    [30]Kawai T, Toi Y. New element models in discrete structural analysis[J]. Naval Architecture and Ocean Engineering,1978,16:97-110.
    [31]Bolander Jr. J E, Saito S. Fracture analyses using spring networks with random geometry[J]. Engineering Fracture Mechanics,1998,61(5-6):569-591.
    [32]Nakamura H, Srisoros W, Yashiro R, et al. Time-dependent structural analysis considering mass transfer to evaluate deterioration process of RC structures[J]. Journal of Advanced Concrete Technology,2006,4(1):147-158.
    [33]Wang Z, Lin F, Gu X. Numerical simulation of failure process of concrete under compression based on mesoscopic discrete element model[J]. Tsinghua Science and Technology,2008,13(z1):19-25.
    [34]Bolander Jr. J E, Hong G S, Yoshitake K. Structural concrete analysis using rigid-body-spring networks[J]. Computer-Aided Civil and Infrastructure Engineering,2000,15(2):120-133.
    [35]Bolander Jr. J E, Le B D. Modeling crack development in reinforced concrete structures under service loading[J]. Construction and Building Materials,1999,13(1):23-31.
    [36]Walravent J C, Reinhard H W. Concrete mechanic. part A:theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subject to shear loading[J]. Heron,1981:26(1 A), 1-68.
    [37]姜璐,郑建军.混凝土界面百分比计算的Monte Carlo法[J].吉首大学学报(自然科学版),2003,24(3):27-29.
    [38]Berton S, Bolander J E. Crack band model of fracture in irregular lattices[J]. Computer Methods in Applied Mechanics and Engineering,2006,195(52):7172-7181.
    [39]Nagai K, Sato Y, Ueda T. Mesoscopic simulation of failure of mortar and concrete by 2D RBSM[J]. Journal of Advanced Concrete Technology,2004,2(3):359-374.
    [40]Wasserman R, Bentur A. Interfacial interactions in lightweight aggregate concretes and their influence on the concrete strength[J]. Cement and Concrete Composites,1996,18(1):67-76.
    [41]王怀亮,宋玉普,王宝庭.用刚体弹簧元法研究全级配混凝土力学性能[J].大连理工大学学报,2006,46(z1):105-117.
    [42]王立成,陈桂斌.基于细观刚体弹簧元的轻骨料混凝土力学性能数值模拟[J].水利学报,2008,39(5):588-595.
    [43]王宝庭,徐道远.基于刚体弹簧元法的全级配混凝土本构特性模拟[J].河海大学学报(自然科学版),2000,28(1):24-27.
    [44]王宝庭,宋玉普.基于刚体—弹簧模型的混凝土微裂纹行为模拟[J].工程力学,1999,16(002):140-144.
    [45]Budiansky B, O'Connell R J. Elastic moduli of a cracked solid[J]. International Journal of Solids and Structures,1976,12(2):81-97.
    [46]Berton S, Bolander J E. Crack band model of fracture in irregular lattices[J]. Computer Methods in Applied Mechanics and Engineering,2006,195(52):7172-7181.
    [47]杜立峰,杨茜,屈彦玲,等.混凝土劈裂抗拉强度尺寸效应的细观数值研究[J].铁道建筑,2008,(7):112-113.
    [48]彭一江,黎保琨,刘斌.碾压混凝土细观结构力学性能的数值模拟[J].水利学报,2001,32(6):19-22.
    [49]姜福田.混凝土抗拉强度测定中的几个问题[J].水力发电,1986,(9):25-30.
    [50]钱觉时,杨再富,黄煜镔,等.高强混凝土强度尺寸效应的试验研究[J].华中科技大学学报(城市科学版),2004,21(1):1-4.
    [51]Bazant Z P, Kazemi M T, Hasegawa T, et al. Size effect in brazilian split-cylinder tests. measurements and fracture analysis[J]. ACI Materials Journal,1991,88(3):325-332.
    [52]Chen W F, Yuan R L. Tensile strength of concrete:double-punch test[J]. Journal of the Structural Division,1980,106(8):1673-1693.
    [53]Rocco C, Guinea G V, Planas J, et al. Size effect and boundary conditions in the brazilian test: experimental verification[J]. Materials and Structures,1999,32(217):210-217.
    [54]宣国良.混凝土圆柱体劈拉强度的尺寸效应[J].河海大学学报,1996,24(2):92-97.
    [55]周红.混凝土强度尺寸效应的实验研究[D].大连:大连理工大学,2010.
    [56]Rocco C, Guinea G V, Planas J, et al. Review of the splitting-test standards from a fracture mechanics point of view[J]. Cement and Concrete Research,2001,31(2):73-82.
    [57]Tang T. Effects of load-distributed width on split tension of unnotched and notched cylindrical specimens[J]. Journal of Testing and Evaluation,1994,22(5):401-409.
    [58]Olesen J F, Ostergaard L, Stang H. Nonlinear fracture mechanics and plasticity of the split cylinder test[J]. Materials and Structures,2006,39(288):421-432.
    [59]朱亚超.混凝土中砂浆-骨料界面力学性能试验研究[D].大连:大连理工大学:2011.
    [60]朱亚超,宋玉普,王立成.砂浆-骨料界面拉伸软化性能试验[J].建筑科学与工程学报,2011(1):91-95.
    [61]CEB-Comite Euro-International du Beton-EB-FIP Model Code 1990(1993)[Z]. Bulletin Information No.213-214, Lausanne.
    [62]Reinhardt H W, Cornelissen H A W, Hordijk D A. Tensile tests and failure analysis of concrete[J]. Journal of Structural Engineering,1986,112(11):2462-2477.
    [63]Asai M, Terada K, Ikeda K, et al. Meso-scopic numerical analysis of concrete structures by a modified lattice model[J]. Structural Engineering/Earthquake Engineering,2003,20(1):43s-54s.
    [64]Prasad B K R, Sagat R V. Numerical modelling of fracture and size effect in plain concrete[J]. Journal of the Institution of Engineers (India):Civil Engineering Division,2006,86(FEB.):182-186.
    [65]Yang Z J, Chen J. Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams[J]. Engineering Fracture Mechanics,2005,72(14):2280-2297.
    [66]Pamin J, De Borst R. Simulation of crack spacing using a reinforced concrete model with an internal length parameter[J]. Archive of Applied Mechanics,1998,68(9):613-625.
    [67]侯宇星.钢筋混凝土力学性能的细观数值模拟研究[D].大连:大连理工大学,2010.
    [68]郑晓燕,吴胜兴.钢筋混凝土粘结滑移本构关系建立方法的研究[J].四川建筑科学研究,2006,32(1):18-21.
    [69]Lundgren K, Gylltoft K. A model for the bond between concrete and reinforcement[J]. Magazine of Concrete Research,2000,52(1):53-64.
    [70]Tassios T P, Yannopoulos P J. Analytical studies on reinforced concrete members under cyclic loading based on bond stress-slip relationshipsps[J]. Journal of the American Concrete Institute,1981,78(3): 206-216.
    [71]Somayaji S, Shah S P. Bond stress versus slip relationship and cracking response of tension members.[J]. Journal of the American Concrete Institute,1981,78(3):217-225.
    [72]Allwood R J, Bajarwan A A. Modeling nonlinear bond-slip behavior for finite element analyses of reinforced concrete structures [J]. ACI Structural Journal,1996,93(5):538-544.
    [73]Saito S, Hikosaka H. Numerical analyses of reinforced concrete structures using spring network models[J]. Journal of Materials, Concrete Structures and Pavements.1999,672(44):289-303.
    [74]Revathi P, Menon D. Nonlinear finite element analysis of reinforced concrete beams[J]. Journal of Structural Engineering,2005,32(2):135-137.
    [75]张玉成.碳纤维布加固钢筋混凝土梁抗剪性能研究[D].武汉:武汉大学,2005.
    [76]杜修力,张建伟,符佳等.钢筋混凝土构件的尺寸效应研究进展及展望[J].建筑科学与工程学报,2009,26(3):15-19.
    [77]钱觉时,黄煜镔.混凝土强度尺寸效应的研究进展[J].混凝土与水泥制品,2003,(3):1-5.
    [78]Sabnis G M, Mirza S M. Size effect in model concretes[J]. Journal of the Structural Division,1979, 105(6):1007-1020.
    [79]Viso J R D, Carmona J R, Ruiz G.Shape and size effects on the compressive strength of high-strength concrete[J]. Cement and Concrete Research,2008,38(3):386-395.
    [80]姜福田.混凝土力学性能与测定[M].北京:中国铁道出版社,1989.
    [81]Malhotra V M. Effect of specimen size on tensile strength of concrete[J]. ACI Journal Proceedings, 1970,67(6):467-469.
    [82]Bazant Z P, Yu Q. Designing against size effect on shear strength of reinforced concrete beams without stirrups:Ⅱ verification and calibration[J]. Journal of Structural Engineering,2005,131 (12): 1886-1897.
    [83]Angelakos D, Bent E C, Collins M P. Effect of concrete strength and minimum stirrups on shear strength large members[J]. ACI Structural Journal,2001,98(3):290-299.
    [84]Roberto R D, Riera J D. Size effects in the analysis of reinforced concrete structures [J]. Engineering Structures,2004,26(8):1115-1125.
    [85]Alca N, Alexander S D B, Macgregor J G. Effect of size on flexural behavior of high-strength concrete beams[J]. ACI Structural Journal,1997,94(1):59-67.
    [86]Ozbolt J, Mestrovic D, Li Y J, etal. Compression failure of beams made of different concrete types and sizes[J]. Journal of Structural Engineering,2000,126(2):200-209.
    [87]郑新丰.高强混凝土梁弯曲性能尺寸效应试验研究[D].大连:大连理工大学,2011.
    [88]Belgin C M, Sener S. Size effect on failure of over reinforced concrete beams[J]. Engineering Fracture Mechanics,2008,75(8):2308-2319.
    [89]Yi S T, Kim M S, Kim J K, et al. Effect of specimen size on flexural compressive strength of reinforced concrete members[J]. Cement and Concrete Composites,2007,29(3):230-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700