火星南部高原古老火山作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火星在人类太阳系探测活动中具有独特的地位,可以通过对其进行较为快速和系统的探测来回答许多重要的行星科学问题。火星探测的主要科学目标是认识行星的地质演化,了解构造和气候的相互作用,以及揭示适合生命生存的环境。国际上已经进行了41次火星探测任务:从1965年开始的飞越探测,到随后四十多年的环绕探测,着陆器探测以及表面巡游车探测。这些系统的探测任务为我们揭示了这颗红色星球的许多重要特征,包括全球的地形,地质构造和火山作用,表面矿物和元素成分,近地表水的分布,固有的剩磁磁场,重力场和地壳结构,以及大气成分和其随时间变化的状态。我国对火星地质和比较行星学的研究起步晚、基础薄弱。但是,随着我国综合国力的不断增强,国家已经制定了中长期的深空探测计划,将不断打造“中华牌”的深空探测工程。嫦娥探月工程、空间站工程,以及规划中的自主火星及其它太阳系天体的探测,都将在未来5-10年陆续展开。行星科学学科建设也在不断得到重视。因此,利用现有探测数据,进行火星的表面的形貌学、年代学、矿物学和火山学研究,不仅是重要的国际前沿课题,同时也将为我国的火星探测提供必要的知识支撑,符合国家战略要求,并具有重要的科学意义。
     太阳系类地行星都经历了类似的形成和早期演化过程(30亿年以前),但后期的地质演化过程差异明显,导致了四个类地行星的表面形貌、成分和内部结构存在巨大的差异。例如,地球地质构造活动频繁,表面平均年龄约为1亿年,导致了保存的早期(早于25亿年的太古宙和冥古宙)火山岩浆记录极少。而火星表面分布有大量的火山形迹(火山群和熔岩平原),是太阳系类地行星中火山活动特征最为明显和保存早期火山形迹特征最完好的行星。这些古老火山形迹的形貌、成分和后期改造特征,是揭示火星早期热演化和后期地质过程的最好的研究对象,也是研究太阳系行星火山作用和比较行星火山学最为理想的天体,对于了解和认识地球早期的火山岩浆活动,研究地球与近地星体的异同和相互关系,开展比较行星学研究具有重要意义。因此,对于火星表面古老火山作用的研究具有极其重要的意义。
     本论文首先简要介绍了火星表面的火山作用形迹,总结了研究进展,并提出了尚未解决的问题;然后展示了新开发的利用热红外多光谱数据对于火星表面成分的半定量分析的方法;详细阐述了对新发现的火星南部高原古老火山的形貌学和年代学的研究,揭示了它们在火星热演化历史上的重要意义;报告了在萨梅斯亚(Thaumasia)平原新发现的岩墙,并对叙利亚-萨梅斯亚地块(STB:Syria-Thaumasia Block)中的熔岩平原的表面成分和热物理性质进行了研究,探讨了萨西斯高原的隆升以及水手大峡谷的形成对于该区熔岩平原形成机制的影响。本论文的基本内容包括以下几个方面:
     1.热红外多光谱数据对于火星表面成分的半定量分析的方法研究。
     在过去的几十年里面,人们利用红外光谱仪器研究火星表面的成分和物理性质。利用TES(Thermal Emission Spectrometer)获得的数据,前人建立了多个火星全球的定量化数据(包括反照率,矿物成分和热惯量)。随着新的热红外(如THEMIS, Thermal Emission Imaging System)和可见光/近红外(如OMEGA, Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activite和CRISM, Compact Reconnaissance Imaging Spectrometer for Mars)科学载荷获得更多新的数据,我们对于火星表面的成分,岩石热物理性质和古环境特征都有新的认识。可见光/近红外仪器虽然具有较高的空间分辨率,并且对含水矿物的探测的灵敏度比较高的,但是通常无法得到全部造岩矿物的含量(如长石和石英)。热红外仪器通常具有较低的空间分辨率,然而热红外发射光谱的吸收特征的深度是直接和观测视域中各种矿物的含量成正比的。利用热红外发射光谱的线性解谱可以定量获得结晶的火成岩的矿物成分(准确度为5-15%),而传统岩相学分析的准确度也在5-10%,因此热红外测谱学能够适用于矿物含量的定量分析。本文报道了新开发的热红外多光谱解谱方法——最小剩余循环光谱混合分析(LRISMA:Least Residual Iterative Spectral Mixture Analysis)。该方法能够根据先验知识,半定量的获得主要造岩矿物的含量:对于长石,辉石,橄榄石,高硅相和石英的精确度可以达到4-16%,准确度可以达到5-20%。本方法可以应用于高质量的THEMIS数据(较高表面温度,较低的大气水汽含量和灰尘含量)得到小尺度地质单元的主要造岩矿物的含量,从而更好的研究区域地质演化。
     2.南部高原古老火山的形貌学和年代学的研究
     火山作用在所有类地行星层圈结构的形成和演化中都起了重要的作用。前人对火星上的火山做了大量的研究,普遍认为它们的火山作用始于诺亚纪(>3.7Ga),一直持续到晚亚马逊纪(<0.1Ga)。但是古老火山作用的形式,它们和最早期火山建造以及与整个火星热演化的联系尚不清楚。本文展示了许多分布在南部高原的早诺亚纪(>4.0Ga)的火山。在空间分布上它们大多毗邻萨西斯(Tharsis)火山省和环海拉斯(Hellas)火山省。相比以前的研究结论,本文认为这两个火山省的火山作用时间跨度更长,强度更大。这些火山建造的表面大都被放射状的河谷所切割,是早期流水侵蚀的痕迹,而这些侵蚀作用在西方纪熔岩平原形成的时候已经停止,证明火星早期曾经潮湿温暖。
     3.火星表面岩石热物理性质及岩墙(群)研究
     萨西斯隆起是火星表面最显著的火山省,确定其岩浆成分对于研究火星的岩浆和热的演化非常重要。由于其表面大部分的区域覆盖了较厚的灰尘,以往岩浆的成分确定主要是利用火山形貌数据反演获得的。叙利亚-萨梅斯亚地块是一个和萨西斯隆起紧密联系的复杂的构造-火山区域。其中的熔岩平原具有不同的表面模式年龄,研究这些熔岩平原的岩浆成分为我们提供了研究萨西斯隆起前后岩浆成分是否变化的机会。本文利用TES数据研究了叙利亚-萨梅斯亚地块中的熔岩平原的表面岩石的热物理性质和成分;利用THEMIS红外图像,CTX (Context Camera)图像和HiRISE (High Resolution Imaging Science Experiment)图像展示了新发现的长距离熔岩渠道和熔岩管道。这些火山构造为广泛分布的岩浆的长距离运输提供了通道。皱脊的分布指示了诺亚纪-西方纪皱脊平原物质单元(HNr)和西方纪皱脊平原物质单元(Hr)的岩浆喷发时间早于萨西斯隆起,而西方纪下部熔岩流物质单元(Hsl)和西方纪上部熔岩流物质单元(Hsu)的岩浆喷发晚于该隆起。本文通过光谱数据的分析,发现这四个熔岩平原的成分有一定的变化,并且表面热物理性质指示这些变化是来自于原位的成分差异,受风成堆积物的影响很小。据此,我们认为萨西斯隆起前后,构成熔岩平原的岩浆成分发生了变化。这个结果表明了萨西斯地幔柱对于广泛发育的熔岩平原的岩浆成分和演化机制产生的复杂影响,对于了解早期火山作用具有重要的意义。
     尽管火星是一个强烈火山作用并且火山形貌得到了很好保存的行星,但是由于缺少构造抬升和较低的剥蚀速率,岩墙很少在表面暴露(而地球上主要是通过这两种方式暴露次表层的岩墙)。火星表面连续的凹陷,较窄的地堑,线性或拉长的槽型凹陷以及磁场的异常可以用来推测岩墙的存在。近年来随着探测数据的增多以及分辨率的提高,前人报道了一些直接观测到的可能的侵蚀暴露的岩墙,有些成分还比较独特。本文报道了利用图像和光谱数据在萨梅斯亚平原(Thaumasia Planum)新发现的岩墙。岩墙分布的区域发育了大量的蜿蜒的皱脊,这些区域在前人的地质填图的结果中显示为较老的具有皱脊的平原物质,其年龄在晚诺亚纪到早西方纪。这些岩墙相对与周围的物质具有独特的热物理性质和成分特征。对于它们的空间分布和成分特征以及和周围地质单元的地层关系,为萨西斯隆起和水手大峡谷的打开提供了限制条件。
     总之,本论文的研究成果可以加深我们对于火星古老火山作用(包括火山作用形迹的形貌,成分,表面热物理性质,岩浆侵位机制和成分演化)的认识,为各种地球物理模型和数值模拟模型提供了切实的地质观测证据,对了解太阳系类地行星的早期火山作用的特征和比较行星学研究具有重要的意义。
Mars has a unique position in solar system exploration:many important planetary scientific questions can be answered by systematic and relatively short-period exploration. The main scientific objectives of the Mars exploration are to decipher the geological evolution of the planet, to understand the interaction of tectonics and climate, and to search for a habitable environment for life.41Mars exploration missions have been carried out:the first spacecraft flew by the red planet in1965, followed by orbiters, landers, and rovers on the surface. These systematic exploration missions have shown us many important characteristics of Mars, including the global topography, geological tectonic and process, mineralogical and elemental composition of the surface, distribution of near-surface water, remnant magnetic field, gravity field and crustal structure, and time-varying atmospheric composition. The study of martian geology and comparative planetary geology started late in China, and the foundation is weak. However, with the constant enhancement of China's national strength, the country has developed a medium-and long-term deep space exploration plan that will continue to carry out a series of deep space exploration projects. With the success of the Chang'E lunar missions and the space station project, independent missions to Mars and other celestial bodies in the solar system will be launched in the next5-10years. Meanwhile, the construction of planetary science programs also continues to receive attention. Therefore, using the existing data to study the morphology, topography, chronology, mineralogy, and volcanology of Mars is not only a forefront research topic, but it also provides a necessary knowledge basis for China's future exploration of Mars. It is in line with national strategic requirements and of scientific significance.
     Terrestrial planets have experienced similar formation and early evolution history (>3Ga), but their subsequent geological evolution differed greatly and resulted in variations of the surface morphology, composition, and internal structure. For example, the Earth's tectonics have been so active that the average surface age is about100Ma, and the early (>2.5Ga in Archean and Proterozoic) volcanic magma records rarely survive. Mars has a large amount of volcanic features (volcanoes and lava plains), and it is the planet with both the best-preserved ancient volcanic features and the most prominent volcanic processes. It is very important to study the geomorphology, composition, and modification of these volcanic features to reveal the early thermal evolution and subsequent geologic processes. In addition, it is important to understand the relationship between terrestrial planets and comparative planetary studies.
     In this paper, we summarized the volcanic features on the surface of Mars, reported a new method and its application for the semi-quantitative determination of major rock-forming minerals, presented the morphology and chronology of newly identified ancient volcanoes on the southern highlands, showed a newly discovered dike in Thaumasia planum, and revealed the surface composition and thermophysical properties of lava plains in Syria-Thaumasia Block.
     We have developed a new method (LRISMA:Least Residual Iterative Spectral Mixture Analysis) to semi-quantitatively determine major rock forming minerals (feldspar, pyroxene, olivine, high-silica phases and quartz) with multispectral data. Sub-libraries of minerals, generated from a master library of minerals based on prior knowledge, are used to produce every possible mineral end-member combination to fit the target spectra. Mineral abundances that correspond to the least root-mean-square (RMS) errors (best fit) generally agree best with previous petrographic and hyperspectral studies, given the greatly reduced spectral range and resolution. The accuracy and reproducibility of LRISMA is~4-16%and~5-20%respectively, while the accuracy of petrographic and previous hyperspectral studies is~5-15%. LRISMA can be applied to semi-quantitatively characterize the bulk surface mineralogy of small-scale geologic features with high quality Thermal Emission Imaging System (THEMIS) spectral data (high surface temperature, low atmospheric opacity) with the ultimate goal of better understanding regional geologic processes.
     Volcanism plays an important role in the formation and thermal evolution of the crusts of all terrestrial planets. Martian volcanoes have been extensively studied, and it has been suggested that the volcanism on Mars that created the visible volcanic features was initiated in the Noachian (>3.7Ga) and continued to the Late Amazonian (<0.1Ga). However, styles of ancient volcanism, their links with the earliest volcanic constructions, and the thermal evolution of the planet are still not well understood. Here we show that numerous Early Noachian (>4.0Ga) volcanoes are preserved in the heavily cratered southern highlands. Most of these are central volcanoes with diameters ranging from50to100km and heights of2-3km. Most of them are spatially adjacent to and temporally continuous with the Tharsis and circum-Hellas volcanic provinces, suggesting that these two volcanic provinces have experienced more extensive and longer duration volcanism than previously thought. These edifices are heavily cut by radial channels, suggesting that an early phase of aqueous erosion initiated and ended prior to the emplacement of the encircling Hesperian lava fields.
     Tharsis is the most prominent volcanic province on Mars, yet the composition of its lava flows and the relationship of composition to the development of Tharsis are poorly known. Most of Tharsis is covered with air-fall dust, which inhibits spectroscopic determination of lava mineralogy. The Syria-Thaumasia block (STB) is a complex tectono-volcanic province closely related to the Tharsis bulge. The lava plains of STB have different emplacement ages, which provide an opportunity to examine whether magma composition changed with the evolution of Tharsis. In this study, we assessed the lava plains using Thermal Emission Spectrometer (TES) data. Using derived physical properties, we targeted dust-free regions from four different-aged surfaces. We determined the mineralogical composition by modeling the average TES surface spectrum from each of the four surfaces. All units have similar mineralogy, but the younger two units have more high-SiO2phases. We also identified long distance lava channels/tubes in this region for the first time using data of the THEMIS instrument, Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE). They provided an efficient mechanism for observing long-distance and widely distributed lava emplacement. The spatial distribution of wrinkle ridges indicates that lava emplacement in the lava plains units HNr (older ridged plains material) and Hr (younger ridged plains material) happened before the rise of Tharsis. Finally, lava was emplaced in the lava plains of units Hsl (flows of lower member) and Hsu (Upper members). We showed the magma composition changed in the lava plains of STB before and after the uplift of Tharsis. This helps to characterize both the composition and evolution of the early martian magma as well as to provide insight into the mechanism of emplacement of lava plains and early volcanism.
     Finally, we have identified several exposed dikes in Thaumasia Planum Mars using THEMIS, CTX, HiRISE and CRISM data. These dikes extend from tens to~100kilometers in length with average widths of~50m. They display classic'en echelon' patterns while cross-cutting preexisting geologic features, including extensive wrinkle ridges. Both the dikes and associated fissure eruption products have very blocky morphologies with~38%higher thermal inertia than the surrounding regions. The dikes are all enriched in Mg-rich olivine relative to the surrounding terrain, while a subset also contains elevated high-calcium pyroxene, both of which indicate relatively primitive magma compositions. We propose that these dikes might have served as feeders for the olivine-enriched flood basalts in this region, and may be derived from the Tharsis plume. These observations provide further evidence that the opening of Valles Marineris was facilitated by tectonic stresses following paths of preferential weakness along preexisting structures—such as fractures and faults like those indicated by these dikes.
     In summary, the results in this paper can improve our understanding about ancient volcanism on Mars (including the morphology, composition, thermophysics, mechanism of emplacement, and evolution of magma), and they provide geologic evidence for various geophysical and numerical models. They are important in learning the early history of volcanism in the solar system and comparative planetary geology.
引文
[1]肖龙.行星地质学.2013,地质出版社.
    [2]Plescia, J.B., Morphometric properties of Martian volcanoes. J. Geophys. Res.,2004.109.
    [3]Neukum, G., et al., Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature,2004.432(7020):p.971-979.
    [4]Shean, D.E., J.W. Head, and D.R. Marchant, Origin and evolution of a cold-based tropical mountain glacier on Mars:The Pavonis Mons fan-shaped deposit. Journal of Geophysical Research-Planets,2005.110(E5).
    [5]Werner, S.C., Major Aspects of the Chronostratigraphy and Geologic Evolutionary History of Mars, in Fachbereich Geowissenschaften.2005, Freien Universit"at Berlin:Berlin.
    [6]Xiao, L. and C.Z. Wang, Geologic features of Wudalianchi volcanic field, northeastern China: Implications for Martian volcanology. Planetary and Space Science,2009.57(5-6):p. 685-698.
    [7]Williams, D.A., et al., The Circum-Hellas Volcanic Province, Mars:Overview. Planetary and Space Science,2009.57(8-9):p.895-916.
    [8]Grott, M. and M.A. Wieczorek, Density and lithospheric structure at Tyrrhena Patera, Mars, from gravity and topography data. Icarus,2012.221(1):p.43-52.
    [9]Hamilton, C.W., S.A. Fagents, and T. Thordarson, Lava-ground ice interactions in Elysium Planitia, Mars:Geomorphological and geospatial analysis of the Tartarus Colles cone groups. Journal of Geophysical Research-Planets,2011.116.
    [10]Ryan, A.J. and PR. Christensen, Coils and Polygonal Crust in the Athabasca Valles Region, Mars, as Evidence for a Volcanic History. Science,2012.336(6080):p.449-452.
    [11]Chambers, J.E. and A.N. Halliday, Chapter 2-The Origin of the Solar System, in Encyclopedia of the Solar System (Second Edition), M. Lucy-Ann, et al., Editors.2007, Academic Press:San Diego, p.29-52.
    [12]Stevenson, D.J., T. Spohn, and G. Schubert, Magnetism and Thermal Evolution of the Terrestrial Planets. Icarus,1983.54(3):p.466-489.
    [13]Hauck, S.A. and R.J. Phillips, Thermal and crustal evolution of Mars. Journal of Geophysical Research-Planets,2002.107(E7):p.-
    [14]Strom, R.G., Chapter 6-Mercury, in Encyclopedia of the Solar System (Second Edition), M. Lucy-Ann, et al., Editors.2007, Academic Press:San Diego, p.117-138.
    [15]Smrekar, S.E. and E.R. Stofan, Chapter 8-Venus:Surface and Interior, in Encyclopedia of the Solar System (Second Edition), M. Lucy-Ann, et al., Editors.2007, Academic Press:San Diego, p.149-168.
    [16]Carr, M.H., Chapter 16-Mars:Surface and Interior, in Encyclopedia of the Solar System (Second Edition), M. Lucy-Ann, et al., Editors.2007, Academic Press:San Diego, p. 315-330.
    [17]Pieri, D.C. and A.M. Dziewonski, Chapter 10-Earth as a planet:Surface and Interior, in Encyclopedia of the Solar System (Second Edition), M. Lucy-Ann, et al., Editors.2007, Academic Press:San Diego, p.189-212.
    [18]Greeley, R. and P.D. Spudis, Volcanism on Mars. Reviews of Geophysics,1981.19(1):p. 13-41.
    [19]Xiao, L., et al., Ancient volcanism and its implication for thermal evolution of Mars. Earth and Planetary Science Letters,2012.323-324(0):p.9-18.
    [20]Kieffer, H.H., Mars.1994:University of Arizona Press.
    [21]肖龙,等,比较行星地质学的研究方法、现状和展望.地质科技情报,2008(03):p.1-13.
    [22]肖龙,等,太阳系天体的火山作用及其比较行星学意义.地质科技情报,2008(01):p.20-30.
    [23]Ehlmann, B.L., et al., Subsurface water and clay mineral formation during the early history of Mars. Nature,2011.479(7371):p.53-60.
    [24]Hartmann, W.K. and G. Neukum, Cratering chronology and the evolution of Mars. Space Science Reviews,2001.96(1-4):p.165-194.
    [25]Acuna, M.H., et al., Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science,1999.284(5415):p.790-793.
    [26]Frey, H., Ages of very large impact basins on Mars:Implications for the late heavy bombardment in the inner solar system. Geophysical Research Letters,2008.35(13).
    [27]Werner, S.C., The early martian evolution-Constraints from basin formation ages. Icarus, 2008.195(1):p.45-60.
    [28]Werner, S.C., The global martian volcanic evolutionary history. Icarus,2009.201(1):p. 44-68.
    [29]Bandfield, J.L., V.E. Hamilton, and P.R. Christensen, A global view of Martian surface compositions from MGS-TES. Science,2000.287(5458):p.1626-1630.
    [30]Christensen, P.R., et al., Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data. Journal of Geophysical Research-Planets,2000. 105(E4):p.9609-9621.
    [31]McSween, H.Y., G.J. Taylor, and M.B. Wyatt, Elemental Composition of the Martian Crust. Science,2009.324(5928):p.736-739.
    [32]Cousins, C.R. and I.A. Crawford, Volcano-Ice Interaction as a Microbial Habitat on Earth and Mars. Astrobiology,2011.11(7):p.695-710.
    [33]Boston, P.J., M.V. Ivanov, and C. P. McKay, On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus,1992.95(2):p.300-308.
    [34]Carr, M.H., The Surface of Mars.2006:Cambridge University Press.
    [35]Carr, M.H., Water on Mars. Nature,1987.326(6108):p.30-35.
    [36]Jakosky, B.M. and R.J. Phillips, Mars'volatile and climate history. Nature,2001.412(6843): p.237-244.
    [37]Bandfield, J.L., High-resolution subsurface water-ice distributions on Mars. Nature,2007. 447(7140):p.64-U1.
    [38]Sizemore, H.G., et al., In situ analysis of ice table depth variations in the vicinity of small rocks at the Phoenix landing site. J. Geophys. Res.,2010.115(E1):p. E00E09.
    [39]Christensen, P.R., et al., Morphology and Composition of the Surface of Mars:Mars Odyssey THEMIS Results. Science,2003.300(5628):p.2056-2061.
    [40]Farmer, J.D. and D.J. Des Marais, Exploring for a record of ancient Martian life. J. Geophys. Res.,1999.104(E11):p.26977-26995.
    [41]欧阳自远,我国月球探测的总体科学目标与发展战略.地球科学进展,2004(03):p.351-358.
    [42]温家宝,在会见国际地科联执行局成员时的谈话.中国地质大学学报(社会科学版),2009(05):p.1-2.
    [43]廖新浩,行星科学和深空探测研究与发展.中国科学院院刊,2011(05):p.504-510.
    [44]周新华,林杨挺,试论月球科学与类地行星研究的学科属性.地球化学,2010(02):p.101-109.
    [45]Carr, M.H. and J.W. Head, Geologic history of Mars. Earth and Planetary Science Letters, 2010.294(3-4):p.185-203.
    [46]Robbins, S.J., G. Di Achille, and B.M. Hynek, The volcanic history of Mars: High-resolution crater-based studies of the calderas of 20 volcanoes. Icarus,2011.211(2):p. 1179-1203.
    [47]Breuer, D. and T. Spohn, Viscosity of the Martian mantle and its initial temperature: Constraints from crust formation history and the evolution of the magnetic field. Planetary and Space Science,2006.54(2):p.153-169.
    [48]Spohn, T., et al., Geophysical Constraints on the Evolution of Mars. Space Science Reviews, 2001.96(1):p.231-262.
    [49]Grott, M., et al., Mechanical modeling of thrust faults in the Thaumasia region, Mars, and implications for the Noachian heat flux. Icarus,2007.186(2):p.517-526.
    [50]Grott, M., et al., High heat flux on ancient Mars:Evidence from rift flank uplift at Coracis Fossae. Geophysical Research Letters,2005.32(21):p.-
    [51]McLennan, S.M., Crustal heat production and the thermal evolution of Mars. Geophysical Research Letters,2001.28(21):p.4019-4022.
    [52]Schumacher, S. and D. Breuer, Influence of a variable thermal conductivity on the thermochemical evolution of Mars. Journal of Geophysical Research-Planets,2006.111(E2): p.-.
    [53]Kiefer, W.S. and Q.S. Li, Mantle convection controls the observed lateral variations in lithospheric thickness on present-day Mars. Geophysical Research Letters,2009.36:p.
    [54]Fraeman, A.A. and J. Korenaga, The influence of mantle melting on the evolution of Mars. Icarus,2010.210(1):p.43-57.
    [55]Baratoux, D., et al., Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature,2011.472(7343):p.338-341.
    [56]肖龙,R. Greeley,火星的火山作用特征与演化历史.矿物岩石地球化学通报,2008.27(z1):p.2.
    [57]Bell, J., The Martian Surface:Composition, Mineralogy and Physical Properties.2008: Cambridge University Press.
    [58]Christensen, P.R., et al., Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. Journal of Geophysical Research-Planets,2001.106(E10):p.23823-23871.
    [59]Kieffer, H.H., et al., Thermal and Albedo Mapping of Mars During the Viking Primary Mission. J. Geophys. Res.,1977.82(28):p.4249-4291.
    [60]Christensen, P.R., et al., The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews,2004.110(1-2):p.85-130.
    [61]Bandfield, J.L., et al., Identification of quartzofeldspathic materials on Mars. Journal of Geophysical Research-Planets,2004.109(E10).
    [62]Bandfield, J.L., et al., Atmospheric correction and surface spectral unit mapping using Thermal Emission Imaging System data. Journal of Geophysical Research-Planets,2004. 109(E10).
    [63]Christensen, P.R., et al., Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature,2005.436(7050):p.504-509.
    [64]Hamilton, V.E. and P.R. Christensen, Evidence for extensive, olivine-rich bedrock on Mars. Geology,2005.33(6):p.433-436.
    [65]Rogers, A.D., P.R. Christensen, and J.L. Bandfield, Compositional heterogeneity of the ancient Martian crust:analysis of Ares Vallis bedrock with THEMIS and TES data. Journal of Geophysical Research-Planets,2005.110(E5):p.
    [66]Edwards, C.S., P.R. Christensen, and V.E. Hamilton, Evidence for extensive olivine-rich basalt bedrock outcrops in Ganges and Eos chasmas, Mars. Journal of Geophysical Research-Planets,2008.113(E11).
    [67]Dohm, J.M. and K.L. Tanaka, Geology of the Thaumasia region, Mars:plateau development, valley origins, and magmatic evolution. Planetary and Space Science,1999.47(3-4):p. 411-431.
    [68]Scott, D.H. and K.L. Tanaka, Geologic map of the western equatorial region of Mars (1:15,000,000) USGS Misc. Inv. Ser. Map I-1802-A.1986.
    [69]McEwen, A.S., et al., Voluminous volcanism on early Mars revealed in Valles Marineris. Nature,1999.397(6720):p.584-586.
    [70]Reimers, C.E. and P.D. Komar, Evidence for explosive volcanic density currents on certain Martian volcanoes. Icarus,1979.39(1):p.88-110.
    [71]Bandfield, J.L., et al., The dual nature of the martian crust:Young lavas and old clastic materials. Icarus,2013.222(1):p.188-199.
    [72]Zuber, M.T., The crust and mantle of Mars. Nature,2001.412(6843):p.220-227.
    [73]Zuber, M.T., et al., Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science,2000.287(5459):p.1788-1793.
    [74]Nimmo, F. and K. Tanaka, Early crustal evolution of mars. Annual Review of Earth and Planetary Sciences,2005.33:p.133-161.
    [75]Johnson, C.L., et al., Lithospheric loading by the northern polar cap on Mars. Icarus,2000. 144(2):p.313-328.
    [76]Phillips, R.J., et al., Mars north polar deposits:Stratigraphy, age, and geodynamical response. Science,2008.320(5880):p.1182-1185.
    [77]Andrews-Hanna, J.C., The formation of Valles Marineris:1. Tectonic architecture and the relative roles of extension and subsidence. Journal of Geophysical Research-Planets,2012. 117.
    [78]Andrews-Hanna, J.C., The formation of Valles Marineris:2. Stress focusing along the buried dichotomy boundary. J. Geophys. Res.,2012.117(E4):p. E04009.
    [79]Andrews-Hanna, J.C., The formation of Valles Marineris:3. Trough formation through super-isostasy, stress, sedimentation, and subsidence. Journal of Geophysical Research-Planets,2012.117.
    [80]Dohm, J.M., K.L. Tanaka, and T.M. Hare, Geological Map of the Thaumasia Region, Mars. 2001.
    [81]McCord, T.B., R.N. Clark, and R.B. Singer, Mars:Near-infrared spectral reflectance of surface regions and compositional implications. Journal of Geophysical Research:Solid Earth,1982.87(B4):p.3021-3032.
    [82]Morris, R.V., et al., Origins of Marslike spectral and magnetic properties of a Hawaiian palagonitic soil. Journal of Geophysical Research:Solid Earth,1990.95(B9):p. 14427-14434.
    [83]Bibring, J.P., et al., Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science,2005.307(5715):p.1576-1581.
    [84]Ody, A., et al., Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx. J. Geophys. Res.,2012.117:p. E00J14.
    [85]薛彬,杨建峰,赵葆常,月球表面主要矿物反射光谱特性研究.地球物理学进展,2004(03):p.7 17-720.
    [86]燕守勋,等,矿物与岩石的可见—近红外光谱特性综述.遥感技术与应用,2003(04):p.191-201.
    [87]祝民强,周万蓬,胡全一,火星快车OMEGA高光谱探测矿物组成的新进展.地球科学进展,2010(07):p.691-697.
    [88]Farmer, V.C., The infrared spectra of minerals.1974, London:Mineralogical Society.
    [89]Lyon, R.J.P., Evaluation of infrared spectrophotometry for compositional analysis of lunar and planetary soils.1962:National Aeronautics and Space Administration.
    [90]Salisbury, J.W., B. Hapke, and J.W. Eastes, Usefulness of weak bands in midinfrared remote sensing of particulate planetary surfaces. Journal of Geophysical Research:Solid Earth, 1987.92(B1):p.702-710.
    [91]Feely, K.C. and P.R. Christensen, Quantitative compositional analysis using thermal emission spectroscopy:Application to igneous and metamorphic rocks. J. Geophys. Res., 1999.104(E10):p.24195-24210.
    [92]Thomson, J.L. and J.W. Salisbury, The mid-infrared reflectance of mineral mixtures (7-14 μm). Remote Sensing of Environment,1993.45(1):p.1-13.
    [93]Ramsey, M.S. and P.R. Christensen, Mineral abundance determination:Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research-Solid Earth, 1998.103(B1):p.577-596.
    [94]Ruff, S.W., et al., Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. Journal of Geophysical Research-Planets,2011.116.
    [95]Smith, M.R. and J.L. Bandfield, Geology of quartz and hydrated silica-bearing deposits near Antoniadi Crater, Mars. J. Geophys. Res.,2012.117(E6):p. E06007.
    [96]Skok, J.R., et al., Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars. Nature Geoscience,2010.3(12):p.838-841.
    [97]Ehlmann, B.L., et al., Orbital Identification of Carbonate-Bearing Rocks on Mars. Science, 2008.322(5909):p.1828-1832.
    [98]Osterloo, M.M., et al., Geologic context of proposed chloride-bearing materials on Mars. Journal of Geophysical Research-Planets,2010.115:p.
    [99]Osterloo, M.M., et al., Chloride-bearing materials in the southern highlands of Mars. Science,2008.319(5870):p.1651-1654.
    [100]Ehlmann, B.L., J.F. Mustard, and S.L. Murchie, Geologic setting of serpentine deposits on Mars. Geophysical Research Letters,2010.37:p.-
    [101]Bridges, J.C. and S.P. Schwenzer, The nakhlite hydrothermal brine on Mars. Earth and Planetary Science Letters,2012.359-360(0):p.117-123.
    [102]Ehlmann, B.L., et al., Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on Mars from phyllosilicate mineral assemblages. Clays and Clay Minerals, 2011.59(4):p.359-377.
    [103]Rogers, A.D. and P.R. Christensen, Surface mineralogy of Martian low-albedo regions from MGS-TES data:Implications for upper crustal evolution and surface alteration. Journal of Geophysical Research-Planets,2007.112(E1):p.-
    [104]Bibring, J.P., et al., Global mineralogical and aqueous mars history derived from OMEGA/Mars express data. Science,2006.312(5772):p.400-404.
    [105]Koeppen, W.C. and V.E. Hamilton, Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. Journal of Geophysical Research-Planets,2008.113(E5):p.-
    [106]Milam, K.A., et al., Distribution and variation of plagioclase compositions on Mars. Journal of Geophysical Research-Planets,2010.115.
    [107]Edwards, C.S., et al., Mosaicking of global planetary image datasets:1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research-Planets,2011.116.
    [108]Fergason, R.L., P.R. Christensen, and H.H. Kieffer, High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS):Thermal model and applications. Journal of Geophysical Research-Planets,2006.111(E12).
    [109]Murchie, S., et al., Compact reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). Journal of Geophysical Research-Planets,2007. 112(E5).
    [110]McEwen, A.S., et al., Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research-Planets,2007.112(E5).
    [111]Malin, M.C., et al., Context Camera Investigation on board the Mars Reconnaissance Orbiter. Journal of Geophysical Research-Planets,2007.112(E5).
    [112]Smith, D.E., et al., Mars Orbiter Laser Altimeter:Experiment summary after the first year of global mapping of Mars. J. Geophys. Res.,2001.106(E10):p.23689-23722.
    [113]Bandfield, J.L., Global mineral distributions on Mars. Journal of Geophysical Research-Planets,2002.107(E6):p.
    [114]Poulet, F., et al., Martian surface mineralogy from Observatoire pour la Mineralogie,l'Eau, les Glaces et l'Activite on board the Mars Express spacecraft (OMEGA/MEx):Global mineral maps. Journal of Geophysical Research,2007.112(E8).
    [115]Ehlmann, B.L., et al., Mineralogy and chemistry of altered Icelandic basalts:Application to clay mineral detection and understanding aqueous environments on Mars. J. Geophys. Res.,2012.117:p. EOOJ16.
    [116]Feely, K.C., Quantitative compositional analysis of igneous and metamorphic rocks using infrared emission spectroscopy.1997, Arizona State University.
    [117]Ruff, S.W., et al., Quantitative thermal emission spectroscopy of minerals:A laboratory technique for measurement and calibration. Journal of Geophysical Research-Solid Earth, 1997.102(B7):p.14899-14913.
    [118]Smith, M.D., J.L. Bandfield, and P.R. Christensen, Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) spectra. Journal of Geophysical Research-Planets,2000.105(E4):p.9589-9607.
    [119]Rogers, A.D., J.L. Bandfield, and P.R. Christensen, Global spectral classification of Martian low-albedo regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data. Journal of Geophysical Research-Planets,2007.112(E2):p.
    [120]Smith, M.D., et al., Thermal Emission Imaging System (THEMIS) infrared observations of atmospheric dust and water ice cloud optical depth. Journal of Geophysical Research-Planets,2003.108(E11).
    [121]Rogers, A.D. and O. Aharonson, Mineralogical composition of sands in Meridiani Planum determined from Mars Exploration Rover data and comparison to orbital measurements. Journal of Geophysical Research-Planets,2008.113(E6).
    [122]Christensen, P.R., et al., A thermal emission spectral library of rock-forming minerals. Journal of Geophysical Research-Planets,2000.105(E4):p.9735-9739.
    [123]Gillespie, A.R., A.B. Kahle, and R.E. Walker, Color enhancement of highly correlated images.1. decorrelation and HSI contrast stretches. Remote Sensing of Environment,1986. 20(3):p.209-235.
    [124]Rogers, A.D. and J.L. Bandfield, Mineralogical characterization of Mars Science Laboratory candidate landing sites from THEMIS and TES data. Icarus,2009.203(2):p. 437-453.
    [125]Scheidt, S., N. Lancaster, and M. Ramsey, Eolian dynamics and sediment mixing in the Gran Desierto, Mexico, determined from thermal infrared spectroscopy and remote-sensing data. Geological Society of America Bulletin,2011.123(7-8):p.1628-1644.
    [126]Ramsey, M.S., et al., Identification of sand sources and transport pathways at the Kelso Dunes, California, using thermal infrared remote sensing. Geological Society of America Bulletin,1999.111(5):p.646-662.
    [127]Neukum, G., et al., The geologic evolution of Mars:Episodicity of resurfacing events and ages from cratering analysis of image data and correlation with radiometric ages of Martian meteorites. Earth and Planetary Science Letters,2010.294(3-4):p.204-222.
    [128]Stewart, E.M. and J.W. Head, Ancient Martian volcanoes in the Aeolis region:New evidence from MOLA data. Journal of Geophysical Research:Planets,2001.106(E8):p. 17505-17513.
    [129]Kronberg, P., et al., Acheron Fossae, Mars:Tectonic rifting, volcanism, and implications for lithospheric thickness. Journal of Geophysical Research-Planets,2007.112(E4):p.
    [130]Greeley, R. and B.D. Schneid, Magma Generation on Mars-Amounts, Rates, and Comparisons with Earth, Moon, and Venus. Science,1991.254(5034):p.996-998.
    [131]Morschhauser, A., M. Grott, and D. Breuer, Crustal recycling, mantle dehydration, and the thermal evolution of Mars. Icarus,2011.212(2):p.541-558.
    [132]Scott, D.H. and K.L. Tanaka, Mars-Paleostratigraphic Restoration of Buried Surfaces in Tharsis-Montes. Icarus,1981.45(2):p.304-319.
    [133]Banerdt, W.B., et al., Thick Shell Tectonics on One-Plate Planets-Applications to Mars. Journal of Geophysical Research,1982.87(Nb12):p.9723-9733.
    [134]Adams, J.B., et al., Salt tectonics and collapse of Hebes Chasma, Valles Marineris, Mars. Geology,2009.37(8):p.691-694.
    [135]Melosh, H.J. and A.M. Vickery, Impact Erosion of the Primordial Atmosphere of Mars. Nature,1989.338(6215):p.487-489.
    [136]Scott, D.H. and K.L. Tanaka, Mars:a Highland Volcanic Province, in Twelfth Lunar and Planetary Science Conference.1981, Lunar and Planetary Institute:Houston, p. Abstract #1331.
    [137]Grott, M., et al., Formation of the double rift system in the Thaumasia Highlands, Mars. Journal of Geophysical Research-Planets,2007.112(E6).
    [138]Scott, D.H., Mars Tharsis Region:Volcanic-Tectonic Events in the Stratigraphic Record, in Eleventh Lunar and Planetary Science Conference.1980, Lunar and Planetary Institute: Houston. p. Abstract#1361.
    [139]Mcgill, G.E., Geologic Map of the Thaumasia Quadrangle of Mars. USGS Misc. Geol. mv. Map 1-1077.1978.
    [140]Howard, J.H., Geologic Map of the Phaethontis Quadrangle of Mars. USGS Misc. Geol. mv. Map 1-1145.1979.
    [141]Masursky, H., A.L. Dial, and M.E. Strobell, Geologic Map of the Phoenicis Lacus Quadrangle of Mars. USGS Misc. Geol. mv. Map 1-896.1978.
    [142]Mutch, T.A. and E.C. Morris, Geologic Map of the Memnonia Quadrangle of Mars. USGS Misc. Geol. mv. Map 1-1137.1979.
    [143]DeHon, R.A., Geologic Map of the Eridania Quadrangle of Mars. USGS Misc. Geol. mv.Map 1-1008.1977.
    [144]Condit, C.D., Geologic Map of the Mare Australe Area of Mars. USGS Misc. Geol. mv. Map 1-1076.1978.
    [145]Ghatan, G.J. and J.W. Head,Ⅲ, Candidate subglacial volcanoes in the south polar region of Mars:Morphology, morphometry, and eruption conditions. J. Geophys. Res.,2002. 107(E7):p.5048.
    [146]Moore, H.J., Geologic Map of the Sinus Sabaeus Quadangle of Mars. USGS Misc. Geol. mv.Map 1-1196.1980.
    [147]Saunders, R.S., Geologic Map of the Margaritifer Sinus Quadrangle of Mars:USGS Misc. Geol. mv. Map 1-1144.1979.
    [148]Hauber, E. and P. Kronberg, Tempe Fossae, Mars:A planetary analogon to a terrestrial continental rift? Journal of Geophysical Research-Planets,2001.106(E9):p.20587-20602.
    [149]Hartmann, W.K. and S.C. Werner, Martian Cratering 10. Progress in use of crater counts to interpret geological processes:Examples from two debris aprons. Earth and Planetary Science Letters,2010.294(3-4):p.230-237.
    [150]Hartmann, W.K., Martian cratering 9:Toward resolution of the controversy about small craters. Icarus,2007.189(1):p.274-278.
    [151]Hartmann, W.K., Martian cratering 8:Isochron refinement and the chronology of Mars. Icarus,2005.174(2):p.294-320.
    [152]Hartmann, W.K., et al., Martian cratering 7. The role of impact gardening. Icarus,2001. 149(1):p.37-53.
    [153]Hartmann, W.K., Martian cratering Ⅵ:Crater count isochrons and evidence for recent volcanism from Mars Global Surveyor. Meteoritics & Planetary Science,1999.34(2):p. 167-177.
    [154]Hartmann, W.K., Martian Cratering.5. Toward an Empirical Martian Chronology, and Its Implications. Geophysical Research Letters,1978.5(6):p.450-452.
    [155]Hartmann, W.K., Martian Cratering,4, Mariner-9 Initial Analysis of Cratering Chronology. Journal of Geophysical Research,1973.78(20):p.4096-4116.
    [156]Hartmann, W.K., Martian Cratering.3. Theory of Crater Obliteration. Icarus,1971.15(3): p.410-&.
    [157]Hartmann, W.K., Martian Cratering.2. Asteroid Impact History. Icarus,1971.15(3):p. 396-&.
    [158]Hartmann, W.K., Martian Cratering. Icarus,1966.5(6):p.565-&.
    [159]Neukum, G. and D.U. Wise, Mars-Standard Crater Curve and Possible New Time Scale. Science,1976.194(4272):p.1381-1387.
    [160]Ivanov, B.A., Mars/Moon cratering rate ratio estimates. Space Science Reviews,2001. 96(1-4):p.87-104.
    [161]Fassett, C.I. and J.W. Head, Valley formation on martian volcanoes in the Hesperian: Evidence for melting of summit snowpack, caldera lake formation, drainage and erosion on Ceraunius Tholus. Icarus,2007.189(1):p.118-135.
    [162]Scott, D. and K. Tanaka, Geologic map of the western equatorial region of Mars.1986, USGS.
    [163]Tanaka, K. and D. Scott, Geologic map of the polar regions of Mars, in USGS Miscellaneous Investigations Series Map I-1802C.1987, USGS.
    [164]Baptista, A.R., et al., A swarm of small shield volcanoes on Syria Planum, Mars. Journal of Geophysical Research-Planets,2008.113(E9):p.
    [165]Hauber, E., et al., The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars. Journal of Volcanology and Geothermal Research,2009.185(1-2):p.69-95.
    [166]Williams, D.A., et al., The Circum-Hellas Volcanic Province, Mars:Assessment of wrinkle-ridged plains. Earth and Planetary Science Letters,2010.294(3-4):p.492-505.
    [167]Breuer, D. and T. Spohn, Early plate tectonics versus single-plate tectonics on Mars: Evidence from magnetic field history and crust evolution. Journal of Geophysical Research-Planets,2003.108(E7):p.
    [168]Wieczorek, M.A. and M.T. Zuber, Thickness of the Martian crust:Improved constraints from geoid-to-topography ratios. Journal of Geophysical Research-Planets,2004.109(E1).
    [169]Norman, M.D., The composition and thickness of the crust of Mars estimated from rare earth elements and neodymium-isotopic compositions of Martian meteorites. Meteoritics & Planetary Science,1999.34(3):p.439-449.
    [170]McGovern, P.J., et al., Localized gravity/topography admittance and correlation spectra on Mars:Implications for regional and global evolution. Journal of Geophysical Research-Planets,2002.107(E12).
    [171]Hauber, E., et al., Very recent and wide-spread basaltic volcanism on Mars. Geophysical Research Letters,2011.38:p.-
    [172]Wilson, L., et al., Fissure eruptions in Tharsis, Mars:Implications for eruption conditions and magma sources. Journal of Volcanology and Geothermal Research,2009.185(1-2):p. 28-46.
    [173]Mangold, N., et al., Mineralogy of recent volcanic plains in the Tharsis region, Mars, and implications for platy-ridged flow composition. Earth and Planetary Science Letters,2010. 294(3-4):p.440-450.
    [174]Lang, N.P., et al., Tharsis-sourced relatively dust-free lavas and their possible relationship to Martian meteorites. Journal of Volcanology and Geothermal Research,2009.185(1-2):p. 103-115.
    [175]Mellon, M.T., et al., High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus,2000.148(2):p.437-455.
    [176]Putzig, N.E. and M.T. Mellon, Apparent thermal inertia and the surface heterogeneity of Mars. Icarus,2007.191(1):p.68-94.
    [177]Anderson, R.C., et al., Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. Journal of Geophysical Research-Planets, 2001.106(E9):p.20563-20585.
    [178]Borraccini, F., et al., Tectonic evolution of the eastern margin of the Thaumasia Plateau (Mars) as inferred from detailed structural mapping and analysis. Journal of Geophysical Research-Planets,2007.112(E5).
    [179]Tanaka, K.L. and PA. Davis, Tectonic History of the Syria Planum Province of Mars. Journal of Geophysical Research-Solid Earth and Planets,1988.93(B12):p.14893-14917.
    [180]Frey, H., Thaumasia:A Fossilized Early Forming Tharsis Uplift. J. Geophys. Res.,1979. 84(B3):p.1009-1023.
    [181]Courtillot, V.E., C.J. Allegre, and M. Mattauer, On the existence of lateral relative motions on Mars. Earth and Planetary Science Letters,1975.25(3):p.279-285.
    [182]Anguita, F., et al., Tharsis dome, Mars:New evidence for Noachian-Hesperian thick-skin and Amazonian thin-skin tectonics. Journal of Geophysical Research-Planets,2001.106(E4): p.7577-7589.
    [183]Anguita, F., et al., Evidences for a Noachian-Hesperian orogeny in Mars. Icarus,2006. 185(2):p.331-357.
    [184]Nahm, A.L. and R.A. Schultz, Evaluation of the orogenic belt hypothesis for the formation of the Thaumasia Highlands, Mars. Journal of Geophysical Research-Planets,2010.115.
    [185]Wise, D.U., M.P. Golombek, and G.E. McGill, Tectonic Evolution of Mars. J. Geophys. Res.,1979.84(B14):p.7934-7939.
    [186]Montgomery, D.R., et al., Continental-scale salt tectonics on Mars and the origin of Valles Marineris and associated outflow channels. Geological Society of America Bulletin,2009. 121(1-2):p.117-133.
    [187]Williams, J.P., et al., The formation of Tharsis on Mars:What the line-of-sight gravity is telling us. Journal of Geophysical Research-Planets,2008.113(E10).
    [188]Ruff, S.W. and P.R. Christensen, Bright and dark regions on Mars:Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. Journal of Geophysical Research-Planets,2002.107(E12).
    [189]Plescia, J.B. and M.P. Golombek, Origin of planetary wrinkle ridges based on the study of terrestrial analogs. Geological Society of America Bulletin,1986.97(11):p.1289-1299.
    [190]Schultz, R.A., Localization of bedding plane slip and backthrust faults above blind thrust faults:Keys to wrinkle ridge structure. Journal of Geophysical Research-Planets,2000. 105(E5):p.12035-12052.
    [191]Golombek, M.P., F.S. Anderson, and M.T. Zuber, Martian wrinkle ridge topography: Evidence for subsurface faults from MOLA. Journal of Geophysical Research-Planets,2001. 106(E10):p.23811-23821.
    [192]Presley, M.A. and P.R. Christensen, Thermal conductivity measurements of particulate materials.2. Results. Journal of Geophysical Research-Planets,1997.102(E3):p. 6551-6566.
    [193]Williams, D.A., et al., Surface-compositional properties of the Malea Planum region of the Circum-Hellas Volcanic Province, Mars. Earth and Planetary Science Letters,2010. 294(3-4):p.451-465.
    [194]Bleacher, J.E., et al., Olympus Mons, Mars:Inferred changes in late Amazonian aged effusive activity from lava flow mapping of Mars Express High Resolution Stereo Camera data. Journal of Geophysical Research-Planets,2007.112(E4).
    [195]Huang, J., et al., Identification and mapping of dikes with relatively primitive compositions in Thaumasia Planum on Mars:Implications for Tharsis volcanism and the opening of Valles Marineris. Geophys. Res. Lett.,2012.39(17):p. L17201.
    [196]Wilson, L. and J.W. Head, Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes:Models and implications. Journal of Geophysical Research-Planets,2002.107(E8).
    [197]Wilson, L. and J.W. Head, Mars-Review and Analysis of Volcanic-Eruption Theory and Relationships to Observed Landforms. Reviews of Geophysics,1994.32(3):p.221-263.
    [198]Boynton, W.V., et al., Concentration of H, Si, Cl, K, Fe, and Th in the low-and mid-latitude regions of Mars. Journal of Geophysical Research-Planets,2007.112(E12):p.
    [199]Beuthe, M., et al., Density and lithospheric thickness of the Tharsis Province from MEX MaRS and MRO gravity data. Journal of Geophysical Research-Planets,2012.117.
    [200]Ghiorso, M.S., et al., The pMELTS:A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochemistry Geophysics Geosystems,2002.3.
    [201]Dreibus, G. and H. Wanke, Mars, a Volatile-Rich Planet. Meteoritics,1985.20(2):p. 367-381.
    [202]Ernst, R.E., E.B. Grosfils, and D. Mege, Giant dike swarms:Earth, Venus, and Mars. Annual Review of Earth and Planetary Sciences,2001.29:p.489-534.
    [203]Pedersen, GB.M., J.W. Head, and L. Wilson, Formation, erosion and exposure of Early Amazonian dikes, dike swarms and possible subglacial eruptions in the Elysium Rise/Utopia Basin Region, Mars. Earth and Planetary Science Letters,2010.294(3-4):p.424-439.
    [204]Mege, D. and P. Masson, A plume tectonics model for the Tharsis province, Mars. Planetary and Space Science,1996.44(12):p.1499-1546.
    [205]Mege, D., et al., Volcanic rifting at Martian grabens. Journal of Geophysical Research-Planets,2003.108(E5).
    [206]Nimmo, F., Dike intrusion as a possible cause of linear Martian magnetic anomalies. Geology,2000.28(5):p.391-394.
    [207]Schultz, R.A., et al., Igneous dikes on Mars revealed by Mars Orbiter Laser Altimeter topography. Geology,2004.32(10):p.889-892.
    [208]Flahaut, J., et al., Dikes of distinct composition intruded into Noachian-aged crust exposed in the walls of Valles Mariner is. Geophysical Research Letters,2011.38.
    [209]Head, J.W., et al., The Huygens-Hellas giant dike system on Mars:Implications for Late Noachian-Early Hesperian volcanic resurfacing and climatic evolution. Geology,2006. 34(4):p.285-288.
    [210]Korteniemi, J., et al., Dike indicators in the Hadriaca Patera-Promethei Terra region, Mars. Earth and Planetary Science Letters,2010.294(3-4):p.466-478.
    [211]Pelkey, S.M., et al., CRISM multispectral summary products:Parameterizing mineral diversity on Mars from reflectance. Journal of Geophysical Research-Planets,2007. 112(E8).
    [212]Salvatore, M.R., et al., Definitive evidence of Hesperian basalt in Acidalia and Chryse planitiae. Journal of Geophysical Research-Planets,2010.115.
    [213]Horgan, B. and J.F. Bell, Widespread weathered glass on the surface of Mars. Geology, 2012.
    [214]Adams, J.B., Visible and near-Infrared Diffuse Reflectance Spectra of Pyroxenes as Applied to Remote-Sensing of Solid Objects in Solar-System. Journal of Geophysical Research,1974.79(32):p.4829-4836.
    [215]Mastin, L.G. and D.D. Pollard, Surface Deformation and Shallow Dike Intrusion Processes at Inyo Craters, Long Valley, California. Journal of Geophysical Research-Solid Earth and Planets,1988.93(B11):p.13221-13235.
    [216]Rubin, A.M., Dike-Induced Faulting and Graben Subsidence in Volcanic Rift Zones. Journal of Geophysical Research-Solid Earth,1992.97(B2):p.1839-1858.
    [217]Wilson, L. and J.W. Head, Nature of Local Magma Storage Zones and Geometry of Conduit Systems Below Basaltic Eruption Sites-Puu-Oo, Kilauea East Rift, Hawaii, Example. Journal of Geophysical Research-Solid Earth and Planets,1988.93(B12):p. 14785-14792.
    [218]Christensen, P.R., Martian Dust Mantling and Surface-Composition-Interpretation of Thermo-Physical Properties. Journal of Geophysical Research,1982.87(Nb12):p. 9985-9998.
    [219]Edwards, C.S., et al., Global distribution of bedrock exposures on Mars using THEMIS high-resolution thermal inertia. Journal of Geophysical Research-Planets,2009.114.
    [220]McSween, H.Y., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. Journal of Geophysical Research-Planets,2006.111(E2).
    [221]Osinski, G.R., L.L. Tornabene, and R.A.F. Grieve, Impact ejecta emplacement on terrestrial planets. Earth and Planetary Science Letters,2011.310(3-4):p.167-181.
    [222]Ray, R., H.C. Sheth, and J. Mallik, Structure and emplacement of the Nandurbar-Dhule mafic dyke swarm, Deccan Traps, and the tectonomagmatic evolution of flood basalts. Bulletin of Volcanology,2006.69(5):p.537-551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700