松辽盆地齐家北地区扶余油层次生孔隙发育规律及次生孔隙发育带预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综合应用储层微观测试技术,结合储层宏观研究和研究区石油地质特征,对松辽盆地齐家北地区扶余油层次生孔隙特征、识别标志、发育规律、成因机制和模式等进行了系统的研究。通过对松辽盆地构造演化及石油地质背景的分析,概括总结了研究区油气成藏规律。通过薄片分析,铸体薄片分析,铸体薄片图像分析,扫描电镜分析等工作,确定了研究区次生孔隙类型、识别标志,次生孔隙组合特征,并进行了面孔率的测定。全面分析了研究区砂岩成岩相、沉积相、成岩作用、粒度、构造、深度、层位等地质因素对次生孔隙的影响,并对各因素对次生孔隙参数的影响进行了量化分析,总结了次生孔隙发育的规律。对次生孔隙成因机制进行了探讨,建立了有机酸溶蚀作用为主,多期酸性流体充注的孔隙演化模式。综合次生孔隙控制因素、发育规律,提出了平面图叠加法和评分法相结合预测有利区的方法,并对研究区分小层进行了次生孔隙发育带预测。综合次生孔隙发育规律,提出了次生孔隙发育带有利勘探方向。
Qijiabei oil field located in the north of qijia-gulong depression in the center depression of Songliao basin. Fuyu formation is an important reservoir, buried deeply, and strong diagenesis. Primary pore has poor preservation condition, so the secondry pores become a key factor for improving reservoir quality. The research on genetic mechanisms,models,control factors and developing regularities are very weak. It is difficult to forecast secondary pores zone too.
     Applying comprehensively reservoir microcosmic analyzing technology and combining with reservoir macroscopic research and oil geologic feature, we conduct a systemic research on the features、identified mark,developing regularities, genetic mechanism and model secondary pore in Qijiabei area. We bring forward a method that combing overlapping ichnography with subjective evaluation to forecast favorable areas, and forecast secondary pore zones for every sublayer in gu708 block which is main,then propose exploration advices for secondary pore zones of Fuyu reservoir in Qijiabei area.
     The types of secondary pore in researching area are mainly necked intergranular pore,enlarged dissolution intergranular pore,feldspar moldic pore,feldspar intragranular emposieu,volcanic detritus intragranular emposieu,carbonate cement emposieu.
     It can be summarized into four pore groups,which respectivelyenlarged dissolution intergranular pore and intragranular emposieu and moldic pore ; enlarged dissolution intergranular pore and intragranular emposieu and moldic pore and tectoclase;necked intergranular pore and enlarged dissolution intergranular pore and intragranular emposieu ; dissolution intergranular pore and intragranular emposieu and carbonate cemented emposieu.
     The porosity of these four pore groups is decreased progressively. Among them, the first one and the second one are main ,and the forth pore group has poor reservoir quality which respond to carbonate cemented lithogenous phase . The proportion of secondary pore among enlarged dissolution intergranular pore is about twenty percent. The average proportion of secondary-pore porosity of the whole porosity is about 39.21 percent. The average porosity of secondary pore is 3.54 percent and which has great contribution to the reservoir quality. The developing of secondary pore would be affected by Lithology、mineral composition and grain size. Lithic arkose and feldspathic litharenite containing aluminosilicate minerals would be favorable to the developing of secondary pore. Coarser medium-grained sand would also be favorable to the developing of secondary pore while too much argillaceous matrix content is unfavorable. The content of carbonate cement and effective porosity have negative correlation.
     Organic and inorganic diagenesis control the evolution of pores which is shown by compaction,cementation and metasomatism to the pore destruction. Denudation enlarge porosity. Fuyu reservoir is in the A to B stage of middle diagenetic stage on the whole ,and the A stage is main. The reservoir quality on the stage of AII is better than other diagenesis stage. It is divided into five diagenetic facies, which include siliceous cementation , authigenic clay mineral rimcementation,mixed cementation,argillaceous matrix cementation,early calcite cement,late calcite cementation. The effective porosity become worse in sequence.
     Delta plain deposition and delta front deposition are mainly developed in researching area. The microfacies include overwater distributary channel, natural barrier, alluvial flat,bay et al.. Sedimentary facies belts with stronger hydrodynamic force, good sorting of rocks, minor matrix ,coarser grain, approaching generating rock or underlied source bed are favorable for developing secondary pore. According to the statistical result of effective porosity , and the analyzing to the favorable conditions for developing secondary pores, we conclude that the sedimentary facies including overwater distributary channel,mouth bar and distributary channel are favorable for developing secondary pore.
     The effective porosity of oil-bearing sandstone is better than oil- free sandstone that proving the long-term inrush of oil is favorable to improve reservoir property of rock. Carbonate cementation is developed well in oil-free sandstone than in oil-bearing sandstone. Illite rim cementation is developed well in oil-free sandstone which show that saturated hydrocarbon constrict the growth of Illite. While the overgrowth of Quartz is developed well showing the inrush of oil does little influence on the overgrowth of Quartz. The correlation of depth and porosity or intragranular emposieu shown, during the range of depth in researching area, the depth has indistinct influence for developing secondary pore. The effective porosity of sandstone in lower layer is better than that in upper layer which maybe influenced by acidulous water in Yangdachengzi formation in lower part. Oiliness in lower layer is not good generally which is presumed that it is the result of secondary migration of hydrocarbon,orconcerned with the depth of hydrocarbon expulsion during the later hydrocarbon accumulation stage.
     Qijia depression located at the west of Aogula-xiaokelin faulted zone. The hydrocarbon generated from Qijia-gulong depression was blocked off by the faulted zone, which is a favorable background for hydrocarbon accumulation. Approaching to oil-generating center and being situated in La-xi nosing structure are favorable structure condition. By researching on overlaying plan of structure and pore isoline, we found T2 fault and micro-scales higher structure have obvious control to develop secondary pore zones. High porosity is mainly distributed in these two type areas. The faults in active state is favorable for fluid longitudinal movement, while the movement was blocked in closed stage. Dense fracture is favorable for secondary pore zones developing, forming the good channel for hydrocarbon migrating. Fracture belt paralleling with sand body trend are favorable for hydrocarbon and fluid migrating , while perpendicular relationship has adverse contribution.
     The fault has intently relationship with hyperpressure rupture in Qing-1 member , which may caused by active fault movements. Fracture matching sand body channel can form hydrocarbon traps relevant to fracturing. Upthrow especially nosing-upthrow which pointing to the center of depression is the directional migrating zone. It is favorable for forming secondary pore zones and accumulating hydrocarbon reservoir. Combining favorable structure with porosity isopleths, we confirm uplifted structure in the west and middle areas are the most favorable areas for secondary pore developing.
     Organic acid generated from Qing-1 member during its flushing period is the main reason for forming secondary pore in researching area. Acid expulsion of mudstone before the forming of hyperpressureof Qing-1 member can form small scale secondary pore zones. Organic acid and hydrocarbon , expulsed by hyperpressure ,along T2 faults, in the manner of multiple phases and episodic process,flush into reservoir sandstones, and then form secondary pore zones . For high geotemperature, silico aluminate minerals is rich in sandstones,organic acid generated from thermolysis of petroleum have certain contribution to secondary pore forming. The first fluid flushing phase during the fastigium of acid expulsion is the main phase for forming secondary pores. During the last two phases, fluid can improve quality of secondary pore. Evolution pattern in this area can be summarized as follows: alkaline fluid of early stage -mudstone acid expulsion of early stage-hydrocarbon and organic acid flushing phases-diagenetic evolution of later phase.
     We adopt to the method of combing overlapping plan map with subjective estimate to forecast favorable areas. The overlap plan map including favorable structure area, carbonate content, diagenetic stage, sedimentary microfacies. When overlapping ,we separate sublayer into several blocks, and then score every block according to score system,then, amalgamate the blocks during the same score phase into one block as the same grade. According to this method ,we forecast secondary pore zones for every sublayer in gu708 block.
     By analyzing the developing and affected factors of secondary pores in Qijiabei oil field, we propose the favorable exploratory direction of secondary pore zones in Fyyu reservoir of Qijiabei area. The favorable structure position is the nosing uplift on the boundary of the depression approaching to the hydrocarbon generating center. The depth ranges from 1900 to 2300 meters underground is the main secondary pore developing zone. Fractures of T2 with small slip of fault are developed and densely set. Fuyu reservoir Overlying Qing-1mudstone formation with greater thickness that generate oil, which is good ductile cap rock. The flexibility contribute to the sealing of reservoir. Underwater distributary channel, mouth bar, distal bar ,overwater distributary channel are favorable sedimentary facies belts. For grain supported effect, sandstone with coarser grain is favorable for the conservation of primary pore and provide room for acid fluid migrating, and develop secondary pore zones. If fracture densely set overlapping higher structure,it is more easier to develop secondary pore zones.
引文
1. 大庆油田石油地质志编写组.中国石油地质志(卷二)[M],北京:石油工业出版社,1993.
    2. 杨万里.松辽陆相盆地石油地质[M].北京:石油工业出版社, 1985.
    3. 高瑞祺,蔡希源,松辽盆地油气田形成条件与分布规律[M].北京:石油工业出版社,1997.
    4. 陈丽华,魏宝和.扫描电镜在石油地质上的应用[M].石油工业出版社,1990 年.
    5. 邸世祥,祝总祺,柳益群,等.中国碎屑岩储集层的孔隙结构[M].西安:西北大学出版社,1991.
    6. 黄克难.江汉盆地潜江凹陷和沔阳凹陷新沟嘴组下段砂岩中次生孔隙成因探讨[C].中国油气储层研究论文集,石油工业出版社,1993,150-156.
    7. 杨万里,高瑞祺,郭庆福,等.松辽盆地陆相油气生成运移和聚集[M].哈尔滨:黑龙江科学技术出版社.
    8. 孙永传,李忠,等.中国东部含油气盆地的成岩作用[M].北京:科学出版社,1996,1-22.
    9. 赵澄林,刘孟慧.东濮凹陷下第三系碎屑岩沉积体系和成岩作用[M].北京:石油工业出版社,1994.
    10.郑浚茂,庞明.碎屑储集岩的成岩作用研究[M].武汉:中国地质大学出版社,1989.
    11.刘宝珺,张锦泉.沉积成岩作用[M].北京:科学出版社,1992.
    12.沃马克?施密特,戴维 A.麦克唐纳.砂岩成岩过程中的次生储集孔隙[M].陈荷立,汤锡元,译.北京:石油工业出版社,1982.
    13.Blatt H,G V Middleton,R C Murray.沉积岩成因[M].《沉积岩成因》翻译组,北京:科学出版社,1978.
    14.蔡希源,陈章明,王玉华,等.松辽两江地区石油地质分析[M].北京:石油工业出版社,1999.
    15.邢顺洤,姜洪启.松辽盆地陆相砂岩储集层性质与成岩作用[M].黑龙江科学技术出版社,1993.
    16.邵红梅.松辽盆地北部徐家围子断陷深层碎屑岩储层特征研究[D].长春:吉林大学,2005.
    17.闫建萍.松辽盆地齐家—古龙凹陷扶杨油层烃类侵位对成岩作用的影响[D].长春:吉林大学,2002.
    18.蒙启安.松辽盆地北部齐家古龙地区扶杨油层油气运移特征研究[D].长春:吉林大学,2002.
    19.梁江平.齐家—古龙地区扶杨油层储层综合评价[D].大庆:大庆石油学院,2002.
    20.孙丽.松辽盆地大庆长垣以西地区扶杨油层成藏特征研究[D].南京:南京大学,2002.
    21.蔡春芳,梅博文,马亭,等.1997,塔里木盆地有机酸来源、分布及对成岩作用的影响[J].沉积学报,15(3):103-109.
    22.蔡春芳,顾家裕,蔡洪美,等.塔中地区志留系烃类侵位对成岩作用的影响[J].沉积学报,2001,19(1):60-65.
    23.蔡进功,谢忠怀,等.济阳凹陷深层砂岩成岩作用及孔隙演化[J].石油与天然气地质,2002,23(1):84-88.
    24.陈传平,梅博文,贾发敬,等.生油岩产生低分子量有机酸的模拟实验研究[J].地球化学,1994,23(2),155-160.
    25.陈传平,梅博文,易绍金,等.地层水中低分子量有机酸成因分析[J].石油学报,1995,16(4),48-54.
    26.陈丽华,赵澄林,纪友亮,等.碎屑岩天然气储集层次生孔隙的三种成因机理[J].石油勘探与开发,1999,26(5),77-81.
    27.迟元林,蒙启安,杨玉峰.松辽盆地岩性油藏形成背景与成藏条件分析[J].大庆石油地质与开发,2004,23(5),10-16.
    28.陈忠,罗蛰潭,沈明道.论砂岩储层次生孔隙的形成机制[J].成都理工学院学报,1996,23(增刊),35-41.
    29.高先志,陈发景.应用流体包裹体研究油气成藏期次[J].地学前缘,2000,7(4):548-553.
    30.郭巍,刘招君,等.曙北地区莲花油层储层沉积学及非均质特征研究[J].长春科技大学学报,1999,29(4):340-358.
    31.郭春清,沈忠民,张林晔,等.砂岩储层中有机酸对主要矿物的溶蚀作用及机理研究综述[J].地质地球 化学,2003,31(3),53-57.
    32.侯启军,冯子辉,邹玉良.松辽盆地齐家——古龙凹陷油气成藏期次研究[J].石油实验地质,2005,27(4),390-394
    33.胡宗全、朱筱敏.准噶尔盆地西北缘侏罗系储层成岩作用及孔隙演化[J].石油大学学报,2002 年第26 卷第 3 期,16-19.
    34.黄福堂.松辽盆地北部地层水中“指纹标志”化合物分布特征及其油气关系研究[J],地球化学,1993,2.
    35.黄福堂,冯子辉.松辽盆地中生界砂岩次生孔隙形成条件及预测[J].大庆石油地质与开发,1999,18(1),1-4.
    36.黄福堂,邹信方,张作祥.地层水中主要酸类对储层物性影响因素研究[J].大庆石油地质与开发,1998,17(3),7-9.
    37.黄福堂,邹信方,张作祥.松辽盆地北部不同类型干酪根氧化产物中有机酸成分分析及对储层结构影响研究[J].石油实验地质,1995,17(2),156-166.
    38.黄思静,武文慧,刘 洁.大气水在碎屑岩次生孔隙形成中的作用——以鄂尔多斯盆地三叠系延长组为例[J].中国地质大学学报,2003,28(4),419-424.
    39.纪友亮,赵澄林,等.东濮凹陷地层流体的热循环对流与成岩圈闭的形成[J].石油实验地质,1995,17(1).
    40.姜洪启,邢顺诠.松辽盆地朝——长地区扶余油层砂岩中次生孔隙结构特征[J].石油勘探与开发,1986,13(6),14-19.
    41.李捷,王海云.东北晚中生代断陷盆地储层次生孔隙形成机制[J].沉积学报,1999,17(4):591-595.
    42.李义军.浅述次生孔隙的成因.西北地质,2002,35(1),65-69.
    43.刘立,于均民,等.热对流成岩作用的基本特征与研究意义[J].地球科学进展,2000,15(5):583-585.
    44.刘锐娥,孙粉锦,拜文华,等.苏里格庙盒 8 气层次生孔隙成因及孔隙演化模式探讨[J].石油勘探与开发,2002,29(4),47-49.
    45.苗建宇,祝总祺,等.济阳坳陷下第三系温度压力与深部储层次生孔隙的关系[J].石油学报,2000,21(3):36-40.
    46.穆曙光,张以明.成岩作用及阶段对碎屑岩储层孔隙演化的控制[J].西南石油学院学报,1994,16(3) 22-27.
    47.邱隆伟,等.一种新的储层孔隙成因类型——石英溶解型次生孔隙[J].沉积学报,2002,20(4),621-627.
    48.邵红梅,刘招君,王成,等.松辽盆地北部深层砂岩成岩作用与孔隙演化[J].世界地质,2005,24(1),58-62.
    49.史基安,晋慧娟,薛莲花.长石砂岩中长石溶解作用发育机理及其影响因素分析[J].沉积学报,1994,12(3),67-75.
    50.孙义梅,田世澄.断层对油气运移作用研究的新进展[J].地学前缘,2001,8(4),143.
    51.王鹏,赵澄林.东濮凹陷杜桥白地区深部储集层次生孔隙成因探讨[J].石油勘探与开发,2001,28(4):44-46.
    52.王琪,史基安,肖力新,等.石油侵位对碎屑储集岩成岩作用序列的影响及其与孔隙演化的关系——以 55 塔西南石炭系石英砂岩为例[J].沉积学报,1998,16(3):97-101.
    53.王顺玉,戴鸿鸣,王廷栋.断层在油气运移聚集中的作用[J].西南石油学院学报,1997,19(1),7-14.
    54.王恕一.砂岩储层次生孔隙定量统计的新方法[J].石油实验地质,1997,19(2),188-191.
    55.王雪.松辽盆地齐家凹陷与大庆长垣扶杨油层油源[J].石油勘探与开发,2006,33(3),294-298.
    56.谢继容.砂岩次生孔隙形成机制[J].天然气勘探与开发,2000,23(1),52-56.
    57.邢顺诠.国外次生孔隙研究及其现状[J].大庆石油地质与开发,1989,8(1),9-13.
    58.邢顺诠,姜洪启.松辽盆地白垩系富长石砂岩中次生孔隙形成机制与控制因素[J].石油勘探与开发,1991(1),14-21.
    59.杨晓宁,陈洪德,寿建峰,等.碎屑岩次生孔隙形成机制[J].大庆石油学院学报,2004,28(1),4-7.
    60.杨玉峰.松辽盆地岩性油藏形成条件与分布规律[J].石油与天然气地质,2004,25(4),393-399.
    61.赵密福,刘泽容,信荃麟,等.控制油气沿断层纵向运移的地质因素[J].石油大学学报(自然科学版)2001,25(6),21-26.
    62.赵文革,黄薇,林景晔,张帆.大庆长垣西侧扶杨油层油水同层形成及识别[J].石油实验地质,2006,28(5),472-475.
    63.赵追,孙冲,张本书.碎屑岩储层次生孔隙形成机制及其勘探意义[J].河南石油,2001,15(2),11-13.
    64.郑俊茂.黄骅坳凹陷砂岩储层的成岩作用与孔隙分带性[J].石油天然气地质,1996,17(4):268-275.
    65.朱报荃,程中第,应凤祥.地层干酪根有机酸与储层次生孔隙的关系[J].石油实验地质,1996,18(2),206-215.
    66.张革,林景晔,杨庆杰,等.松辽盆地西部扶杨油层成藏条件和勘探潜力[J].大庆石油地质与开发,2002,21(5),5-8.
    67.张厚福,金之钧.我国油气运移的研究现状与展望[J].石油大学学报(自然科学版),2000,24(4),1-5.
    68.朱国华.碎屑岩储集层孔隙的形成演化和预测.沉积学报,1992,10(3).
    69.张忠民,朱伟,赵澄林.辽河盆地下第三系深部碎屑岩储层次生孔隙演化模式及其分布[J].大庆石油学院学报,2002,26(3):12-14.
    70.祝总祺,苗建宇,等.论压力封存箱及其对次生孔隙的保护作用[J].西北大学学报(自然科学版),1997,27(1):73-78.
    71.钟广法,邬宁芬,等.成岩岩相分析:一种全新的成岩非均质性研究方法[J].石油勘探与开发,1997,5:62-66.
    72.邹华耀,侯读杰,张传林,等.断层在油气二次运移中的作用研究.江汉石油学院学报, 1996,18(1),7-13.
    73.Schmidt V, McDonald D A. The role of secondary porosity in the course of sandstone diagenesis[J]. SEPM special publication,1979,(26):175-207.
    74.Surdam R C, Crossey L J. Organic-inorganic interactions and sandstone diagenesis[J]. AAPG,1989,73(1):1-23.
    75.Carothers W W, Kharaka Y K. Aliphatic acid an ions in oil-field water-implication for origin of natural gas [J]. AAPG Bulletin, 1978, 62(2): 2441-2453.
    76.Surdam R C, Crossey L J. Predictive models for sandstone diagenesis [J].Org Geochem,1991,17:243-253.
    77.Kharaka Y K, Carothers W W. Generation of aliphatic acid an ions and carbon dioxide by hydrous pyrolysis of crude oils[J]. Appl Geochem, 1993,8:317-324.
    78.Meshriid, On the reactivity of carbonic and organic acids and generation of secondary porosity[J]. SEPM Spec Pub,1986,38:123-128.
    79.Schmoker J W, Gautier D L. Sandstone porosity as function of thermal maturity approach to porosity comparison and prediction[J]. Geology,1988,16(11):1697-1703.
    80.Maxwell J C. Influence of depth ,temperature and geologic age on porosity of quartzose sandstone[J]. AAPG, 1964,48(5):697-709.
    81.Tor Nedkvitne, Knut. Secondary porosity in the Brent Group, Huldar Field, North Sea: Implication for predicting lateral continuity of sandstone [J]. Journal of Sedimentary Peterology, 1992,62(1):23-34.
    82.Kharaka Y K. Generation of acid anions and carbon dioxide by hydrous pyrolysis of crude oil. Applied Geochemistry, 1993, 8: 317-324
    83.Pettijohn F J, Potter P E, Siever R. Sand and sandstone(Second edition) [M]. Springer-Verlag, 1987.
    84.Ritten house G. Pore space-reduction by solution and cementation [M]. AAPG Bulletin,1971,55: 80-91.
    85.Sassen R. Geochemical and carbon isotopic studies of crude oil destruction ,bitumen precipitation and sulfate reduction in the deep Smackover Formation[M]. Org Geochem, 1988, 12: 351-361.
    86.Shanmugam G. Significance of secondary porosity in interpreting sandstone composition[M]. The American Association of Petroleum Geologists Bulletin, 1985,69(3):378-384.
    87.Surdam R C, Jiao Z S , MacGowan D B. Redox reactions involving hydrocarbons and mineral oxidants:A mechanism for significant porosity enhancement in sandstones[M].AAPG Bulletin,1993,77(9):1509-1518.
    88.Thomas M . Diagenetic sequences and K-Ar dating in Jurassic sandstones, Central Viking Graben: effects on reservoirs properies[M]. Clay Minerals, 1986, 21 (4): 695-710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700