循环流化床一体化污泥焚烧工艺实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在众多的污泥处置方法中,焚烧处理被公认为实现污泥减量化、稳定化和无害化处理的最彻底方式。污泥干化焚烧技术已被我国列为污泥焚烧处理的优先选择的技术路线。当前污泥干化焚烧工艺中,干化与焚烧相互独立,系统复杂。本文针对实现污泥干化与焚烧在单一装置内进行的循环流化床一体化污泥焚烧工艺进行实验研究。
     利用循环流化床一体化探索实验系统和大型冷态实验系统对工艺的关键参数和核心部件——气动分配阀调节特性进行了实验研究。利用污泥流化干化实验系统对工艺的主要工作过程——污泥流化干化特性和细粉逃逸特性进行了实验研究。基于100吨/日循环流化床一体化污泥焚烧系统进行了性能实验,通过实验研究与理论计算相结合,对循环流化床一体化污泥焚烧工艺进行了技术经济性分析。对带冷凝式的新型循环流化床一体化污泥焚烧工艺进行了理论分析。
     设计并搭建循环流化床一体化探索实验系统和大型冷态实验系统,验证了工艺流程,获得了工艺流动特性和气动分配阀返料特性。通过实验得出:工艺的燃烧回路和干化回路在压力平衡管处的耦合关系是系统稳定运行的关键;主床流化速度改变对系统循环流率和气动分配阀两侧循环流率分配均有影响;系统循环流率较大或者主床密相区压力波动增大会使压力平衡管处压力出现畸变;气动分配阀Ⅳ区流化数的调节范围较Ⅲ区流化数宽且调节作用好;得到了干化器侧最大返料流率和引起气动分配阀返料波动的干化器顶部压力范围。
     在污泥流化干化实验系统中研究结果表明:随着干污泥与河砂混合比MR的增大,导热油管与床层间的平均传热系数变小。以河砂为床料,随着流化速度的增加,平均传热系数增加,最大值为187W/(m2·K);以工程物料为床料,导热油管与床层间平均换热系数单调增加。随着流化速度和物料停留时间的增加,干污泥粒度变小。干化器出口细粉逃逸率随MR的升高而降低;实验范围内,细粉逃逸率与流化速度之间符合一阶指数增长模型。
     100吨/日循环流化床一体化污泥焚烧系统性能实验表明:焚烧炉内温度分布均匀,燃烧效率在98%以上。复合干化器温度分布均匀,污泥干化效果较好,干化过程安全系数高。烟气排放测试结果表明,烟尘浓度、烟气中CO、Hg、Cd、Pb浓度及NOx,SO2、HCl和二噁英类物质排放浓度均低于相应标准限值。污泥焚烧产生的飞灰、循环灰、底渣等重金属浸出毒性均低于危险废物鉴别标准,可按一般固废利用或处置。
     通过理论分析结合工程运行数据,对循环流化床一体化污泥焚烧工艺进行了技术经济性分析。分析结果表明:该工艺节能降耗效果明显;与典型干化与焚烧相互独立的系统相比,工艺可靠性、技术经济性优势明显。
     提出了带冷凝式干燥的新型循环流化床一体化污泥焚烧工艺,并进行了理论分析与计算。
Among numerous methods of sludge disposal, incineration is considered as the most thorough way to realize the reduction, stabilization and harmlessness of sewage sludge. Sewage sludge incineration after being dried has been given the priority in China. For the most techniques of sewage sludge, the systems of drying and incineration are separated, which means the disposal system is complex. In this thesis, experimental research on the integrated incineration technique for sewage sludge in circulating fluidized bed was conducted.
     The experiments were carried out in exploratory test system and a large scale cold experimental system in order to investigate the key parameter of the technique and regulating characteristics of pneumatic distribution valve(PDV) which is the core part of the system. The main work processes, including sewage sludge drying characteristics in a bubbling fluidized bed and the escape rate of fine powders were carried out in the experimental system for fluidized bed sewage sludge drying. Based on100t/d integrated incineration system for sewage sludge in circulating fluidized bed, the performance test was carried out and economic analysis was made by theory and practice. Theoretical analysis and calculation were conducted about a new integrated incineration technique for sewage sludge in circulating fluidized bed with condensing drying.
     Exploratory test system and large scale cold experimental system were designed and established; the technique process was verified, the flow characteristics and the control characteristic of PDV were obtained as well. The results show that the key factor which influences the system's safe and steady operation is the coupling performance of pressure in combustion circuit and drying circuit at pressure balance pipe. Main bed fluidization velocity has influences on flow rate of the system and regulating rate of PDV' both sides. Pressure distortion appears at pressure balance pipe when the flow rate of system or pressure fluctuation at dense phase region of main bed is excessive. Compared with the fluidization number at III region of PDV, the regulating scope of fluidization number at IV region of PDV is wider and regulating effect is better. The maximum mass flux of dryer side and the pressure range which cause the fluctuation of PDV's regulation on the top of the dryer are obtained.
     Experimental results of sewage sludge drying characteristics in a bubbling fluidized bed with heat conducting oil reveal that the more the sludge pellets in the mixture of river sands and sludge, the smaller the average heat transfer coefficient between the heat conducting oil pipes and bed will be. The average heat transfer coefficient reaches to its maximum187W/(m2·K) with the increase in fluidization velocity. The particle size of the dried product decreases when the fluidization velocity and residence time of materials increase. The escape rate of fine powders decreases when the dried sludge in the mixture increases, and at given condition, first order exponential growth model can fulfill well the relations between them.
     Performance test results on100t/d integrated incineration system for sewage sludge in circulating fluidized bed show that temperature distribution is even and the combustion efficiency is over98%in the incinerator. In the compound dryer, temperature distribution is even with the sludge being dried well, and the process of fluidized drying is safe. The test results of flue gas emission indicate that smoke concentration and the concentration of CO, Hg, Cd, Pb, NOx, SO2and dioxin-like pollutants is lower than the emission standard limit. The leaching toxicity of heavy metal in solid materials is also tested and proven that all the leaching toxicity is lower than the identification standards for hazardous wastes, and the fly ashes could be utilized or disposed as general waste.
     On the basis of operation data, economic analysis of the integrated incineration technique for sewage sludge in circulating fluidized bed is made. It is found that the technique is effective for energy-saving and consumption-reducing. Compared with the typical system that separates drying and incineration, the integrated technique has its advantages with distinctly reliable process and economic operation.
     A new integrated incineration technique for sewage sludge in circulating fluidized bed with condensing drying is proposed, and theoretical analysis and calculation are conducted as well.
引文
[1].中华人民共和国国家统计局.中华人民共和国2011年国民经济和社会发展统计公报[EB/OL].2012.02.22[2012.03.30]. http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20120222_402786440.htm.
    [2].中华人民共和国环境保护部.污水处理厂污泥处理处置最佳可行技术导则(编制研究报告)[EB/OL].2008-11-28[2012-03-30].http://www.zhb.gov.cn/info/bgw/bbgth/200811/t20081128_131764. htm.
    [3]. Fytili, D.,Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods-A review[J]. Renewable & Sustainable Energy Reviews, Jan,2008,12 (1):116-140.
    [4]. Werle, S.,Wilk, R. K. A review of methods for the thermal utilization of sewage sludge:The Polish perspective[J]. Renewable Energy,2010,35 (9):1914-1919.
    [5]. Uggetti, E.,Ferrer, I.,Llorens, E., etc. Sludge treatment wetlands: A review on the state of the art[J]. Bioresource Technology, May,2010,101 (9):2905-2912.
    [6].中华人民共和国住房和城乡建设部,中华人民共和国国家发展和改革委员会.城镇污水处理厂污泥处理处置技术指南(试行).2011-03-14[2012-03-30]http://www.gov.cn/zwgk/2011-03/30/ content 1834616.htm
    [7].何品晶,顾国维,李笃中.城市污泥处理与利用[M].北京:科学出版社,2003.
    [8].徐强,张春敏,赵丽君.污泥处理处置技术及装置[M].北京:化学工业出版社,2003.
    [9]. Werther, J.,Ogada, T. Sewage sludge combustion[J]. Progress in Energy and Combustion Science, 1999,25(1):55-116.
    [10].中华人民共和国环境保护部.城镇污水处理厂污泥处理处置及污染防治技术政策(试行)[EB/OL].2009-02-18[2012-03-30]. http://kjs.mep.gov.cn/hjbhbz/bzwb/wrfzjszc/200903/t20090303_134 820.htm.
    [11].张辰,王国华,孙晓.污泥处理处置技术与工程实例[M].北京:化学工业出版社,2006.
    [12].王罗春,李雄,赵由才等.污泥干化与焚烧技术[M].北京:冶金工业出版社,2010.
    [13].朱智文,宋存义,孙大钧等.污泥干化及干化床设计试验[J].环保科技,2007,(03):17-22.
    [14]. Font, R.,Gomez-Rico, M. F.,Fullana, A. Skin effect in the heat and mass transfer model for sewage sludge drying[J]. Separation and Purification Technology,2011,77 (1):146-161.
    [15]. Jiang, Z. L.,Meng, D. W.,Mu, H. Y., etc. Study on the hydrothermal drying technology of sewage sludge[J]. Sci. China Ser. E-Technol. Sci., Jan,2010,53 (1):160-163.
    [16].金国淼.干燥器[M].北京:化学工业出版社,2008.
    [17].杨小文,杜英豪.国外污泥干化技术进展[J].给水排水,2002,28(02):35-36.
    [18]. Fraikin, L.,Salmon, T.,Herbreteau, B., etc. Impact of Storage Duration on the Gaseous Emissions during Convective Drying of Urban Residual Sludges[J]. Chemical Engineering & Technology, Jul, 2011,34(7):1172-1176.
    [19]. Lee, S. K.,Park, K. T.,Lim, B. R. Drying characteristics of sewage sludge using vacuum evaporation and frying[J]. J Mater Cycles Waste, Sep,2010,12 (3):235-239.
    [20]. Wang, W.,Luo, Y. X.,Qiao, W. Possible solutions for sludge dewatering in China[J]. Front Environ Sci En, Mar,2010,4 (1):102-107.
    [21]. Mu, H. Y., Jiang, Z. L.,Meng, D. W., etc. Study on the hydrothermal drying technology of sewage sludge[J]. Sci. China Ser. E-Technol. Sci, Jan,2010,53 (1):160-163.
    [22]. Tsihrintzis, V. A.,Stefanakis, A. I.,Akratos, C. S., etc. Surplus activated sludge dewatering in pilot-scale sludge drying reed beds[J]. Journal of Hazardous Materials, Dec 30,2009,172 (2-3): 1122-1130.
    [23]. Nassar, A. M.,Smith, M.,Afifi, S. Palestinian experience with sewage sludge utilizing reed beds[J]. Water Environ J, Mar,2009,23 (1):75-82.
    [24]. Mehrdadi, N.,Haghollahi, A. Feasibility of Using Sewage Sludge as Construction Materials[J]. Progress in Environmental Science and Technology, Vol Ii, Pts a and B,2009,2220-2225.
    [25]. Silva, D. P.,Rudolph, V.,Taranto, O. P. The drying of sewage sludge by immersion frying[J]. Brazilian Journal of Chemical Engineering, Apr-Jun,2005,22 (2):271-276.
    [26]. Peregrina, C.,Arlabosse, P.,Lecomte, D., etc. Heat and mass transfer during fry-drying of sewage sludge[J]. Drying Technology,2006,24 (7):797-818.
    [27].侯凤云.城市下水污泥流化床干化特性研究[D].北京:中国科学院研究生院,2007.
    [28]. Lopes, H.,Gulyurtlu, I.,Abelha, P., etc. Particulate and PCDD/F emissions from coal co-firing with solid biofuels in a bubbling fluidised bed reactor[J]. Fuel, Dec,2009,88 (12):2373-2384.
    [29]. Murakami, T,Suzuki, Y.,Nagasawa, H., etc. Combustion characteristics of sewage sludge in an incineration plant for energy recovery[J]. Fuel Processing Technology,2009,90 (6):778-783.
    [30]. Tang, P.,Zhao, Y.,Xia, F. Thermal behaviors and heavy metal vaporization of phosphatized tannery sludge in incineration process[J]. Journal of Environmental Sciences,2008,20 (9):1146-1152.
    [31]. Khiari, B.,Marias, F.,Vaxelaire, J., etc. Incineration of a small particle of wet sewage sludge:A numerical comparison between two states of the surrounding atmosphere[J]. Journal of Hazardous Materials,2007,147 (3):871-882.
    [32], Takahashi, K.,Miyamoto, H.,Ito, T., etc. Combustion improvement in fluidized-bed sewage sludge incinerator[J]. Clean Air,2002,3 (3):233-250.
    [33]. Khiari, B.,Marias, F.,Zagrouba, F., etc. Use of a transient model to simulate fluidized bed incineration of sewage sludge[J]. Journal of Hazardous Materials,2006,135 (1-3):200-209.
    [34]. Houdkova, L.,Boran, J.,Ucekaj, V., etc. Thermal processing of sewage sludge-Ⅱ[J]. Applied Thermal Engineering,2008,28 (16):2083-2088.
    [35]. Li, Y. Y,Li, S. Y,Zhu, J. G., etc. Research and Application of Integrative Drying and Incineration Technique for Sewage Sludge in Circulating Fluidized Bed[A]. In Cities of the Future Xi'an: Technologies for Integrated Urban Water ManagementC], Xi'an, China, Sept 15-19,2011.
    [36]. Solimene, R.,Urciuolo, M.,Cammarota, A., etc. Devolatilization and ash comminution of two different sewage sludges under fluidized bed combustion conditions[J]. Experimental Thermal and Fluid Science, Apr,2010,34 (3):387-395.
    [37]. Zhou, L.,Jiang, X.,Liu, J. Characteristics of oily sludge combustion in circulating fluidized beds[J]. Journal of Hazardous Materials,2009,170175-179.
    [38]. Park, J. M.,Lee, S. B.,Kim, J. P., etc. Behavior of PAHs from sewage sludge incinerators in Korea[J]. Waste Management,2009,29 (2):690-695.
    [39]. Jiang, D. L.,Huo, X. H.,Dong, C. Q., etc. Sludge auto-thermal drying and incineration generation simulation with ASPEN PLUS[J].2009 International Conference on Sustainable Power Generation and Supply, Vols 1-4,2009,1851-1855.
    [40]. Hartman, M.,Trnka, O. Heavy metals in sewage sludge and their behaviour in incineration[J]. Chemicke Listy,2008,102 (2):131-138.
    [41].王飞,朱小玲,李博等.污泥干化焚烧过程中污染物排放的研究[J].给水排水,2011,37(05):22-26.
    [42].秦翠娟,李红军,钟学进.我国污泥焚烧技术的比较与分析[J].能源工程,2011,(01):52-55.
    [43].孙向军,傅玲琼,张益.污泥焚烧厂烟气处理工艺探讨[J].环境卫生工程,2011,19(01):16-18.
    [44].彭小军,孙向军,傅传运.鼓泡流化床焚烧炉污泥干化焚烧处理特性及能耗研究[J].工业锅炉,2011,(02):13-16.
    [45].陈涛,孙水裕,刘敬勇等.城市污水污泥焚烧二次污染物控制研究进展[J].化工进展,2010,29(01):157-162.
    [46].矫维红,那永洁,郑明辉等.城市下水污泥焚烧过程中二次污染物排放特性的试验研究[J].环境污染治理技术与设备,2006,7(04):74-77.
    [47].姬鹏,韩向新,姜秀民.干化污泥燃烧特性的研究[J].热能动力工程,2009,24(04):533-537.
    [48]. Chou, J.-d.,Wey, M.-Y.,Liang, H.-H., etc. Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators[J]. Journal of Hazardous Materials,2009,168(1):197-202.
    [49].肖汉敏.污泥热干燥与焚烧特性研究[D].广州:华南理工大学,2010.
    [50].姬鹏.市政污泥流化床焚烧试验研究[D].上海:上海交通大学,2009.
    [51].刘建国.油污泥的流化床焚烧处理方法及其燃烧机理[D].上海:上海交通大学,2009.
    [52].邓文义,严建华,李晓东等.流化床内干化污泥燃烧污染物排放特性研究[J].浙江大学学报(工学版),2008,42(10):1805-1810.
    [53].杨敏,汪磊.循环流化床锅炉在污泥焚烧中的工艺特性的研究[J].锅炉制造,2008,(04):69-71.
    [54].李军,李媛.流化床焚烧炉污泥焚烧工艺特性研究[J].环境工程,2004,22(03):76-79.
    [55].吕清刚,李志伟,那永洁等CFBC混烧城市污泥与煤:N20和NO的排放[J].工程热物理学报,2004,25(01):339-342.
    [56].吕清刚,范晓旭,那永洁等.城市下水污泥和煤/LPG在循环流化床上的混烧试验研究[J].工程热物理学报,2006,27(02):163-166.
    [57].张凝.造纸污泥及其混煤燃烧与酸性气体排放特性的试验研究[D].广东:广东工业大学,2011.
    [58].李培生,胡益,胡念苏等.污泥和煤混烧过程中含氧官能团的变化规律[J].中国电机工程学报,2009,29(08):40-44.
    [59].吴成军,段钰锋,赵长遂.污泥与煤混烧中飞灰对汞的吸附特性[J].中国电机工程学报, 2008,28(14):55-60.
    [60]. Chin, S.,Jurng, J.,Lee, J.-H., etc. Oxygen-enriched air for co-incineration of organic sludges with municipal solid waste:A pilot plant experiment[J]. Waste Management,2008,28 (12):2684-2689.
    [61]. Xiao, H. M.,Ma, X. Q.,Lai, Z. Y. Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal[J]. Applied Energy, Sep,2009,86 (9):1741-1745.
    [62]. Otero, M.,Calvo, L. F.,Gil, M. V., etc. Co-combustion of different sewage sludge and coal:A non-isothermal thermogravimetric kinetic analysis[J]. Bioresource Technology,2008,99 (14): 6311-6319.
    [63].刘秀如,吕清刚,赵科.城市污水污泥热解特性及动力学研究[J].热能动力工程,2010,25(06):677-680.
    [64].赵科,吕清刚,谭力等.污泥的热解提油-半焦燃烧工艺的实验研究[J].工程热物理学报,2011,32(04):687-690.
    [65]. Seggiani, M.,Vitolo, S.,Puccini, M., etc. Cogasification of sewage sludge in an updraft gasifier[J]. Fuel, Mar,2012,93 (1):486-491.
    [66]. Nilsson, S.,Gomez-Barea, A.,Cano, D. F. Gasification reactivity of char from dried sewage sludge in a fluidized bed[J]. Fuel, Feb,2012,92 (1):346-353.
    [67]. Samanya, J.,Hornung, A.,Apfelbacher, A., etc. Characteristics of the upper phase of bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw[J]. Journal of Analytical and Applied Pyrolysis,2012,94 (0):120-125.
    [68]. Fonts, I.,Gea, G.,Azuara, M., etc. Sewage sludge pyrolysis for liquid production:A review[J]. Renewable and Sustainable Energy Reviews,2012,16 (5):2781-2805.
    [69]. Sanchez, M. E.,Menendez, J. A.,Dominguez, A., etc. Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge[J]. Biomass and Bioenergy,2009,33 (6-7): 933-940.
    [70]. Dominguez, A.,Menedez, J. A.,Inguanzo, M., etc. Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge[J]. Fuel Processing Technology, May,2005,86 (9):1007-1020.
    [71]. Judex, J. W.,Gaiffi, M.,Burgbacher, H. C. Gasification of dried sewage sludge:status of the demonstration and the pilot plant[J]. Waste Management,2012,32 (4):719-723.
    [72]. Gross, B.,Eder, C.,Grziwa, P., etc. Energy recovery from sewage sludge by means of fluidised bed gasification[J]. Waste Management,2008,28 (10):1819-1826.
    [73]. Debellefontaine, H.,Cammas, F. X.,Deiber, G., etc. Wet air oxidation:kinetics of reaction, carbon dioxide equilibrium and reactor design-An overview[J]. Water Science and Technology,1997,35 (4): 111-118.
    [74].陶明涛,张华,王艳艳等.基于部分湿式氧化法的污泥资源化研究[J].环境工程,2011,29(增刊):402-404.
    [75]. Kelessidis, A.,Stasinakis, A. S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries[J]. Waste Management, (0).
    [76]. Chun, W.-P.,Lee, K.-W. Sludge drying characteristics on combined system of contact dryer and fluidized bed dryer[A]. In Proceedings of the 14th International Drying Symposium[C], Brazil,2004.
    [77]. Cree,L, C. The evolution of thermal drying as a sludge treatment process stage[A]. In Seminar on the Drying of sewage sludge[C], Wakefield,1993.
    [78].杨小文,杜英豪.污泥热干化在美国的应用[J].中国给水排水,2002,18(01):90-92.
    [79].郭淑琴,孙孝然.几种国外城市污水处理厂污泥干化技术及设备介绍[J].给水排水,2004,30(06):34-37.
    [80].郭淑琴,胡大卫,卢心虹等.介绍几种污泥热干化技术设备[J].中国给水排水,2003,19(05):105-106.
    [81]. Bridle, T.,Skrypaki-mantele, S. Assessment of sludge reuse options:A life-cycle approach[A]. In Proceedings IAWQ/AWWA Sludge Management Conference[C], Australia,1999.
    [82].黄凌军,杜红,鲁承虎等.欧洲污泥干化焚烧处理技术的应用与发展趋势[J].给水排水,2003,29(11):19-22.
    [83].吕清刚,那永洁,高鸣等.一种带复合干燥器的循环流化床湿污泥干化焚烧处理方法[P].CN200510077292.X,2006-12-27.
    [84].周玉文,胡伟,John,K.等EcoDry污泥干燥技术在欧洲的应用[J].给水排水,2009,35(08):36-39.
    [85].杨新海,张辰.上海市石洞口城市污水处理厂污泥干化焚烧工程[J].给水排水,2003,29(09):19-22.
    [86].韩晓强,陈晓平.上海石洞口干化污泥焚烧炉的调试[J].锅炉技术,2006,37(01):77-80.
    [87].李大庆.城市下水污泥的干化焚烧一体化技术试验研究[D].北京:中国科学院研究生院2009.
    [88].贠小银,吕清刚,那永洁等.循环流化床污泥焚烧一体化工艺的研究与应用[J].环境工程,2007,25(04):56-58.
    [89].李云玉,吕清刚,朱建国等.循环流化床一体化污泥干化焚烧工艺的冷态实验研究[J].中国电机工程学报,2010,30(35):1-6.
    [90].于俊岭,董云彩.污泥流化床干化器换热器盘管磨损现象分析和对策[J].环境科学与管理,2011,36(04):79-81.
    [91].邓文义.污泥间接式干化机理及处置过程中污染物排放特性研究[D].杭州:浙江大学,2009.
    [92].王凯军,俞金海,俞其林.新型污泥干化/焚烧技术的试验研究[J].中国给水排水,2008,24(11):43-46.
    [93].相杰,程新群,高东兴等.利用锅炉尾气干燥城市污泥研究[J].能源研究与信息,2007,23(02):67-74.
    [94].岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1998.
    [95].朱治平.加压循环流化床的实验与模型研究[D].北京:中国科学院研究生院,2008.
    [96].王擎,骆仲泱.李绚天等.循环流化床流动密封阀型返料装置的设计方法探讨[J].动力工程,1999,19(02):24-28.
    [97]. Kim, S. W.,Kim, S. D.,Lee, D. H. Pressure balance model for circulating fluidized beds with a loop-seal[J]. Industrial & Engineering Chemistry Research, Oct,2002,41 (20):4949-4956.
    [98].王伟,范晓旭,那永洁等.循环流化床多联供试验台的冷态试验研究[J].锅炉技术,2006,37(04):40-43.
    [99].吕清刚,王斌,那永洁等.循环流化床多联供试验台调节特性的试验研究[J].化学工程,2009,37(12):75-78.
    [100].胡一柯,包绍麟.气动分配阀调节特性的冷态试验研究[J].锅炉技术,2008,39(04):37-41.
    [101].高鸣,吕清刚,贺军.循环流化床物料气动控制阀结构的试验研究[J].中国电机工程学报,2006,26(01):51-57.
    [102]].王勤辉,骆仲泱,方梦祥等.12兆瓦热电气多联产装置的开发[J].燃料化学学报,2002,(02):141-146.
    [103]].王擎,岑可法,骆仲泱等.循环流化床锅炉循环回路流体流动过程动态模型[J].中国电机工程学报,1999,19(12):31-35.
    [104]. Basu, P.,Butler, J. Studies on the operation of loop-seal in circulating fluidized bed boilers[J]. Applied Energy, Sep,2009,86 (9):1723-1731.
    [105]. Yang, S.,Yang, H.,Zhang, H., etc. Impact of operating conditions on the performance of the external loop in a CFB reactor[J]. Chemical Engineering and Processing:Process Intensification,2009, 48 (4):921-926.
    [106]. Kim, S. W.,Kim, S. D. Effects of particle properties on solids recycle in loop-seal of a circulating fluidized bed[J]. Powder Technology,2002,124 (1-2):76-84.
    [107]. Basu, P. combustion and gasification in fliudized bed[M]. Boca Raton:Taylor & Francis,2006.
    [108].金涌,祝京旭,汪展文.流态化工程原理[M].北京:清华大学出版社,2001.
    [109].高鸣.循环流化床物料气动控制的冷态试验研究[D].北京:中国科学院研究生院,2005.
    [110].范晓旭.循环流化床多联供系统试验研究[D].北京:中国科学院研究生院,2007.
    [111]. Fushimi, C.,Guan, G.,Nakamura, Y., etc. Hydrodynamic characteristics of a large-scale triple-bed combined circulating fluidized bed[J]. Powder Technology,2011,209 (1-3):1-8.
    [112]. Charitos, A.,Hawthorne, C.,Bidwe, A. R., etc. Hydrodynamic analysis of a 10 kwth calcium looping dual fluidized bed for post-combustion CO2 capture[J]. Powder Technology,2010,200 (3): 117-127.
    [113].许文波,李云玉,朱建国等.非对称结构气动分配阀调节特性冷态实验[J].化学工程,2010,38(09):23-26.
    [114]. Monazam, E. R.,Shadle, L. J.,Mei, J. S. Impact of the circulating fluidized bed riser on the performance of a loopseal nonmechanical valve[J]. Industrial & Engineering Chemistry Research, Mar, 2007,46(6):1843-1850.
    [115]. Basu, P.,Chandel, M.,Butler, J., etc. An investigation into the operation of the twin-exit loop-seal of a circulating fluidized bed boiler in a thermal power plant and its design implication[J]. J. Energy Resour. Technol.-Trans. ASME, Dec,2009,131 (4).
    [116]. Han, X. X.,Cui, Z. G.,Jiang, X. M., etc. Regulating characteristics of loop seal in a 65 t/h oil shale-fired circulating fluidized bed boiler[J]. Powder Technology, Sep,2007,178 (2):114-118.
    [117]. Johansson, A.,Johnsson, F.,Andersson, B. A. The performance of a loop seal in a CFB boiler[J]. J. Energy Resour. Technol.-Trans. ASME, Jun,2006,128 (2):135-142.
    [118].姚宣,杨石,晁俊楠等.循环流率对循环流化床回路压降影响的实验研究[J].中国电机工程学报,2010,30(20):1-6.
    [119]. Kudra, T.,Gawrzynski, Z.,Glaser, R., etc. Drying of pulp and paper sludge in a pulsed fluid bed dryer[J]. Drying Technology,2002,20 (4-5):917-933.
    [120]. Adamiec, J. Drying of waste sludges in a fluidized bed dryer with a mixer[J]. Drying Technology, 2002,20 (4-5):839-853.
    [121].吕芹.惰性粒子内热式振动流化床干燥膏状物料实验研究[D].成都:四川大学,2007.
    [122].时钧,汪家鼎,余国琮.化学工程手册[M].北京:化学工业出版社,1996.
    [123].杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [124].刘华彦,杨阿三,伍沅等.带水平传热管束的组合加热流化床传热及干燥特性[J].浙江工业大学学报,2002,30(02):100-103.
    [125].潘孝良,胡晓光,李坤山.振动流化选粉机的颗粒扬析速率关联式研究[J].中国建材装备,1994,(02):3-6.
    [126].吕清刚,朱建国,李诗媛等.循环流化床一体化污泥焚烧工程的调试及分析[J].中国给水排水,2012,(3):1-3.
    [127].GB 18485-2001.生活垃圾焚烧污染控制标准[S].北京:中国标准出版社,2001.
    [128].GB 5085.3-2007.危险废物鉴别标准浸出毒性鉴别[S].北京:中国标准出版社,2007.
    [129].宁新宇,李诗媛,吕清刚等.生物质成型燃料流化床燃烧粘结机理实验研究[J].电站系统工程,2008,24(06):17-19.
    [130].李诗媛,矫维红,吕清刚.不同床料流化床生物质燃烧粘结机理研究[J].工程热物理学报,2009,30(05):869-872.
    [131].李诗媛,吕清刚,矫维红等.生物质成型燃料循环流化床燃烧试验研究[J].燃烧科学与技术,2009,15(01):54-58.
    [132]. Liao, C. P.,Wu, C. Z.,Yanyongjie, etc. Chemical elemental characteristics of biomass fuels in China[J]. Biomass & Bioenergy,2004,27 (2):119-130.
    [133].滕海鹏.生物质流态化燃烧粘结失流特性研究[D].北京:中国科学院研究生院,2011.
    [134]. Acharya, P. Process challenges and evaluation of bed agglomeration in a circulating bed combustion system incinerating red water[J]. Environmental Progress, Spr,1997,16 (1):54-64.
    [135].王箴.化工词典[M].北京:化学工业出版社,1992.
    [136].黄鸥.污水厂污泥处理处置的思路与几种处理方法的应用.水工业市场,2009,(4):12-15.
    [137].污泥干化焚烧工程5月投产每天处理240吨污泥[EB/OL].2012-01-24[2012-03-30].http://roll.sohu.com/20120124/n332932054.shtml.
    [138].中华人民共和国环境保护部.城镇污水处理厂污泥处理处置污染防治最佳可行技术指南(试行)2010-03-01[2012-03-30]. http://ww.mep.gov.cn/gkml/hbb/bgg/201003/t20100310_186655. htm
    [139].周芸.“取经”上海石洞口污泥干化焚烧工艺[EB/OL].2009-09-17[2012-03-30].http://news.h2o-china.com/technology/latest/834291253151788_1.shtml.
    [140].中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2010-2012.
    [141].中国科学院工程热物理研究所.一种带冷凝式干燥的湿污泥焚烧处理方法[P].CN101430094,2009-05-13.
    [142].中国科学院工程热物理研究所.冷凝式干燥机[P].CN200810240090.6,2009-05-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700