生态种植型混凝土的制备、多孔结构及其伪装特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旧城区改造、粘土砖生产和工程施工等过程产生的废弃粘土砖碎块垃圾严重占用了场地、污染环境。利用废弃粘土砖生态种植型混凝土既可以解决废弃粘土砖造成的污染,又可以解决天然骨料生产生态种植混凝土吸率不高的问题。而且利用生态种植型混凝土上的植物进行伪装,拥有与背景完全一致的外貌和特性,当植物达到一定密度时,可有效地对抗光学、红外和雷达侦察。在资源再生和循环利用及降低环境负荷方面和工程伪装方面,生态种植型混凝土具有重要的意义。本文主要对碎砖集料生态混凝土的制备工艺、pH控制、吸水性和保水性进行讨论和研究;研究生态种植型混凝土的内部结构、三维结构仿真重建;分析生态种植型混凝土吸收电磁波特性以及吸波剂对其吸波性能的影响;探讨生态种植混凝土种植的原则,植被生长以后对光学伪装性能、红外伪装性能、电磁波吸收性能进行分析。本文取得的主要结论如下:
     1、针对碎砖集料吸水率高、强度低的特点,提出了生态种植型混凝土搅拌工艺应该采用净浆裹石法。
     2、矿物掺合料的加入有利于生态种植型混凝土内部空隙pH值的降低,粉煤灰降低pH的效果优于粉煤灰与矿渣混掺的效果。浆集比直接决定生态种植型混凝土的渗透系数,渗透系数混凝土随着浆集比的增加而降低。相同空隙率时,而透水系数越高,表明生态种植型混凝土的连通性越好。随着集灰比的增加,生态种植型混凝土的保水能力下降,吸水率随集灰比增加而增。
     3、孔结构采用MATLAB软件对图像进行增强、分割等处理,利用Image-Pro Plus软件分析法测量生态种植型混凝土孔的孔结构参数。生态种植型混凝土的平均孔直径随着集料粒径的增加而增加,而且呈指数关系。采用MATLAB软件对图像进行增强、分割等处理,采用体重建的方法实现了基于真实细观结构的生态种植混凝土三维重建。重构的三维结构模型接近真实的生态种植型混凝土,可以直观地分析混凝土内部的多孔结构和孔的连通性。
     4、生态种植型混凝土的多孔结构可以改善其表面阻抗与自由空间阻抗的匹配,使电磁波易于进入材料内部,进而增加其损耗衰减;同时多孔结构能够对入射电磁波进行多次的反射和散射,电磁波在材料内部迅速衰减,使生态种植型混凝土具有良好的电磁波吸收性能。在8GHz~18GHz内对电磁波反射率小于-10 dB,平均反射率均小于-20 dB,而吸波剂铁氧体和铁矿粉改善生态种植型混凝土的吸波性能和拓宽吸收频段。
     5、草的种植密度合理,可以完全覆盖生态种植型混凝土,形成的生态伪装面,用光学相机不能区分植物下方的物质与土壤,可以对抗光学侦察。
     6、在晴天通过红外热像仪检测到生态种植型混凝土上草的平均辐射温度比土壤上草的辐射温度高0.96℃,在雨天生态种植型混凝土上草的辐射温度与土壤上草的辐射温度相同。生态种植型混凝土只要能覆盖合理厚度的客土,保证植物合理的种植密度,就可以与周围植被达到一致的环境协调性,可以对抗热红外侦察。
     7、生态种植型混凝土种草后,对电磁波同时具有吸收和散射作用,而且植草密度电磁波吸收效果有影响,植草密度为100%时,对电磁波的最大值反射率为-20.16 dB,最小值反射率为-42.87 dB,平均值反射率为-29.91 dB,能对抗雷达的侦察。
The focus of the paper is green-growing porous concrete with broken bricks. Preparation and pH control of it were discussed,and water absorption and water retention of it were researched, and the internal structure of porous concrete and three-dimensional simulation of the construction were studied. Electromagnetic wave absorption properties of porous concrete and influences of absorbing agents on the absorbing properties were analysised. Principles of plant cultivation on green-growing porous concrete were studied. Optical camouflage, infrared camouflage and electromagnetic wave absorption properties of porous concete with plant were researched.It is an important significance from renewable resources, reducing environmental load, and multi-level development application of porous concrete, etc..
     To use massive waste bricks and improve water absorption of porous concrete, porous concrete was made with the entire broken brick as aggregate. In view of the broken brick aggregate's low hardness and the high water-absorption, preparation process and the physical mechanics performance of porous concrete were studied. Net slurry stone process was used.
     Mineral admixtures can reduce pH value of ecological planting type concrete Soil pH, and the effect is better than fly ash and slag mix mixed results. Cement paste– aggregate ratio directly determine waterhead and permeability coefficient of ecological planting concrete, with a logarithmic relation coefficient.Cement paste– aggregate ratio creasing,waterhead increases with the positive function relation, but permeability coefficient decreases with inverse function relation. Relation of permeability coefficient and porosity also is the logarithmic relationship,with the same pore ratio, permeability coefficient is taller, shows that the ecological planting concrete has better connectivity. Green-growing porous concrete with broken bricks has better water absorption capacity and water-holding capacity than with gravel. Along with the increase of aggregate-cement ratio, water-holding capacity drops, but water absorption capacity creases.
     With modern image analysis technique, aggregate size and cement-aggregate ratio on the pore structure parameters were analysised. Used the principles of industrial three-dimensional reconstruction of CT image, adopted digital grapHic process and MATLAB program to achieve three-dimensional reconstruction of the porous concrete.The results showed that the reconstruction view of three-dimensional structure was similar to the real structure of porous concrete, and the inner porous structure and the connectivity of concrete can be analyzed intuitively. It provided an effective model for porous structure, mechanic property and penetrability of porous concrete using finite element method.
     Porous structures of porous concrete can improve the matching ability of surface impedance and free space impedance, this means that the electromagnetic wave is prone to enter into the internal of it, moreover the reflection loss of electromagnetic wave decreased. Incident wave had undergone multiple reflection and scatter, so the energy loss increased. In 8GHz~18GHz brand, average reflectivity of the sample is less than -20dB. Moreover, influences of iron ore, ferrite and steel fibers on absorbing properties of porous concrete were studied.
     Green-growing porous concrete can be completely covered with reasonable density grass, the picture with optics cameras can't distinguish between Green-growing porous concrete and soil, tand can escape the optical reconnaissance.
     With infrared thermograpHy, temperature of grass on green-growing porous concrete is high 0.96℃than that on soil in sunny day, and temperature is same in rainy day. as long as green-growing porous concrete is covered with reasonable thickness out-soil, ensure plant rational planting density, can achieve consistently harmony with environment, can avoid thermal infrared reconnaissance.
     Ecological planting grass type concrete covered with reasonable density grass can absorpt and scatter electromagnetic wave. And grass density influences electromagnetic wave absorption, when plant grass density of 100%, the minimum, maximum and average reflectivity of the sample is -42.87 dB, -20.16dB and -29.91 dB, respectively. Green-growing porous concrete completely covered with reasonable density grass and can escape the radar reconnaissance.
引文
[1]水口裕之.エココンクリ-トとは[J].コンクリ-ト工学,1998,36(3):9~12.
    [2]杨静,冯乃谦。21世纪的混凝土材料—环保型混凝土[J].混凝土与水泥制品,1999,(2):3~5.
    [3]梁丽敏水泥基材料中贝壳资源应用研究[D].沈阳:沈阳建筑大学,2005.
    [4] Akhtaruzzaman A A, Hasnat A. Properties of concrete using crushed brick as aggregate. Concrete International,1983,5(2):58~63.
    [5] Mohammad A M,Wee T H,Lee S C. Crushed bricks as coarse aggregate for concrete.ACI Materials Journal,1999,96 (4):478~484
    [6]姜德民,白子刚,王凤春,等.环保型绿化混凝土的试验研究[J].建筑技术,2006,37(1):38~40.
    [7]邢振贤,刘利军,赵玉青,等.碎砖集料再生混凝土配合比研究[J].再生资源研究,2006(2):38~40.
    [8]范小平.再生粘土砖骨料混凝土的牲能研究[J].福建建材,2009,93(3):27~28.
    [9]孙保健,张欣.有机物改性再生砖骨料混凝土的性能研究[J].建筑与工程,2008,32:140,116.
    [10]严捍东,张秀峰.废弃黏土砖再生骨料对混凝土性能的影响研究[J].四川建筑科学研究,2009,35(5):179~182.
    [11]张朝辉.多孔植被混凝土研究[D].重庆:重庆大学,2006.
    [12]雷丽恒.透水性道路用生态混凝土性能的试验研究[D].镇江:江苏大学,2007.
    [13]万炜.透水性生态混凝土的制备及抗冻性能研究[D].镇江:江苏大学,2006.
    [14]刘海峰.环境友好型植物生长多孔混凝土的研究与应用[D].南京:东南大学,2004.
    [15]刘小康.植物生长型多孔混凝土的制备、性能与抗冻性研究[D].南京:东南大学, 2006.
    [16]漆贵荣.植被混凝土坡面防护技术的应用[J].公路工程,2009,34(2):112~117.
    [17]谢新生,汤巍,王锦叶.多孔生态混凝土强度与孔隙率的实验研究[J].四川大学学报(工程科学版)2008,40(6):19~23.
    [18]陈沙,岳中琦,谭国焕.基于数字图像的非均质岩土工程材料的数值分析方法[J].岩土工程学报,2005,27(8):956~964.
    [19]王宝庭,徐道远,宋玉普.数字图像处理技术在混凝土研究中的应用[J].河海大学学报,1999,27(4):60~63.
    [20]吴浩,姚燕,王玲.数字图像处理技术在水泥混凝土研究中的应用[J].混凝土与水泥制品,2007,4,8~13
    [21]徐文杰,岳中琦,胡瑞林.基于数字图像的土、岩和混凝土内部结构定量分析和力学数值计算的研究进展[J].工程地质学报,2007,15(3):289~313.
    [22]岳中琦.岩土细观介质空间分布数字表述和相关力学数值分析的方法、应用和进展[J].岩石力学与工程学报,2006,25(5):875~888.
    [23]杨传俊.数字图像处理技术在土石混合体颗分中的应用[J].云南水力发电,2009,25(3):24~32.
    [24]张雄,周云,张永娟等.轻集料颗粒群特征对混凝土力学性能的影响[J].同济大学学报:自然科学版,2010,38(7):1052~1056.
    [25] Kwan A K H. Wang Z M. Chan H C. Mesoscopic study of concreteⅡ: nonlinear finite element Analysis[J].Computers and Structures, 1999, 70: 545~556.
    [26] Jan G M, Marcel R A, Wang TaiK. Fracture mechanisms in particle composites: statistical aspects in lattice type analysis[J].Mechanics of Materials, 2002,34: 705~724.
    [27]尚岩,杜成斌.基于细观损伤的混凝土力学性能数值模拟研究进展[J].水利与建筑工程学报,2004, 32(1): 23~28.
    [28] Bazant Z P,Tabbara M R,Kazemi M T. et al. Random particle model for fracture of aggregate or fiber composites[J].Journal of Engineering Mechanics,1990,116(8):1686~1705.
    [29]王宗敏,邱志章.混凝土细观随机骨料结构与有限元剖分[J].计算力学学报,2005, 22 (6):728~732.
    [30]高政国,刘光廷.二维混凝土随机骨料模型研究[J].清华大学学报:自然科学版,2003, 43(5):710~714.
    [31]姜绍飞,邱云飞,陈仲堂.混凝土细观层次损伤数值模拟-随机骨料结构的生成[J].沈阳建筑大学学报:自然科学版,2007(2):182~186,194.
    [32]杜修力,田瑞俊,彭一江.均匀化在数值混凝土单轴拉伸试验中的应用[J].沈阳建筑大学学报:自然科学版,2007(5):742~746.
    [33]孙立国,杜成斌,戴春霞.大体积混凝土随机骨料数值模拟[J].河海大学学报:自然科学版, 2005, 33(3): 291~295.
    [34]孙立国.三级配(全级配)混凝土骨料形状数值模拟及其应用[D].南京:河海大学, 2005.
    [35]李运成,马怀发,陈潇.混凝土三维细观力学模型分析[J].山东商业职业技术学院学报,2007,7(3):98~101.
    [36]凌丽,唐春安,王述红等.钢管混凝土柱破坏过程的三维数值模拟[J].东北大学学报:自然科学版,2008,29(10):1505~1508.
    [37]姜袁,柏巍,戚永乐等.基于CT扫描数据的混凝土细观结构的三维重建[J].三峡大学学报:自然科学版,2008,30(1):52~55.
    [38]陈玉华,吕绪良,许卫东,等.高技术局部战争中的工程伪装[J].工兵装备研究,2001,3:10~12.
    [39]宣兆龙.雷达波衰减型红外迷彩伪装遮障材料研究[D].石家庄:军械工程学院, 2003.
    [40]宣兆龙,易建政,郭永强.雷达波衰减型红外迷彩伪装遮障材料研究[J].华北工学院学报,2004,25(1):71~74.
    [41]宣兆龙,易建政,张胜.一种雷达波衰减型红外迷彩伪装遮障材料设计方案[J].军械工程学院学报,2003,15(2):46~49,57.
    [42]管洪涛.石英和水泥基平板吸波材料研究[D].大连:大连理工大学,2006.
    [43]焦其祥.电磁场与电磁波[M].北京:科学出版社.2004.
    [44] HaytW H,Buck J A. Engineering Elecrtomagnetcis (Sixth Edition).NewYork:MeGraw-Hill Compnaies,Ine.2001.
    [45]徐安士,周乐柱.工程电磁场[M].北京:电子工业出版社.2004.
    [46]陈抗生.电磁场与电磁波[M].北京:高等教育出版社.2003.
    [47]阎鑫,胡小玲,岳红等.雷达吸收剂材料的研究进展[J].材料导报2001,15(1) :62~64.
    [48] Carl T.A.oJhnk著,吕继尧,彭铁军译.工程电磁场与波[M].北京:国防工业出版社.1983.
    [49]周馨我,张公正,范广裕.功能材料学[M].北京:北京理工大学出版社,2002.
    [50]熊国宣.水泥基复合吸波材料[D].南京:南京工业大学,2005.
    [51]王为,程杰,高俊丽等.雷达吸波材料的研究现状[J].雷达与对抗,1999,(l) :30~33.
    [52] Coa J,Chung D D L.Use of fly ash as an admixture of relectomganetic interference shielding[J].Cement&Concrete Research.2004,34(10):1889~1892.
    [53] Guna H,Liu S,Duan Y,etal.Celllent based elecrotmagnetic shielding and absorbing building materials[J].Cement& Conerete composites.2006,28(5):468~474
    [54] Kharkocsky S N,Hasar U C,Akya M F,etal. Measurement and monitoring of mierowaver eflection and transmission properties of cement-based materials for propagation moldeling[J].Vehicular Technology Coneference.Greece:Rhodes.2001,vol.2:1202~1206.
    [55] Kharkocsky S N,Akya M F,Hasar U C, etal. Measurement and monitoring of microwaver eflection and transmission properties of cement-based specimens [J].IEEE. Trans.Instr. &Meas1210~1218.
    [56] Cao Jing-yao, Chung DDL. Coke powder as an admixture in cement for electromagnetic interference shielding [J].Carbon 2003,41(12):2433~2436.
    [57] Jingyao Cao,DDL Chung Colloidal grapHite as an admixture in cement and as a coating on cement for electromagnetic interference shielding[J].Cement nad Concerte Reseaerh,2003,33(12):1737~1740.
    [58]王闯,李克智,李贺军等.碳纤维增强水泥基复合材料的电磁屏蔽性能[J].精细化工,2008,25(6):536~544.
    [59]欧进萍,高雪松,韩宝国.碳纤维水泥基材料吸波性能与隐身效能分析[J].2006,34(8):901~907.
    [60]唐恩凌,王崇.纳米吸波材料吸收剂的研究现状[J].工艺与材料,2009,7:61~64.
    [61] Zhang Haijun,Yao Xi,Zhang Linagying.The preparation and microwave properties of Ba3Zn2CO2Fe24O41, ferrite by citrate sol-gel poreess[J].Mater Sci and Engineering,2001,(84B):252~257.
    [62] Vlau G,Ravel F,Vincent F. Preparation and microwave characterization of sPHerical and monodisperse Co-Ni partieles[J].J Mganetism and Magnetie Materials,1995,(2):140~144.
    [63] Charles E B,EriC J B,Richard J K .etal,Mierowave absorber employing acicular magnetic metallic filaments.US Pateni:5085931,1992.
    [64] Suzkui M etal.Synthesis of silicon carbon-silicon nitride composite ultrafine particles using a CO2 laser[J].J.Am Ceram Soc,1993,76(5):195.
    [65] Maskai Suuzki,Y.Hasegawa,M.Aizawa,etal.Characteriaztion of silieon carbide-silicon nitride composite ultrafine particles synthesized using a CO2 laser by silieon-29 magic angle spinning NMR and ESR[J].J.Am Ceram Soc,1995,78(1):83.
    [66]王冰,张锋,邱建华,等. Fe3O4超顺磁纳米晶的超声共沉淀法制备及表征[J].化学学报,2009,(11):1211~1216.
    [67]蒲聿,李巧玲,张存瑞等.纳米钴铁氧体吸波材料的研究现状[J].当代化工,2009,38(4):420~422,432.
    [68]许卫东,杨数,张豹山,等.铁氧体水泥基微波吸收复合材料的初步研究[J].兵器材料科学与工程,2003,26(6):6~9.
    [69] Chung D D L.Cement-based electronies[J]. Elecrtoecarocis.2001,6(l):75~88.
    [70]杨海燕,李劲,叶齐政等.钢纤维混凝土的吸波性能研究[J].功能材料,2002,33(3):341~343.
    [71]戴银所,陆春华,倪亚茹,等.异型钢纤维水泥净浆的吸波性能研究[J].武汉理工大学学报,2009,31(19):16~19.
    [72]毛倩瑾,于彩霞,葛凯勇,等.粉煤灰空心微珠的改性及其吸波特性[J].清华大学学报,2005,45(12):1672~1675.
    [73] Kim S S,Kim S T,Ahn J M,et al.Mganetic and microwave absorbing properties of Co-Fe thin films Plated on hollow ceramic micorsPHeres of low density[J].Magn.&Mater,2004,271(l):39~45.
    [74] Vikarnts T,Arun S,Arjiit B.Acoustic properties of cenosPHere reinforced cement and asPHalt [J].concerte.Applied Acoustcis,2004,65(3):263~275.
    [75]朱新文,江东亮,谭寿洪.碳化硅网眼多孔陶瓷的微波吸收特性[J].无机材料学报,2002, 17(6):1152~1156.
    [76] Zhang Hong-tao, Zhang Jin-song, Zhang Hong-yan. Computation of radar absorbing silicon arbide foams and their silica matrix composites [ J].Computational Materials Science, 2007, 38:857~864.
    [77]薛向欣,刘欣,张瑜.泡沫铝基多孔金属复合材料吸波性能[J].中国有色金属学报,2007,17(11):1755~1760.
    [78]刘欣,薛向欣,段培宁.多孔结构对材料吸波性能的影响[J].材料与冶金学报,2007,6(4):306~310.
    [79]赵彦波,刘顺华,管洪涛.水泥基多孔复合材料吸波性能[J].硅酸盐学报, 2006, 34(2): 225~228.
    [80] Guan Hong-tao, Liu Shun-hua, Duan Yu-ping, et al. Investigation of the electromagnetic characteristics of cement based composites filled with EPS[J].Cement Concrete Research, 2007, 29(1): 49~54.
    [81]张凤国.可见光-红外隐身材料的制备与性能研究[D].武汉:华中科技大学,2006.
    [82]郭裕元.空中热红外图像在军事侦察方面的应用[J].感光材料,1993(2):45~49.
    [83]黄永勤,胡志毅.国外防中远红外侦视伪装涂料的研究进展[J].涂料工业,1994(4): 35~38.
    [84]张朝阳,程海峰,陈朝辉,等热红外伪装涂料研究进展及发展趋势[J].新技术新工艺,2007(12):88~91.
    [85]穆武第,程海峰,唐耿平,等.热红外隐身伪装技术和材料的现状与发展[J].材料导报,2007,21(1):114~117.
    [86]赵均英,王卺,孙方兵.热红外伪装隐身技术探讨[J].红外技术,2008,30(7):373~375.
    [87]黄拥元,李仕文,郭益民,等.种植型孔隙混凝土技术的工程伪装应用[J].工兵装备研究,2004,23(2):25~28.
    [88]杨益,王振宇,王坤.混凝土工程植生伪装的研究现状[J].混凝土,2008,222(4):8~10,18.
    [89]谢新生,汤巍,王锦叶.多孔生态混凝土强度与孔隙率的实验研究[J].四川大学学报:工程科学版,2008,40(6):19~23.
    [90]奚新国.高孔隙率低碱度胶凝材料的研究[D].南京:工业大学,2003.
    [91] Dosoudil R, Usˇa′kova′M, Franek J ,et al. Dispersion of complex permeability and EM-wave absorbing characteristics of polymer-based composites with dual ferrite filler. J Magnetism Magnetic Mater 2008,(320):e849~e852.
    [92] Simmons A J,Emerson W H.An anechoic chamber making use of a new broadband bsorbing material.IER Internalional Convention Record [J].1953,l(2):34~41.
    [93]王蔚,刘海峰.植生型多孔混凝土配合比设计方法初探[J].江苏建筑,2005,99(1):45~47.
    [94]姜福田.碾压混凝土[M].北京:中国铁道出版社,1991,98~99.
    [95]杨静.建筑材料与人居环境[M].北京:清华大学出版社,2001. 209~238.
    [96] Motoharu Taaim, Hiroyuki Mizuguchi, Shigemitsu Hatanaka etal. Design Construction and Recent Application of Porous Concrete in Japan [C].
    [97]中国建筑科学研究院,混凝土研究所等译.国外轻集料混凝土应用[M].北京:中国建筑工业出版社,1982:437~457.
    [98] Mohammad A M,Wee T H,Lee S C. Crushed bricks as coarse aggregate for concrete[J].ACI Materials Journal,1999,96 (4):478~484.
    [99]刘正龙.生态混凝土低碱胶凝材料的研究[D].南京:南京水科院,2004.
    [100]孟志良,吴仲兵,钱觉时.大掺量粉煤灰混凝土的孔隙液相碱度[J].重庆建筑大学学报,1999,21(1):24~27.
    [101]董建伟.随机多孔型绿化混凝土孔隙内盐碱性水环境及改造[J].吉林水利, 2003, 254(10):1~4.
    [102]董建伟.随机多孔型绿化混凝土主要生长环境与构造特性[J].吉林水利,2003,251(8):1~4.
    [103]胡春明,胡勇有,虢清伟等.植生型生态混凝土孔隙碱性水环境改善的研究[J].混凝土与水泥制品,2006,3:8~10.
    [104] J.贝尔著,李竞生,陈崇希译.多孔介质流体动力学[D]..北京:中国建筑工业出版社,1983.
    [105]郑木莲.多孔混凝土排水基层研究[D].西安:长安大学,2004.
    [106]廖秀华透水性混凝土的研究[D].南宁:广西大学,2006.
    [107]陈志山.大孔混凝土的透水性及其测定方法[J].混凝土与水泥制品,2001 (l):19~20.
    [108]王娇娜.透水性聚丙烯纤维混凝土试验研究[D].石家庄:河北工程大学,2008.
    [109]三木五三郎主编,陈世杰译.日本土工试验法[M].北京:中国铁道出版社,1985.
    [110]王鸿博.多孔沥青混凝土配制技术研究[D].南京:东南大学,2006..
    [111]孙道胜,胡普华,段加超,等.无砂大孔绿化混凝土制备的初步研究[J].安徽建筑工业学院学报:自然科学版,2004,12(1):35~39.
    [112]沈上越,凌辉,王海波,等.胶磷矿-淀粉/聚丙烯酸盐高吸水保水复合材料的制备[J].功能材料,2008,39(12):2091~2094.
    [113]胡小芳,肖迪,胡大为.无机多孔材料保水性能与孔分形维数关系[J].硅酸盐通报,2008,27(6):1240~1245.
    [114]飞思科技产品研发中心,MATLAB 6.5辅助图像处理[M].北京:电子工业出版社,2010.
    [115]王强.基于ICT切片图像的三维重构研究与应用[D].成都:西南交通大学,2007.
    [116]任世彪,张代林,蔡建安.图像分析在焦炭气孔结构参数测定中的应用[J].安徽工业大学学报,2003,20(1):66~68,81.
    [117] Sepulveda P?Gelcasting foams for Porous ceramics[J].The Ameriean Ceramic Soeiety Bulletin,1997,76(10):61~65.
    [118]廖明顺.多孔材料性能的数值模拟[D].昆明:昆明理工大学,2006.
    [119]汤国华,杨俊和,张琢等.一种定量分析多孔材料孔隙结构的新方法[J].煤碳转化,2004,27(1):71~75.
    [120]杨通在,罗顺忠,许云书.氮吸附法表征多孔材料的孔结构[J].碳素,2006,125(1):17~21.
    [121]谢新生,汤巍,王锦叶.多孔生态混凝土强度与孔隙率的实验研究[J].四川大学学报:工程科学版,2008,40(6):19~23.
    [122] Kwan A K H. Wang Z M. Chan H C. Mesoscopic study of concreteⅡ: nonlinear finite element Analysis[J].Computers and Structures, 1999, 70: 545~556.
    [123] Jan G M, Marcel R A, Wang TaiK. Fracture mechanisms in particle composites: statistical aspects in lattice type analysis[J].Mechanics of Materials, 2002,34: 705~724.
    [124]尚岩,杜成斌.基于细观损伤的混凝土力学性能数值模拟研究进展[J].水利与建筑工程学报,2004, 32(1): 23~28.
    [125]曾筝,董芳华,陈晓等.利用MATLAB实现CT断层图像的三维重建[J]. CT理论与应用研究,2004,13(2):24~29.
    [126]张爱东.基于连续断层的工业CT图像三维重建的研究[D].绵阳:中国工程物理研究院,2005.
    [127] Seung B, Dae S, Jun L.Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio[J].Cement Concrete Research, 2005,35(9): 1846~ 1854.
    [128]王波,霍亮,高建明.多孔混凝土铺装吸声性能试验研究[J].四川建筑科学研究,2004,30(4):85~86,89.
    [129]张金花.混凝土吸声隔音砌块的制备研究[D].南京:东南大学,2006.
    [130] Hsu P F, Howell J R. Measurements of thermal conductivity and optical properties of porous partially stabilized zirconia [J].Experimental Heat Transfer, 1992,5(4): 293~313.
    [131] Kimura K, Hashimoto O. Three-layer wave absorber using common building material for wireless LAN[J].Electron Lett 2004,40(21): 1323~1324.
    [132] CHEN Yu-wei,DENG Min,XIONG Guo-xuan.Research Progress in Microwave Property and Preparation of Barium Hexaferrite [J].硅酸盐通报,2009,28(5):974~979.
    [133] Rahul S, Agarwala R C, Vijaya A. Development of electroless (Ni-P) /BaNi0. 4Ti0. 4Fe11.2O19 nanocom posite powder for enhanced microwave absorption[J].Journal of Alloys and Compounds, 2009 (467): 357~365.
    [134]曾汉民.高技术新材料要览[M].北京:中国科技出版社,1993.
    [135]崔升,沈晓冬,袁林生,等.电磁屏蔽和吸波材料的研究进展[J].电子元件与材料,2005(1):57~61.
    [136]戴银所,陆春华,倪亚茹,等.异型钢纤维水泥净浆的吸波性能研究[J].武汉理工大学学报2009,31(19):16~19.
    [137]高雪松,韩宝国,欧进萍.钢纤维水泥基材料吸波性能实验与隐身效能分析[J].功能材料,2006,37(10):1683~1688.
    [138]张俊云,周德培.厚层基材喷射植被护坡植物选型设计研究[J].水土保持学报,2002,16(4):163~165,167.
    [139]李庆刚.生态混凝土水分保持和供水措施研究[D].南京:南京水利科学研究院,2007.
    [140]刘梦溪,卢经扬,于得水.可恢复植被的环保混凝土植生试验研究[J].混凝土,2007.212(6):106~109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700