软弱围岩中特大断面超小净距隧道2扩4施工方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国隧道建设快速发展,大断面小净距隧道将日益增多,新奥法应用于大断面隧道尤其2扩4大断面小净距隧道的设计、施工仍然处于探索和验证阶段。由于大断面小净距隧道结构型式的特殊性和新颖性,其在施工过程中与既有隧道相互影响难以把握,边施工边通车,且隧道断面大、扁平率低,施工工序复杂,中间岩柱的受力复杂,围岩稳定性差,而施工方法是影响隧道围岩稳定的重要因素之一,合理的施工方法可以充分利用围岩的自承作用,在最小的支护条件下,得到满足围岩稳定要求。因此,研究2扩4各种施工方法中围岩稳定性和力学响应,这有助于今后类似2扩4大断面隧道合理设计和安全施工提供具有价值的参考。
     本论文在岩石力学基本原理和新奥法基本思想指导下,以扩建大帽山公路隧道为依托,对大断面隧道不同扩挖大小、不同开挖顺序和不同开挖进尺的CD法施工的力学特征共计6种工况进行了数值模拟,并结合现场监控量测,分析了CD法扩挖时隧道施工各阶段的应力场、位移场、锚喷支护力学特征的动态演化规律、塑性区的分布规律及对既有隧道的影响,取得以下一些主要成果:
     1、软弱围岩洞口段地表沉降槽出现形成两头小,中间大的倒马鞍形的沉降曲线,在既有隧道正上方出现一个微小的沉降槽;地表的总位移量主要是由于上半断面的开挖引起,周边收敛变形和拱顶下沉有振荡特征,洞壁围岩并不是一直朝净空移动。
     2、大断面隧道围岩强度发挥明显区域形态类似于蝴蝶翅膀,右拱肩围岩强度发挥区域与临近隧道相互贯通,围岩的应力变化主要集中在隧道结构较近的区域;围岩掌子面塑性区深度为0-5m,各导坑台阶塑性区与掌子面塑性区相互连通,连通区域可能形成与隧道纵向呈45°的塑性滑动面。中间岩柱右拱腰位置的位移变化最为剧烈,是最易失稳破坏点。
     3、隧道初期支护处于压应力状态,右拱腰也出现应力集中,其相应应力值为1.61MPa,但未超过混凝土抗压允许值16.7Mpa;锚杆的轴力特征是不断变化的,洞周围岩内锚杆的轴力分布极不均匀,拱脚的位置锚杆处于受压状态,其最大压力为43.46KN,其余部位的锚杆处于受拉状态,其最大拉力为167.98KN。
     4、新建隧道的开挖对既有隧道横断面产生不均匀沉降和不同程度的变形,拱脚、拱腰、拱顶等部位的最终沉降不等且依次减小,左侧的变形相对右侧较大,整个断面呈现明显的偏压状态。新建隧道的开挖对既有隧道的最大拉应力增量为0.25MPa,略小于拉应力增量弱影响阏值(0.3MPa),受新建隧道施工的轻微影响;最大压应力为-0.82MPa,小于弱影响压应力增量值(1.OMPa ),因此既有隧道是安全的。
     5、分析比较6种不同工法的地表沉降、拱顶位移、支护结构内力分布和围岩塑性区范围分布的优劣,CD法ACBD顺序循环进尺1m的开挖方式是最为适合大帽山隧道软弱围岩扩挖施工的方案。
With the rapid development of tunnel construction, small interval tunnel of large span will increase, and new Austrian tunneling method which applied to small interval and large Tunnel’s design and construction especially 2 expanded 4 is still in the exploration and validation phase.Because structure type of small interval tunnel of large span has specificity and novelty,and it’s construction process and the existing tunnel interaction is difficult to grasp, Also,because of it’s construction side of the opening of the tunnel,the large flat rate, complicated construction process ,the middle pillar of the complex stress and so on, however, construction of the tunnel is an important factor in stability of surrounding rock, Reasonable construction method can take full advantage of the self-supporting effect of rock, rock stability requirements are met in the smallest support condition. Therefore, the study of various construction methods 2 expand 4 in the expansion of stability and mechanical response of rock, which help reasonably tunnel design and construction of the similar to the tunnel 2 extend 4,provide valuable safety information.
     In this thesis,base on the expansion of Da Mao Shan Tunnel and the basic principles of rock mechanics as well as the thought of new Austrian tunneling method, six different excavation conditions execute numerical simulation in CD construction method of different sizes, different sequence and different footage , combined with on-site monitoring and measurement, the distribution of the dynamic evolution such as various stages of tunnel stress field, displacement field, mechanical characteristics of shotcrete support,also, the distribution of plastic zone and the impact on the existing tunnel aboat have studied,made the following major achievements:
     1.Settlement curve on the soft rock entrance of the surface appear two side small, big in the middle and has a tiny settlement trough above the existing tunnel,the total displacement of the surface was mainly due to the half section excavation,deformation of the surrounding convergence and crown settlement have oscillation, also,not the wall rock has been moving towards the clearance.
     2.The shape of rock strength to play was similar to butterfly wings region, The shape of rock strength to play is Interconnected with the adjacent tunnel,rock stress mainly in the area close to the tunnel structure; plastic depth of rock tunnel is 0-5m, the divisions plastic zone and the tunnel face connected with each other, and connected region may be formed with the tunnel 45°vertical plastic sliding surface. the right position of the middle pillar of the displacement has Great changes ,which are the most unstable failure point
     3.Initial support is in the compressive stress state, the right waist has stress concentration which the corresponding stress is 1.61MPa, but not exceeding the value of concrete compressive strength allows 16.7Mpa; characteristics of Anchor axial force is constantly changing,Distribution of bolt axial force around Rock is very uneven,the position of the foot is in compression, the maximum pressure 43.46KN, the remaining parts is in tension, the maximum pulling force of 167.98KN.
     4.Excavation of the new tunnel will impact on the existing tunnel which produce differential settlement and varying degrees of deformation,the final settlement on Arch, arch back, vault is not equal and in turn reduce, the deformation on right side is larger than left, therefore,the entire section shown clear bias state.The increments of maximum tensile stress which new tunnel excavation impact on the existing tunnel is 0.25MPa, slightly less than the tensile stress of weak value of shut (0.3MPa) by the minor impact of the new tunnel; the maximum compressive stressis -0.82MPa , less than the incremental value of the weak impact of stress (1.0MPa), so both the tunnel is safe.
     5.Merits of 6 different construction method of surface settlement and crown displacement and the force distribution of support structure as well as the distribution of the plastic zone are analysid and compared,and draw CD method of ACBD sequence and footage 1m excavation is the most suitable for Da Mao Shan construction plan on soft rock
引文
[1]A.Haak. Political and social aspects of present and futuretunneling. Tunnels and Underground Structures. Balkema:1999, 314-319
    [2]Tuneyoshi Hunasaki. Mechanizing and construction result of worldlargest diameter tunnel for Trans-Tokyo Bay Highway. Proceeding of theworld tunnel congress 99-Challenges for the 21St Century. Norway:AABalkema:1999:543-555
    [3]Claus Becker. Ways&Freytag,Zimmerberg Tunel:Section. Tunnels&tunneling international, 1999:31(10)Zurch Thalwil:48-52
    [4] Tukonaki. New models of tunnel machine in Japan. Tunneling andUnderground Space Technology, 1995, 10 (2):83-89
    [5]崔泰喜.4车道宽幅隧道的设计与施工.第五回韩道路协力会议.大韩民国建设交通部道路局.2000.
    [6]关宝树.隧道工程施工要点集[M ].北京:人民交通出版社, 2003.
    [7]孟庆伶.在河流下面修建大断面地下车站[ J ].铁道建筑, 2000 (6) : 6
    [8] ]曲海峰.扁平特大断面公路隧道荷载模式及其应用研究[D];上海:同济大学,2007.6.
    [9]李伟.韩家岭大断面公路隧道开挖过程模拟研究[D ].沈阳:东北大学, 2003.
    [10]谭光宗.市区浅埋大断面公路隧道施工技术.西部探矿工程,2002 (5):24-29
    [11]赖金星,吴明先.大断面公路隧道施工技术.施工技术,2006, 35 (2):59-61
    [12]铁道部工程设计鉴定中心,高速铁路隧道[M].中国铁道出版社,2006. 11
    [13]高军.曾家坪一号隧道大跨段开挖方法研究[ J ].现代隧道技术, 2002 (2) : 20 - 23.
    [14]董建驹,王新线,李海峰.广州地铁公纪区间21. 6m大断面段施工技术[ J ].铁道建筑技术, 2002 (3) : 29 - 32.
    [15]吴梦军,陈彰贵,许锡宾,赵明阶.公路隧道围岩稳定性研究现状与展望[J].重庆交通学院学报.Vol.22.2003
    [16]伦海,刘伟,刘新荣.单洞四车道公路隧道开挖的模型试验[J].地下空间, 2004(4):465- 469 [17白明洲,黄国明.大型地下洞室围岩稳定的三维有限元分析[J).西部探矿工程.2000.62(1).63-65
    [18]胡雪兵,乔玉英.小团山大断面公路隧道稳定性数值模拟研究[J) .重庆交通学院学报.2002.21(4).16-19
    [19]蒋树屏,胡学兵,南扁平状大断面公路隧道施工力学响应数值模拟(J).岩土工程学报.2004.26(3).178-182
    [20]王应富,蒋树屏,张永兴.四车道隧道动态施工力学研究[J]公路交通科技,2005,22(6):111-113
    [21]易国华,软岩大跨隧道台阶法施工力学特性分析及应用[J],2008,9隧道/地下工程,:65-67
    [22]汪立新,大断面隧道单—双侧壁导坑法施工力学分析[J],西部探矿工程,2007,10:170-173
    [23]孙兆远,焦苍等.不同工法开挖超大断面隧道引起围岩变形机制分析[J].铁道建筑,2006,(9):35–37.
    [24]刘建平,罗琼等.客运专线超大断面隧道不同工法引起地表变形数值分析[J].铁道工程学报,2006,(9):55–58.
    [25]黄明琦,郭衍敬.软弱围岩大断面隧道径向注浆变形的控制[J].北京工业大学学报,2007,33(5):512–516.
    [26]日本土木学会编,朱伟译.隧道标准规范(盾构篇)及解说[M」.北京:中国建筑工业出版社.2001.11.
    [27]公路隧道设计规范(JTGD70-2004)[s].人民交通出版社,2004
    [28]张凤祥、朱合华、傅德明.盾构隧道〔Ml.人民交通出版社.2004
    [29]仇文革.地下工程近接施工力学原理与对策研究[D].西南交通大学博士学位论文.2003.3
    [30]郑余朝.三孔并行盾构隧道近接施工的影响度研究[D ].成都:西南交通大学, 2006.
    [31]林从谋,蔡丽光,蒋丽丽,小净距隧道爆破振动对中夹岩累积损伤研究,兵工学报,2009,30(supl2):228~232
    [32]林从谋,郑宏利,蔡丽光等,软弱围岩中大跨度小净距隧道爆破振动监测与控制,防灾减灾工程学报,2008,28(Suppl):190~193
    [33]林从谋,陈礼彪,蒋丽丽等,高速公路扩建大断面特小净距隧道爆破稳定控制技术研究,岩石力学与工程学报,2010,227(7):1371~1378
    [34]郑强,林从谋,林丽群等,小净距隧道爆破振动对山顶影响测试分析,合肥工业大学学报(自然科学版),2009,32(10):1505~1509
    [35]林从谋,杨林德,崔积弘,浅埋隧道掘进爆破振动特征研究,地下空间与工程学报,2006,2(2):276~279
    [36] (日)T.川田.最小净距的大型双线公路隧道的观测施工[J].水电技术信息1996:146-154
    [37]秦峰.吴存兴.小净距隧道开挖方法浅论[J].现代隧道技术,2003,40(6):39-42
    [38]鲁彪.小净距隧道与最小琳巨与连拱隧道研究[D].西安:长安大学2004
    [39]庄宁.廖少明.孙忠成等.大断面小净距群洞隧道施工方案优化研究[J].地下空间与工程学报.2007,3(1):96-100
    [40]丛恩伟.并行双洞小净距公路隧道施工技术[J].铁道标准设计.2003(10):71-74
    [41]晏启祥.何川.姚勇等.软岩小净距隧道施工力学效应研究[J].地下空间与工程学报2005,1(5):693-697
    [42]孙钧,侯学渊.地下工程[M].北京:科学出版社,1988.
    [43]周江天.四连拱隧道围岩稳定性分析[J].工程力学,2000,(增):604-610.
    [44]王文权.大跨软岩地铁隧道施工方法研究:[硕士学位论文].成都:西南交通大学,2002
    [45]王建宇.锚喷支护原理设计.北京:中国铁道出版社,1980
    [46]李刚.不同断面大断面隧道的力学特性.湖南交通科技. 2010.36(2).152-157
    [47]关宝树.隧道工程施工要点集[M」.北京:人民交通出版社.2003年.
    [48]仇文革.地下工程近接施工力学原理与对策研究[D].西南交通大学博士学位论文.2003.3
    [49]关宝树,隧道力学概论「M〕.西南交通大学出版社,1993
    [50]李志业,王明年,大断面地下结构不同施工方法对围岩力学行为的影响[J] ,西南交通大学学报,1996,12(5):25-32;
    [51]蒋树屏,刘洪洲,鲜学福.大断面扁坦隧道动态施工的相似模拟与数值分析研究[J].岩石力学与工程学报, 2000 ,19 5 :567-572;
    [52]宫成兵,张武祥,杨彦民.大断面单洞四车道公路隧道结构设计与施工方案探讨[J].公路, 2004 6 : 177-182
    [53]师金锋,张应龙.超大断面隧道围岩的稳定性分析[J].地下空间与工程学报,2005 ,12 :227 - 230 2005
    [54]周丁恒,曹力桥,马永峰,四车道特大断面大断面隧道施工中支护体系力学性态研究[J].岩石力学与工程学报,2010,29(1).
    [55]杨永康,康天合,柴肇云,层状碎裂围岩特大断面换装洞室施工性态及稳定性分析[J].岩石力学与工程学报, 2010 ,29(11) :2293-2303;
    [56]章青,陈爱玖,王大伟.基于非线性有限元法的高拱坝坝肩岩体抗滑稳定分析[J].水利学报, 2007,(S10) .84-87
    [57]黎勇,栾茂田.非连续变形计算力学模型基本原理及其线性规划解[J].大连理工大学学报, 2000,40(3),352-357
    [58]田荣.连续与非连续变形分析的有限覆盖无单元方法及其应用研究[D].大连理工大学, 2000
    [59]刘君.三维非连续变形分析与有限元耦合算法研究[D].大连理工大学, 2001
    [60]邱宜辉,马昌凤.基于FEPG平台具有复杂边界坝基渗流问题的有限元计算[J].福建师范大学学报(自然科学版),2009,25(5),45-39
    [61]闫相祯,王保辉,杨秀娟.确定地应力场边界载荷的有限元优化方法研究[J].岩土工程学报.2010,32(10),1485-1490
    [62] Naylor D J,Pande G N.Finite Elementsm Geotechnical Engineering.Pineridge Press,1981
    [63]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [64]黄拔洲,陈少华,秦峰.小净距隧道在京福高速公路上的实践[J].重庆大学学报,2003,26(10):19-22.
    [65]李云鹏,王芝银,韩常领,等.不同围岩类别小间距隧道施工过程模拟研究[J].岩土力学,2006,27(1):11-16.
    [66]秦峰,吴存兴.小净距隧道开挖方法浅论[J].现代隧道技术,2003,40(6):39-43.
    [67]刘艳青,钟世航,卢汝绥,等.小净距并行隧道力学状态试验研究[J].岩石力学与工程学报,2000,19(5):590-594.
    [68]贾颖绚,巷道围岩松动圈测试技术与探讨[J].西部探矿工程,2004
    [69]龚伦,仇文革.既有铁路隧道受下穿引水隧洞近接施工影响预测[J].中国铁道科学, 2007,(04) .
    [70]郭宏博.上下交叉隧道近接施工影响分区研究[D].西南交通大学, 2008 .
    [71]王明年,李志业,刘智成,张成满.软弱围岩3孔小间距平行浅埋隧道施工力学研究[J].铁道建筑技术, 2002,(04) .
    [72]杨海霞,刘志鹏,卓家寿.地下洞室群开挖顺序优化设计[J].河海大学学报(自然科学版), 2008,(06) .
    [73]鲁荣刚.超浅埋偏压隧道与邻近隧道开挖顺序分析[J].四川建筑, 2007,(02) .
    [74]靳晓光,刘伟,郑学贵,丁浩.小净距偏压公路隧道开挖顺序优化[J].公路交通科技, 2005,(08) .
    [75]李春明,唐雨春,金美海.小间距隧道应力场和周边位移与施工方法的关系[J].铁道建筑,2006(12):45-48.
    [76]吴波,高波,索晓明.城市地铁小间距隧道施工性态的力学模拟与分析[J] .中国公路学报,2005,18(3):84-89
    [77]孙清源,朱善德.大断面软岩巷道锚喷技术[J].矿山压力与顶板管理, 1997,(21)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700