南海季风试验区海洋对流结构与TRMM卫星反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用98年5-6月南海季风试验(SCSMEX)加密观测期(IOPs)的TRMM卫星上测雨雷达PR、TRMM微波成像仪TMI的探测资料和产品,研究了南海北部季风爆发前后,海上对流云的水平和垂直结构,并利用格点探空资料分析了南海北部对流云的中尺度结构与对流能量、水汽输送特征。
     首先,利用热带测雨卫星(TRMM)的雷达(PR)和微波成像仪(TMI)探测信息,研究了1998年5-6月中国南海季风试验(SCSMEX)期间南海北部(15°~25°N,108°~122°E)夏季风爆发期间中尺度对流云的微物理组织结构和降水特征。结果表明,季风爆发前,锋面云带经过我国沿海进入南海后,云带减弱和消散,而季风爆发后,进入南海的锋面云带系统不但没有减弱,而且在南海地区显著加强,发展为较深厚的对流系统,并伴随着强降水过程发生。卫星雷达观测发现,季风爆发前,雷达最大回波和回波顶高度都比较小,而南海季风爆发后,海洋对流发展很快,回波顶高度达到20 km左右。雷达反演的降水分布显示出有强烈的降水发生。卫星搭载的微波成像仪反演的云结构显示出季风爆发期间暖性对流云塔发展旺盛,云冰含量显著增加,主要分布在8 km以上,而且很深厚。地面总降水在季风爆发期间显著增加,且主要为对流性降水,潜热加热率增加2倍以上,且达到对流层顶部,这种潜热的向上输送可能会引起局地大气环流的变化。季风爆发后平均云液、固态水含量廓线分布显示出显著增加的情况,且向高层发展。
     其次,利用中国南海季风试验(SCSMEX)区1998年5~6月“科学1号”和“实验3号”观测船得到的一天4次加密探空资料及,重点分析了南海北部地区(15°~25°N,108°~122°E)夏季风爆发前后中尺度大气环流的动力、热力和湿度场分布与海洋对流能量和水汽输送特征。结果表明:南海北部季风爆发前后的中尺度大气动力场、温湿场出现快速而明显的变化。季风爆发前,南海北部地区高层辐合、低层辐散,以下沉气流为主;季风爆发后,在200 hPa左右高层辐散、而在900~950 hPa左右低层辐合,并出现强上升气流。这种动力场的显著变化引起温度、湿度场的改变,直接导致南海对流的快速发展,对流活动伴随着剧烈的能量和水汽垂直输送和转化。
Using the data of the TRMM-PR, TRMM-TMI in May—June,1998 during theSouth China Sea (SCS) Monsoon Experiment(SCSMEX),the mesoscale structure andthe strong convective transport and transformation of energy and water vapor on thenorth of the South China Sea (SCS) was studied.
     Firstly, by using data of Precipitation Radar (PR) and Microwave Imager (TMI)sensors on the Tropical Rainfall Measuring Missions (TRMM), the characteristics ofstructure and precipitation of mesoscale convective clouds over northern SouthChina Sea (15°~25°N,108°~122°E) during monsoon onset of south sea in SCSMEXfrom May to June of 1998 has been studied. The results show that the frontal cloudband started to weaken and dissipate as it entered South China Sea from south Chinacoastal region during premonsoon, and intensified and developed deeper convectiveclouds with heavy precipitation during onset of monsoon. The TRMM PR shows thatthe maximum radar echo and echo top was low during premonsoon, and the echoincreased rapidly and echo top reached about 20 km during onset of monsoon.During monsoon period, the precipitation retrieved from PR was strong, the cloudstructure retrieved from TMI shows that the strong and deep convective warm towerdeveloped and cloud ice content enhanced obviously and distributed more than 8 kmlevel and the total surface precipitation increased prominently and was primarily inconvective precipitation. The latent heating rate also increased more than two timesand penetrated the whole troposphere, which might induce the variation of localatmospheric circulation. The profiles of cloud hydrometeors also changed obviouslyduring monsoon period.
     Secondly, by using the sounding data of four times a day in May—June,1998collected on two observational ships of "Kexue 1 "and "Shiyan 3" during the SouthChina Sea (SCS) Monsoon Experiment(SCSMEX), the mesoscale structure ofdynamics, temperature and moisture, and the characteristics of oceanic convection
     Transport of energy and moisture were analyzed. The results show that themesoscale atmospheric dynamics, temperature and humidity experienced a rapid andobvious change after monsoon onset over the SCS. In the period of pre-monsoon, theupper air was convergent and the lower air was divergent showing strong downwardair current in the northern SCS. After monsoon onset, the upper air is divergent at200hPa, the lower air was convergent between 900 and 950hPa, showing a strongupward air current. This noticeable change in dynamic field causes the changes oftemperature and humidity field, and directly leads to the rapid development ofconvection over northern SCS, and the convective activity was accompanied byvertically strong transport and transformation of energy and water vapor.
引文
[1] Tao S Y, Chen L X. A review of recent research on the east Asian summer monsoon in China. Monsoon Meteorology Ⅲ, C.P. Chang and T. N. Krishnamurti, eds., Oxford: Oxford University Press, 1987.60~92
    [2] Hiragana, H., K. Kato, T. Takeda. Abrupt change in the characteristics of the cloud zone in subtropical East Asia around the middle of May. J. Meteor. Soc. Japan, 1995, 73,221~239
    [3] Lau K M, S Yang, Climatology and interannual variability of the southeast Asian summer monsoon. Adv. in Atmos. Sci., 1997, 14(2): 141~162
    [4] Lau K M, Wu H T, Yang S. Hydrologic processes associated with the first transition of the Asian summer monsoon: A pilot satellite study. Bull. Amer. Meteor. Soc., 1998, 79 (9): 1871~1882
    [5] Luo, H, Yanai M. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅱ: heat and moisture budgets. Mon. Wea. Rev., 1984, 112(5): 966-989
    [6] Yanai, M. and T. Tomita. Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP-NCAR Reanalysis, J. Climate, 1998, 11 (3):463~482
    [7] Lau K M, Coauthors. Report of the field operations and early results of the South China Sea Monsoon Experiment (SCSMEX). Bull. Amer. Meteor. Soc., 2000, 81 (6): 1261~1270
    [8] Ding Y H, Liu Y J. Onset and evolution oftbe summer monsoon over the south China sea during SCSMEX field experiment in 1998. J. Meteor. Soc. Japan, 2001, 79, 255~276
    [9] Ding Y H, Hu J. The variation of the heat sources in East Asia in the early summer of 1984 and their effects on the large-scale circulation in East Asia. Adv. in Atmos. Sci., 1988, 6, 171~180
    [10] 丁一汇,李崇银,柳艳菊等,南海季风试验研究.J.气候与环境研究,2002,7(2):202~208
    [11] 柳艳菊,丁一汇,宋艳玲,1998年南海夏季风爆发前后南海地区的水汽输送和水汽收支.J.热带气象学报,2005,21(1):55~62
    [12] Johnson R H, P E Ciesielski. Characteristics of the 1998 summer monsoon onset over the northern South China Sea. J. Meteor Soc. Japan, 2002, 80 (4): 561~578
    [13] Wang J J. Evolution and structure of the mesoscale convection and its environment: A case study during the early onset of the southeast Asian summer monsoon. Mon. Wea. Rev., 2004, 132(5):1104~1132
    [14] 柳艳菊,丁一汇,南海季风爆发前后大气层结和混合层的演变特征.J.气候与环境研究,2000,5(4):459~468
    [15] 吕达仁,林海,雷达和微波辐射计测雨特性比较及其联合应用,大气科学,1980,01
    [16] Chan, J. C. L., Y. Wand, and J. Xu, Dynamic and thermodynamic characteristics associated with the onset of the 1998 South China Sea summer monsoon. J. Meteor. Soc. Japan, 1998, 78: 367~380.
    [17] Johnson, R. H., L.A. Steven, and P. E., Ciesielski et al., Organization of oceanic convection during the onset of the 1998 east Asian summer monsoon, Men. Wea. Rev.,2005, 133: 131~148.
    [18] Moncrieff, M.W., and J. S. A. Green, The propagation and transfer properties of steady convective overturning in shear, Quart. J. Roy. Meteor. Soc.,1972, 98: 336~352.
    [19] Alexander, G. D., and G. S. Young, The relationship between EMEX mesoscale precipitation feature properties and their environmental characteristics. Men. Wea. Rev., 1992, 120: 554~564.
    [20] LeMone, M. A., E. J. Zipser, and S. B. Trier, The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 1998,55. 3493-3518.
    [21] Robe, F., and K. A. Emanuel, The effect of vertical wind shear on radiative-convective equilibrium states. J. Atmos. Sci., 2001,58: 1427~1445.
    [22] 黄荣辉,顾雷,徐予红等,东亚夏季风爆发和北进的年际变化特种机器于热带西太平洋热状态的关系,大气科学,2005,29:20~36
    [23] 李崇银,屈昕,伴随南海季风爆发的大尺度大气环流演变,大气科学,2000,24(1):1~14
    [24] 何有海,彭楚明,关翠华等,南海季风爆发与大气对流低频振荡的年际变化,大气科学,2000,24:758~794
    [25] 刘长征,王会军,姜大膀,东亚季风区夏季风强度和降水的配置关系,大气科学,2004,28:700~712
    [26] 孙淑清,马淑杰,海温异常对东亚夏季风及长江流域降水影响的分析及数值试验,大气科学,2003,27:36~52
    [27] 吴庆梅,程明虎,苗春生.用TRMM卫星资料研究我国江淮—华南降水的微波特性.应 用气象学报,2003,14(2):206~214
    [28] Paul E Ciesielski, Richard H Johnson. Contrasting Characteristics of Convection over the Northern and Southern South China Sea during SCSMEX. Mon. Wea. Rev., 2006, 134 (4): 1041~1062
    [29] 柳艳菊,丁一汇,赵南,1998年南海季风爆发时期中尺度对流系统的研究:Ⅰ中尺度对流系统发生发展的大尺度条件,大气科学,2005,63(4):431~442
    [30] 柳艳菊,丁一汇,1998年南海季风爆发时期中尺度对流系统的研究:Ⅱ中尺度对流系统对大尺度场的作用,大气科学,2005,63(4):443~454
    [31] Root J. 2000: NASA Helps Improves Weather Prediction. Aerospace Technology Innovation May/June 8 (3): Cover Story
    [32] Li Rui, Fu Yun fei,Tropical Precipitation Estimated by GPCP and TRMM PR Observations, Advances in Atmospheric Sciences,2005,6:852~864
    [33] Cheng M, He H, Mao D, et al. Study of 1998 heavy rainfall over the Yangtze river basin Using TRMM data.大气科学进展,2001,18:387~396
    [34] 姚展予,李万彪,朱元竞.用TRMM卫星微波成像仪遥感云中液态水.气象学报,2003,14(Suppl.):19~26
    [35] 宋亚芳,科技部攀登项目“南海季风试验(SCSMEX)”成果简介,中国气象网,2004,11
    [36] 陈渭民,卫星气象学,北京:气象出版社,2003.6~7
    [37] 钟敏,TRMM对9914号台风降水的观测分析研究:[硕士学位论文],南京;南京信息工程大学,1997,2005
    [38] 何会中,崔哲虎,程明虎等.TRMM卫星及其数据应用产品.气象科技,2004,32(1):13~18
    [39] 周秀骥,吕达仁,黄恒润,等.大气微波遥感及原理[M].北京:科学技术出版社,1982.46~48
    [40] [英]BJ梅森.云物理学[M].中国科学院大气物理研究所译.北京科学出版社,1978.325-341
    [41] 吕艳彬,顾雷,李亚萍等,用华南暴雨试验雨量资料对TRMMITMI—85.5GHz测雨能力的考察,热带气象学报,2001,17(3):251~257
    [42] 林海,魏重,吕达仁,雨滴的微波辐射特征,大气科学,1981,02
    [43] 刘晓春,毛节泰,利用MODIS卫星资料与微波辐射计资料等计算空中云水资源,中国气象学会2006年年会“人工影响天气作业技术专题研讨会”分会场论文集,2006
    [44] Fowler L D, Randall D A, Rutledge S A. Liquid and ice cloud microphysics in the CSU general circulation model. Part Ⅰ: Model description and simulated microphysical processes. J. Climate., 1996, 9: 489~529.
    [45] 刘奇,傅云飞,基于TRMM/TMI的亚洲夏季降水研究,中国科学(D辑:地球科学),2007,7(1):111~122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700