平流层对流层物质交换以及平流层水汽与臭氧的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相比于对流层天气系统研究,平流层大气过程的研究比较薄弱。近些年来,随着观测手段的不断提高和中层大气模式的发展,平流层大气过程的研究开始受到越来越多的关注。本论文从平流层研究一些前沿科学问题入手,利用大气环流模式、大气化学-气候模式,结合卫星观测资料、欧洲中心(ECMWF)和NCEP再分析资料研究了气候变化背景下平流层对流层物质交换(STE)的变化特征,分析了STE的变化对平流层水汽浓度及空间分布的影响,并在此基础上进一步探讨了平流层水汽变化以及未来温室气体排放对平流层臭氧的影响。所得的主要结论如下:
     (1)利用大气环流模式,通过一系列的数值试验研究了臭氧变化对STE的潜在影响,同时对比分析了臭氧和二氧化碳浓度以及海温(SST)变化对STE影响的相对重要性。研究发现,全球臭氧减少15%会使平流层温度降低,最大可达-2.4K,热带上升流会增加7.2%;全球臭氧增15%,会导致平流层温度增加2.1K,同时使热带上升流减少约4%。100hPa以下的臭氧无论是增加还是减少15%,对STE的影响都不是很显著;然而,在70hPa-200hPa区域臭氧增加15%产生的辐射效应与全球臭氧增加15%产生的辐射效应对STE的影响差别不大,这说明对流层上层和平流层下层的臭氧增加是造成热带上升流变化的主要原因。当SST随温室气体增加而增加时,会对STE产生非常显著的影响:热带上升流显著增加,增加幅度达20.4%;但是,如果不考虑温室气体增加引起的海温变化,二氧化碳浓度加倍的辐射效应对STE的影响还不及全球臭氧增加15%产生的影响。
     (2)利用大气环流模式,通过一系列的数值试验研究了臭氧变化对平流层水汽变化的影响,探讨了臭氧变化影响平流层水汽的主要机制,同时对比分析了大气中二氧化碳浓度加倍产生的辐射效应对平流层水汽变化的影响。研究表明,全球臭氧减少15%会导致更高更冷的对流层顶,因此从对流层进入平流层的水汽会减少。全球臭氧浓度增加15%可使更多水汽从对流层进入平流层,因为其产生的效应使对流层顶变得更低更暖。二氧化碳浓度加倍和海温增加的综合效果,会导致一个更高更暖的对流层顶,同时平流层的水汽也会显著增加。若只考虑二氧化碳浓度加倍的大气辐射效应,其对对流层顶和平流层水汽造成的影响都不显著。
     (3)利用ECMWF/NCEP再分析资料、AURA MLS、UARS HALOE卫星观测资料以及厄尔尼诺海洋指数(ONI),研究了厄尔尼诺事件和拉尼娜事件对平流层水汽变化的影响。总体来说,厄尔尼诺事件增加了平流层低层的水汽却减少了平流层中层的水汽,拉尼娜活动会使赤道附近(5°S-5°N平均)的平流层低层变得更干燥,但总体上会使热带平流层(25°S-25°N平均)内的水汽增加。拉尼娜活动造成的这种使热带平流层低层变湿的效应,主要是由拉尼娜活动使南半球热带平流层低层区域的热带上升流显著增加所致。厄尔尼诺活动对北半球赤道以外区域热带上升流的作用比对南半球赤道以外区域热带上升流的作用要更强,而ENSO活动的净效应(厄尔尼诺活动与拉尼娜活动产生的效应之和)对南半球平流层水汽的影响要比对北半球平流层水汽的影响更强。
     (4)利用一个耦合的大气化学-气候模式研究了甲烷排放的增加对平流层水汽变化的影响。结果表明,当甲烷的地表排放量在2000年排放量基础上增加50%时,平流层水汽平均增加了约0.8ppmv。其中,12%的平流层水汽增加来自于甲烷增加对对流层顶的辐射加热作用,而剩余的88%基本上是甲烷化学氧化导致的。南半球平流层甲烷转化为水汽的效率比北半球要高。在北半球平流层中一摩尔甲烷分子大概可以转化为1.63摩尔水汽分子,而在南半球一摩尔甲烷分子大概可以转为1.82摩尔水汽分子。
     (5)利用一个耦合的大气-化学气候模式,研究了甲烷地表排放的增加对大气中臭氧浓度的影响。结果表明,当甲烷的地表排放量在2000年排放量基础上增加50%时,会使全球中低纬度地区以及北半球高纬度地区的臭氧柱总量增加3%左右,但会使南半球高纬度地区臭氧柱总量增加近8%。在南半球和北半球低纬度地区,臭氧增加主要是由甲烷增加的直接效应所致(这里,我们称甲烷产生的水汽对臭氧的影响为间接效应,甲烷自身对臭氧的影响为直接效应),而在北半球中纬度地区,甲烷增加引起的平流层水汽增加导致的辐射和化学作用(间接效应)对平流层臭氧也有不可忽视的影响。在北极,间接效应甚至超过了直接效应对臭氧的影响。值得特别注意的是,当甲烷的地表排放增加50%时,南极地区春季臭氧柱总量最大增加幅度可达到20%。南极春季臭氧的这种显著增加主要是由甲烷增加引起的化学效应所致,其次是动力传输的作用,而辐射效应的贡献很小。
Compared to researches on tropospheric weather and climate, the studies of stratospheric processes are relatively fewer. In recent years, with the improvement of space exploration technology and development of numerical models for the middle atmosphere, more and more attentions have been paid on stratospheric processes. Focused on some hot topics of the stratosphere research, a comprehensive study on stratosphere troposphere exchange (STE) and its effect on stratospheric water vapor is carried using a general circulation model and a state-of-art chemistry-climate model outputs data, satellite observations, European Center for Medium range Weather Forecasting (ECMWF) 40 years reanalysis data and National Centers for Environmental Prediction (NCEP) reanalysis-2 data. The effects of stratospheric water vapor changes and greenhouse gases (GHGs) emissions changes on stratospheric ozone are also analysed. The main conclusions are as following:
     (1) The potential radiative impact of ozone changes on stratosphere-troposphere exchange (STE) is investigated by a series of general circulation model (GCM) simulations. The impact of an arbitrary 15% O3 change on temperature and cross-tropopause mass flux is compared to the corresponding effect of CO2 doubling. Our analysis shows that a 15% global O3 decrease can cause a maximum cooling of 2.4 K in the stratosphere and-7.2% increase in the tropical upwelling. A global 15% O3 increase gives rise to-2.1 K stratospheric warming and-4% decrease in the tropical upwelling. The effect of a±15% change in O3 below 100 hPa is relatively small. However, the effect of a 15% O3 increase between 200-70 hPa is similar to that of a 15% O3 increase through the whole model domain, suggesting that ozone increases in the UTLS dominate the impact on temperature and tropical upwelling. Sea-surface temperature (SST) changes associated with increasing atmospheric GHGs have a profound impact on the STE. Without corresponding SST changes, the radiative effects of the CO2 doubling on the STE are less significant than a global 15% O3 increase. When the SST changes are considered in the doubled CO2 experiment, the tropical upwelling is significantly increased (by 20.4%).
     (2) The potential radiative impacts of ozone changes on tropopause, which directly influence stratospheric water vapor, are investigated by a series of general climate model (GCM) simulations. The impacts of an arbitrary 15% O3 change on the tropopause and stratospheric water vapor are compared to the corresponding effects from a doubling of atmospheric CO2. Our analysis shows that a 15% global O3 decrease can results in a higher tropical tropopause and lower tropopause temperatures, and hence less stratospheric water vapor and smaller amplitude of the so-called tape recorder signal. A global 15% O3 increase gives rise to more water vapor entering the stratosphere due to a lower tropopause and higher tropopause temperatures. When the SST changes are considered in the doubled CO2 experiment, the stratospheric water vapor is significantly increased with a much higher, but warmer, tropopause. Without corresponding SST changes, the radiative effects of the CO2 doubling on the stratospheric water vapor are less significant.
     (3) Using the ECMWF/NCEP reanalysis data, satellite observations from AURA MLS and UARS HALOE, and Oceanic Nino Index (ONI) data, the effects of El Nin-o and La Nin-a events on the stratospheric water vapor changes are investigated. Overall, El Nin-o events tend to moisten the lower stratosphere but dry the middle stratosphere. La Nin-a events are likely to dry the lower stratosphere over a narrow band of tropics (5°S-5°N) but have a moistening effect on the whole stratosphere when averaged over a broader region of tropics between 25°S-25°N. The moistening effect of La Nin-a events mainly occurs in lower stratosphere in the southern hemisphere tropics where a significant 20% increase in the tropical upwelling is caused by La Nin-a events. El Nin-o events have a more significant effect on the tropical upwelling in the northern hemisphere extratropics than in southern hemisphere extratropics. The net effect of ENSO activities on the lower stratospheric water vapor is stronger in the southern hemisphere tropics than in the northern hemisphere tropics.
     (4) Using a state-of-the-art, fully coupled chemistry climate model-Whole Atmosphere Community Climate Model 3 (WACCM3), the impact of increasing surface emissions of methane (CH4) on stratospheric water vapor is investigated. Relative to 2000 surface emissions of GHGs, a 50% increase in CH4 surface emissions causes an average increase of 0.8 ppmv water vapor in the stratosphere. The radative effect of increased CH4 on the tropopause contributes 12% to the stratospheric water vapor increases, and the chemical process explains the rest of 88%. The oxidation of CH4 into water vapor is more efficient in the southern hemisphere than in the northern hemisphere. In the northern hemisphere:1 mol CH4 molecule→1.63 mol H2O molecule; in the southern hemisphere:1 mol CH4 molecule→1.82 mol H2O molecule.
     (5) Using a state-of-the-art, fully coupled chemistry climate model WACCM3, the impact of increasing surface emissions of methane (CH4) on ozone is investigated. Relative to the 2000 surface emissions of GHGs, a 50% increase in the CH4 emission would lead to an overall increase of total column ozone (TCO) by-3% at the lower-mid latitudes as well as at the northern high latitudes, and a maximum increase of -8% at the southern high latitudes. In the northern hemisphere mid-high latitudes, the direct and indirect impacts of CH4 increases tend to increase TCO (Here, the indirect impact referes to the impact of water vapor increases caused by oxidation of CH4. The direct impact referes to the impact of increased CH4 on ozone by itself). However, in the northern hemisphere lower latitudes and the whole southern hemisphere the TCO increases are mostly due to the direct impact. It is worth to note that a 50% increase in CH4 surface emission is capable of causing a significant increase of TCO over Antarctic in southern Spring, with a maximum growth rate of up to-20%. It is found that the significant TCO increase is mainly caused by the chemical effect and the dynamical effect plays a second role. The radiative effect of CH4 increases on the stratospheric ozone increase is small.
引文
陈洪滨,卞建春,吕达仁(2006):上对流层-下平流层交换过程研究的进展与展望.大气科学,30(5):813-820。
    简俊,陈月娟,郑彬(2001):北半球中层大气中Nox的垂直分布特征。大气科学25(1),1-15,697-705。
    胡永云(2006):关于平流层异常影响对流层天气系统的研究进展。地球科学进展,21(7):713-721。
    李崇银;龙振夏(1992):准两年振荡及其对东亚大气环流和气候的影响。大气科学。02,DOI:CNKI:SUN:DQXK.O.1992-02-004
    刘煜,李维亮(2001):青藏高原臭氧低谷的加深及其可能的影响。气象学报,59(1),97-106。
    吕达仁,陈泽宇,卞建春,陈洪滨(2008):平流层对流层相互作用的多尺度过程特征及其与天气气候关系-研究进展。大气科学,32(4):782-793
    吕达仁,陈泽宇,郭霞,等(2009a):临近空间大气环境研究现状。力学进展,39(6):674-682。
    吕达仁,卞建春,陈洪滨,等(2009b):平流层大气过程研究的前沿与重要性。地球科学进展,24(3):1001-816。
    田文寿,张敏,舒建川(2009):中层大气模式的应用及发展前景。地球科学进展,24(3):252-261。
    汤杰等(2002):拉萨地区夏季地面臭氧的观测和特征分布。气象学报,60(1),47-52。
    王普才,吕达仁,李占清(2001):卫星遥感地面紫外辐射的参数化方法。大气科学,25(1),1-15。
    易明建;陈月娟:周任君;邓淑梅;(2009):2008年中国南方雪灾与平流层极涡异常的等熵位涡分析。高原气象,DOI:CNKI:SUN:GYQX.O.2009-04-020
    郑向东,周秀骥等(2002):西宁夏季对流层臭氧的垂直分布与气象要素的关系。气象学报,60(1),47-52。
    Adams J B, Mann M E, Ammann C M (2003):Proxy evidence for an El Nino-like response to volcanic forcing. Nature,426(6964):274-278.
    Austin, J., N. Butchart, and K. P. Shine (1992):Possibility of an Arctic ozone hole in a doubled-CO2 climate. Nature,360,221-225.
    Austin, J. et al. (2003):Uncertainties and assessments of chemistry-climate models of the stratosphere. Atmos. Chem. Phys.3,1-27.
    Austin, J., and N. Butchart, (2003):Coupled chemistry-climate model simulations for the period 1980 to 2020:Ozone depletionand the start of ozone recovery. Quart. J. Roy. Meteor.Soc.,129,3225-3249.
    Austin, J., and R. J. Wilson (2006), Ensemble simulations of the decline and recovery of stratospheric ozone, J. Geophys.Res.,111, D16314, doi:10.1029/ 2005JD006907.
    Austin L., J. Wilson, F. LI and H. VOMEL (2007): Evolution of Water Vapor Concentrations and Stratospheric Age of Air in Coupled Chemistry-Climate Model Simulations. JOURNAL OF THE ATMOSPHERIC SCIENCES. DOI: 10.1175/JAS3866.1
    Baldwin M P, Dunkerton T J. (1999):Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J Geophys Res,104(D24):30937-30946.
    Baldwin, M. P., T. J. Dunkerton,2001:Stratospheric Harbingers of Anomalous Weather Regimes, Science,294:581-584.
    Baldwin, M. P., D. W. Thompson, et al.,2003:Weather from the stratosphere. Science,301(5631),317-318.
    Baray J L, Ancellet G, Randriambelo T, et al. (1999):Tropical cyclone Marlene and stratosphere-troposphere exchange.J Geophys Res,104(D11):13953-13970.
    Butchart and A. A. Scaife (2001):Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate, Nature,410,799-802.
    Chipperfield, M.P. et al., (2003):Comment on:Stratospheric ozone depletion at northern mid-latitudes in the 21st century: The importance of future concentrations of greenhouse gases nitrous oxide and methane. Geophys. Res. Lett.,30,1389, doi:10.1029/2002GL016353.
    Collins W J, Derwent R G, Gaenier B, et al. (2003):Effect of stratosphere-troposphere exchange on the future tropospheric ozone trend. J Geophys Res,108(D12),8528, doi:10.1029/2002JD002617.
    Dhomse S, Weber M, Burrows J. (2008):The relationship between tropospheric wave forcing and tropical lower stratosphere water vapor. Atmos Chem Phys, 8(3).
    Dunbar R B, Wellington G M, Colgan M W, et al. (1994):Eastern Pacifc sea surface temperature since 1600 A.D.:The d180 record of climate variability in Galapagos Corals. Paleoceanography,9(2):291-315.
    Eyring, V., Waugh, D. W., Bodeker, G. E., Cordero, E., Akiyoshi, H., Austin, J., Beagley, S. R., Boville, B., Braesicke, P., Br"uhl, C., Butchart, N., Chipperfield, M. P., Dameris, M., Deckert, R., Deushi, M., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M., Kinnison, D. E., Mancini, E., Manzini, E., Marsh, D. R., Matthes, S., Nagashima T., Newman, P. A., Nielsen, J. E., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Schraner, M., Scinocca, J. F., Semeniuk K., Shepherd, T. G., Shibata, K., Steil, B., Stolarski, R., Tian, W., and Yoshiki, M. (2007):Multimodel projections of stratospheric ozone in the 21st century, J. Geophys. Res.,112, D16303, doi:10.1029/2006JD008332.
    Eyring. V; I. Cionni; G. E. Bodeker; A. J. Charlton-Perez; D. E. Kinnison; J. F. Scinocca; D. W. Waugh; H. Akiyoshi; S. Bekki; M. P. Chipperfield; M. Dameris; S. Dhomse; S. M. Frith; H. Garny; A. Gettelman; A. Kubin; U. Langematz; E. Mancini; M. Marchand; T. Nakamura; L. D. Oman; S. Pawson; G. Pitari; D. A. Plummer; E. Rozanov; T. G. Shepherd; K. Shibata; W. Tian; P. Braesicke; S. C. Hardiman; J. F. Lamarque; O. Morgenstern; J. A. Pyle; D. Smale; Y. Yamashita (2010). Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmos. Chem. Phys.,10,9451-9472
    Farman, J. G., B. G. Gardiner, and J. D. Shanklin (1985):Large losses of total ozone in Antarctica reveal seasonal CIOx/NOx interaction, Nature,315,207-210, doi:10.1038/315207a0.
    Fioletov, V. E., D. W. Tarasick, I. Petropavlovskikh (2006):Estimating ozone variability and instrument uncertainties from SBUV(/2), ozonesonde, Umkehr, and SAGE II measurements:Short-term variations. J. Geophys. Res.,111, D02305, doi:10.1029/2005JD006340.
    Forster, P. et al., (1999):Stratosphere water vapor change as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett.,26,3309-3312.
    Fuglestvedt, J. S., I. S. A. Isaksen, and W. C. Wang (1996):Estimates of indirect global warming potentials for CH4, CO and NOx, Clim. Change,34,405-437.
    Gettelman A, Birner T, Eyring V, et al. (2009):The Tropical Tropopause Layer 1960-2100. Atmos Che. Phys,9(5):1621-1637.
    Hansen, J., et al. (2005):Efficacy of climate forcings, J. Geophys. Res.,110, D18104, doi:10.1029/2005JD005776.
    Haynes P H, Marks C J, Mcintyre M E, et al. (1991):On the 'downward control' of extratropical diabatic circulations by eddy induced mean zonal forces. J Atmos Sci,48(4):651-678.
    Hegglin M I and Shepherd T G. (2009):Large climate-induced changes in UV index and stratosphere-to-troposphere ozone flux. Nature Geoscience,2:687-691.
    Holton J R, Haynes P H, Mclntyre M E, et al.(1995):Stratosphere-troposphere exchange. Rev Geophys,33(4):403-439.
    Hurst D.F., S. J. Oltmans, H. Vomel, K. H. Rosenlof, S.M.Davis, E.A.Ray., E. G. Hall, and A. F. Jordan:Stratospheric Water Vapor Trends over Boulder, Colorado:Analysis of the 30-year Boulder Record.2010JD015065. In press.
    Johnson, C. E., W.J.Collins, D.S.Stevenson, and R. G. Derwent (1999):Relative roles of climate and emissions changes on future tropospheric oxidant concentrations, J. Geophys. Res.,104,18,631-18,645.
    Julian, P. R. and K. B. Labitzke (1965), J. Atmos. Sci.22,597.
    Lelieveld, J., and P. J. Crutzen (1992):Indirect chemical effects of methaneon climate warming, Nature,355,339-342.
    Marsh D, and Garcia R R. (2007):Attribution of decadal variability in lower-stratospheric tropical ozone. Geophys Res Lett,34, L21807, doi:10.1029/ 2007GL030935.
    Newman, P. A., E. R. Nash, S. R. Kawa, S. A. Montzka, and S. M. Schauffler (2006), When will the Antarctic Ozone hole recover?, Geophys. Res. Lett.,33, L12814, doi:10.1029/2005GL025232.
    Oltmans, S.J., H. Vomel, D. J. Hofmann, K. H. Rosenlof, and D. Kley, (2000): The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado, Geophys. Res. Lett.,27,3453-3456.
    Oninas, V., et al., (2001):Radiative cooling by stratospheric water vapour: big difference in GCM results, Geophys. Res. Lett.,28.,2791-2794.
    Pitari, G., S. Palermi, G. Visconti, and R. G. Prinn (1992):Ozone response to a CO2 doubling: Results from a stratospheric circulation model with heterogeneous chemistry.J. Geophys. Res.,97,5953-5962.
    Quiroz R. S.(1977), Geophys. Res. Lett.4,151 (1977).
    Randel, W. J., R. S. Stolarski, D. M. Cunnold, J. A. Logan, M. J. Newchurch, J. M. Zawodny (1999a):Trends in the vertical distribution of Ozone, Science, 285,1689-1692.
    Randel, W. J., et al. (1999b):Space-time patterns of trends in the stratospheric constituents derived from URAS measurements. J. Geophys. Res.,104, 3711-3727.
    Randel, W.J., F. Wu, H. Voemel, G.E. Nedoluha and Forster, P. (2006):Decreases in stratospheric water vapor after 2001:links to changes in the tropicsal tropopause and the Brewer-Dobson circulation, J. Geophys. Res.,111,12312, doi:10.1029/2005JD006744.
    Reinsel, G. C., A. J. Miller, E. C. Weatherhead, L. E. Flynn, R. M. Nagatani, G. C. Tiao, and D. J. Wuebbles (2005), Trend analysis of total ozone data for turnaround and dynamical contributions, J. Geophys. Res.,110, D16306, doi:10.1029/2004JD004662.
    Rockmann, T., J. U. Grooss, and R. Muller (2004):The impact of anthropogenic chlorine emissions, stratospheric ozone change and chemical feedbacks on stratospheric water, Atmos. Chem. Phys.,4,693-699.
    Rosenlof, K. H., Ⅲ, E.-W. Chiou, W. P. Chu, D. G. Johnson, K. K. Kelly,H. A. Michelsen, G. E. Nedoluha, E. E. Remsberg, G. C. Toon, and M. P. McCormick (2001), Stratospheric water vapor increases over the past half-century, Geophys. Res. Lett.,28,1195-1198.
    Rosenfield, J. E., A. R. Douglass, and D. B. Considine (2002):The impact of increased carbon dioxideon ozone recovery. J. Geophys. Res.,107(D6), doi: 10.1029/2001JD000824.
    Rosenlof, K. H. (2003):Atmospheric science-How water enters the stratosphere, Science,302,1691-1692.
    Shindell, D. T., D. Rind, and P. Lonergan (1998):Increased polar stratospheric ozone losses and delayedeventual recovery owing to increasing greenhouse-gas concentrations. Nature,392,589-592.
    Shindell, D. T., G. Faluvegi, N. Bell, and G. A. Schmidt (2005): An emissions-based view of climate forcing by methane and tropospheric ozone, Geophys. Res. Lett.,32, L04803, doi:10.1029/2004GL021900.
    Solomon.S, K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J Sanford. and G.K. Plattner, (2010):Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming. Science. Vol.327 no.5970 pp. 1219-1223, DOI:10.1126/science.1182488.
    Sudo K, Takahashi M, Akimoto H. (2003). Future changes in stratosphere-troposphere exchange and their impacts on future tropospheric ozone simulations. Geophys Res Lett,30(24),2256, doi:10.1029/2003GL018526.
    Stevenson, D. S., F. J. Dentener, M. G. Schultz,K. Ellingsen, T. P. C. van Noije, O. Wild, G. Zeng, M.Amann, C. S. Atherton, N. Bell, D. J. Bergmann, I. Bey, H. J. Eskes, A. M. Fiore, M.Gauss, D. A. Hauglustaine, L. W. Horowitz, I. S. A. Isaksen, M. C. Krol, J. F. Lamarque, M. G. Lawrence, V. Montanaro, J. F. Mu" Iler, G. Pitari, M. J. Prather, J. A. Pyle, S. Rast, J. M. Rodriguez, M. G. Sanderson, N. H. Savage, D. T. Shindell, S. E. Strahan, K. Sudo, and S. Szopa (2006): Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J. Geophys. Res.,111, D08301, doi:10.1029/2005JD006338.
    Tabazadeh. A.,1* M. L. Santee,2 M. Y. Danilin,3 H. C. Pumphrey, P. A. Newman, 5 P. J. Hamill,6 J. L. Mergenthaler (2000). Quantifying DenitriPcation and Its Effect on Ozone Recovery. SCIENCE,288,1408-1411
    Thompson D W J, Wallace J M. (1998):The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett,25(9): 1297-1300.
    Tian, W. S., and M. P. Chipperfield, (2004):A new coupled chemistry-climate model for the stratosphere:The importance of coupling for future ozone-climate predictions. Quart. J. Roy. Meteor. Soc.,131,281-303, doi:10.1256/qj.04.05.
    Tian W. S., and M. P. Chipperfield (2005):A new coupled chemistry climate model for the statosphere, Quart. J. Roy. Meteor. Sci.131 A,281-303.
    Tian W, Chipperfield M P. (2006):Stratospheric water vapor trends in a coupled chemistry-climate model. Geophys Res. Lett,33, L06819, doi: 10.1029/2005GL024675.
    Tian, W.S., M.P. Chipperfield, D.R. Lu (2009), Impact of Increasing Stratospheric Water Vapor on Ozone Depletion and Temperature Change. Adv. Atmos. Sci.26, no.3, pp.423-437.
    Wild O, (2007):Modeling the global tropospheric ozone budget:Exploring the variability in current models [J]. Atmos Chem Phys,7(10):2643-2660.
    World Meteorological Organization (2007):Scientific Assessment of Ozone Depletion:2006, WMO Global Ozone Research and Monitoring Project-Report No.,50, Geneva, Switzerland.
    Andrews, D. G., J.R. Holton, and C. B. Leovy, (1987). Middle Atmosphere Dynamics. Academic Press Inc.,489 pp.
    Austin, J., D. Shindell, S. R. Beagley, C. Bruhl, M. Dameris, E.Manzini, T.Nagashima, P. Newman, S. Pawson, G. Pitari, E. Rozanov, C. Schnadt, and T. G. Shepherd (2003):Uncert-ainties and assessments of chemistry-climate models of the stratosphere. Atmos. Chem. Phys.,3,1-27.
    Boville, B. A. (1986):Wave-mean flow interaction in a general circulation model of the troposphere and stratosphere. J. Atmos. Sci.,43,1711-1725.
    Brasseur, G. P., D. A. Hauglustaine, S. Walters, P. J. Rasch, J.-F. Muller, C. Granier, and X.-X. Tie, (1998):MOZART: A global chemical transport model for ozone and related chemical tracers,1:Model description, J. Geophys. Res.,103,28, 265-28,289.
    Chen, P., and W. A. Robinson (1992):Propagation of planetary waves between the troposphere and stratosphere.J. Atmos. Sci.,49,2533-2345.
    Chen, W., H.-F. Graf, and M. Takahashi (2002):Observed interannual oscillation of planetary wave forcing in the Northern Hemisphere winter. Geophys. Res. Lett., 29,2037, doi:10.1029/2002G1016062.
    Christiansen, B. (2005):Bimodality of the planetary-scale atmospheric wave amplitude index. J. Climate,62,2528-2541.
    Considine, D. B., A. R. Douglass, P. S. Connell, D. E. Kinnison, and D. A. Rottman, (2000):A polar stratospheric cloud parameterization for the global modeling initiative three-dimensional model and its response to stratospheric aircraft, J. Geophys. Res.,105,3955-3973.
    Dhomse, S., M. Weber, and J. Burrows, (2008): The relationship between tropospheric wave forcing and tropicsal lower stratospheric water vapor, Atmos. Chem. Phys.,8,471-480.
    Edmon, H. J., B. J. Hoskins, and M. E. McIntyre. (1980):Eliassen-Palm cross-sections for the troposphere, J. Atmos. Sci.,37,2600-2616,1980. Also corrigendum, J. Atmos. Sci.,38,1115.
    Eguchi, N., and M. Shiotani (2004):Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere, J. Geophys. Res.,109, D12106, doi:10.1029/2003JD004314.
    Eliassen, A., and E. Palm. (1961):On the transfer of energy in stationary mountain waves. Geofys. Publ.,22-3,1-23.
    Fueglistaler, S., and P. H. Haynes. (2005):Control of interannual and longer-term variability of stratospheric water vapor, J. Geophys. Res.,110, D24108, doi:10.1029/2005JD006019.
    Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi. (2007): Simulation of secular trends in the middle atmosphere,1950-2003, J. Geophys. Res.,112, D09301, doi:10.1029/2006JD007485.
    Harries, J. E., and Coauthors (1996):Validation of measurements of water vapor from the Halogen Occultation Experiment, HALOE.J. Geophys. Res.,101,10205-10 216.
    Hauglustaine, D. A., G. P. Brasseur, S.Walters, P. J. Rasch, J.-F.Mller, L. K. Emmons, and M. A. Carroll. (1998):MOZART: A global chemical transport model for ozone and related chemical tracers:2. Model results and evaluation, J. Geophys. Res.,103,28,291-28,335.
    Hitoshi, M., and T. Hirooka (2004):Predictability of stratospheric sudden warming:A case study for 1998/99 winter. Mon. Weather Rev.,132,1764-1776.
    Horowitz, L. W., et al. (2003):A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2,J. Geophys. Res. 108(D24),4784, doi:10.1029/2002JD002853.
    Hu, Y., and K. K. Tung (2002):Interannual and decadal variations of planetary wave activity, stratospheric cooling, and northern hemisphere annular mode. J. Climate, 15,1659-1673.
    Isaksen, I.S.A., Stordal, F. (1986):Ozone perturbations by enhanced levels of CFCs, N2O, and CH4:a two-dimensional diabatic circulation study including uncertainty estimates. J. Geophys. Res.91,5249-5263.
    Lin, S.-J. (2004):A "vertically-Lagrangian" finite-volume dynamical core for global atmospheric models, Mon. Weather Rev.,132,2293-2307.
    O'Neill, A., and C. E. Youngblut (1982):Stratospheric warming diagnosed using the Transformed Eulerian-Mean equations and the effect of the mean state on wave propagation. J. Atmos. Sci.,39,1370-1386.
    Pumphrey, H. C. (1999):Validation of a new prototype water vapor retrieval for the UARS Microwave Limb Sounder, J. Geophys. Res.,104(D8),9399-9412.
    Pumphrey, H. C., H. L. Clark, and R. S. Harwood, (2000):Lower stratospheric water vapor measured by UARS MLS, Geophys. Res. Lett.,27(12),1691-1694.
    Quiroz, R. A. (1983):The isolation of stratospheric temperature change due to the El Chichon volcanic eruption from nonvolcanic signals. J. Geophys. Res.,88, 6773-6780.
    Randel, W. J. (1987):Study of planetary waves in the southern winter Troposphere and Stratosphere. Part I:wave structure and vertical propagation. J. Atmos. Sci., 44,917-935.
    Randel, W. J., F. Wu, S. J. Oltmans, K. Rosenlof, and G. Nedoluha (2004): Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures, J. Atmos. Sci.,61,2133-2148.
    Randel, W. J., F. Wu, H. Vo "mel, G. E. Nedoluha, and P. Forster (2006):Decreases in stratospheric water vapor after 2001:Links to changes in the tropical tropopause and the Brewer-Dobson circulation, J. Geophys. Res.,111, D12312, doi:10.1029/2005JD006744.
    Read, W. G, et al., (2001):UARS Microwave Limb Sounder upper tropospheric humidity measurement:Method and validation, J. Geophys. Res.,106(D23), 32,207-32,258.
    Read, W. G., D. L. Wu, J. W. Waters, and H. C. Pumphrey (2004):Anew 147-56 hPa water vapor product from the UARS Microwave Limb Sounder, J. Geophys. Res.,109, D06111, doi:10.1029/2003JD004366.
    Russell, J.M., Ⅲ, A. F. Tuck, L. L. Gordley, J. H. Park, S. R. Drayson, J. E. Harries, R. J. Cicerone, and P. J. Crutzen. (1993):The HAL OGEN Occultation Experiment. J. Geophys. Res.,98,10 777-10 797.
    Ralph, E.Hy, (1959):Glossary of meteorology. Boston, American Meteorological Societ.
    World Meteorological Organization (1985):Atmospheric ozone, Rep.16, Global ozone research and monitoring project report, Geneva,151-235.
    Wuebbles D.J. and K. Hayhoe (2002):Atmospheric methane and global change. Earth Science Reviews, v.57, iss.3-4, p.177-210.
    Austin, J., D. Shindell, S. R. Beagley, C. Bruhl, M. Dameris, E.Manzini, T.Nagashima, P. Newman, S. Pawson, G. Pitari, E. Rozanov, C. Schnadt, and T. G. Shepherd (2003):Uncert-ainties and assessments of chemistry-climate models of the stratosphere. Atmos. Chem. Phys.,3,1-27.
    Austin, J., and F. Li (2006): On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air. Geophys. Res. Lett., 33, L17807, doi:10.1029/2006GL026867.
    Bengtsson, L., E. Roeckner, M. Stendel (1999): Why is the global warming proceeding much slower than expected?J. Geophys. Res.,104,3865-3876.
    Boville, P. J. Rasch, J. J. Hack, and J. R. McCaa,2006:Representation of clouds and precipitation processes in the Community Atmosphere Model version 3 (CAM3). J. Climate,19,2184-2198.
    Butchart, N., J. Austin, J. R. Knight, A. A. Scaife, M. L. Gallani (2000):The response of the stratospheric climate to projected changes in the concentrations of well-mixed greenhouse gases from 1992 to 2051.J. Clim.13,2142-2159.
    Butchart and A. A. Scaife (2001):Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate, Nature,410,799-802.
    Butchart, A. A. Scaife, M. Bourqui, J. de Grandpre, S. H. E. Hare, J. Kettleborough, U. Langematz, E. Manzini, F. Sassi, K. Shibata, D. Shindell, M. Sigmond (2006): Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation. Clim Dyn,27,727-741.
    Chipperfield, M. P. and W. Feng (2003):Comment on:Stratospheric Ozone Depletion at northern mid-latitudes in the 21st century:The importance of future concentrations of greenhouse gases nitrous oxide and methane. Geophys. Res. Lett.,30, No.7,1389, doi:10.1029/2002GL016353.
    Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, J. T. Kiehl, B. Briegleb, C. Bitz, S.J. Lin, M.H. Zhang, Y.J. Dai,2004: Description of the NCAR Community Atmosphere Model (CAM3). Tech. Rep. NCAR/TN-464STR, National Center for Atmospheric Research, Boulder, CO, 226 pp.
    Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. Mccaa, D. L. Williamson, B. P. Briegleb, C. M. Bitz, S.J. Lin, M. Zhang (2006):The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3). J. Clim.,19,2144-2161.
    Collins, W. J., R. G. Derwent, B. Gamier, C.E.Johnson, M. G. Sanderson, D. S. Stevenson (2003):Effect of stratosphere-troposphere exchange on the future tropospheric ozone trend. J. Geophys. Res.,108, NO. D12,8528, doi:10.1029/2002JD002617.
    Dameris, M., C. Schnadt, and F. Mager (2002):Future Changes of Stratospheric Dynamics Due To Chemistry-climate Interaction. EGS ⅩⅩⅦ General Assembly, Nice,21-26.
    Edmon, H. J., B. J. Hoskins, and M. E. McIntyre (1980):Eliassen-Palm cross-sections for the troposphere, J. Atmos. Sci.,37,2600-2616,1980. Also corrigendum, J. Atmos. Sci.,38,1115.
    Eyring, V., D. W. Waugh, G. E. Bodeker, E. Cordero, H. Akiyoshi, J.Austin, S. R. Beagley, B. A. Boville, P. Braesicke, C. Bruhl, N. Butchart, M. P. Chipperfield, M. Dameris, R. Deckert, M. Deushi, S. M. Frith, R.R.Garcia, A. Gettelman, M. A. Giorgetta, D. E. Kinnison, E. Mancini, E. Manzini, D. R. Marsh, S. Matthes, T. Nagashima, P. A. Newman, J. E. Nielsen, S. Pawson, G. Pitari, D. A. Plummer, E. Rozanov, M. Schraner, J. F. Scinocca, K. Semeniuk, T. G. Shepherd, K.Shibata, B. Steil, R. S. Stolarski, W. Tian, M. Yoshiki (2007):Multimodel projections of stratospheric ozone in the 21st century, J. Geophys. Res.,112, D16303, doi:10.1029/2006JD008332.
    Farman, J.G., B. G. Gardiner and J. D. Shanklin (1985):Large losses of total ozone in Antarctica reveal seasonal CIOx/NOx interaction. Nature,915,207-210.
    Fioletov, V. E., D. W. Tarasick, Ⅰ. Petropavlovskikh (2006):Estimating ozone variability and instrument uncertainties from SBUV(/2), ozonesonde, Umkehr, and SAGE Ⅱ measurements:Short-term variations. J. Geophys. Res.,Ⅲ, D02305, doi:10.1029/2005JD006340.
    Forster, P. M. de F., and K. Shine (1997):Radiative forcing and temperature trends from strato-spheric ozone changes. J. Geophys. Res.,102,10841-10855.
    Hansen, J., M.Sato, R. Ruedy (1997):Radiative forcing and climate response. J. Geophys. Res.,102,6831-6864.
    Holton, J. R., P. H. Haynes, M. E. Mclntyne, A.R.Douglass, R. B. Rood, L. L. Pfister (1995):Stratopshere-tropopshere exchange, Rev. of Geophys.,33,403-439.
    Hurrell, J. W., J. J. Hack, A. Phillips, J. Caron, J. Yin (2006):The Dynamical Simulation of the Community Atmosphere Model Version 3 (CAM3), J. Clim., 19,2162-2183.
    IPCC, Climate Change (2001):The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom and New York, NY, USA.
    Johnson, C. E., W.J.Collins, D.S.Stevenson, and R. G. Derwent (1999):Relative roles of climate and emissions changes on future tropospheric oxidant concentrations, J. Geophys. Res.,104,18,631-18,645.
    Karoly, D. J. (2003):Ozone and climate change, Science,302,236-237.
    Kodama, C., T. Iwasaki, K. Shibata and S. Yukimot (2007). Changes in the stratospheric mean meridional circulation due to increased CO2:Radiation-and sea-surface temperature-induced effects. J. Geophys. Res.,,112, D16103, doi:10.1029/2006JD008219.
    Ramanathan, V, and R.E. Dickinson (1979). The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the earth-troposphere system. J. Atmos. Sci.36.1084
    Randel, W. J., R. S. Stolarski, D. M. Cunnold, J.A.Logan, M. J. Newchurch, J. M. Zawodny (1999):Trends in the vertical distribution of Ozone, Science, 285,1689-1692.
    Rayner, N. A., D.E.Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan (2003):Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century.J. Geophys. Res.,108, doi:10.1029/2002JD002670.
    Read, W. G., J. W. Waters, D. L. Wu, E. M. Stone, Z. Shippony, A. C. Smedley, C. C. Smallcomb, S. Oltmans, D. Kley, H. G. J. Smit, J. L. Mergenthaler, M. K. Karki(2001):UARS Microwave Limb Sounder upper tropospheric humidity measurement:Method and validation. J. Geophys. Res.,106,32, 207-32,258.
    Reinsel, G. C., A. J. Miller, E. C.Weatherhead, L. E.Flynn, R. M.Nagatani, G. C. Tiao, D. J, Wuebbles (2005):Trend analysis of total ozone data for turnaround and dynamical contributions. J. Geophys. Res.,110, D16306, doi:10.1029/2004JD004662.
    Rind, D., J. Lerner, K. Shah, and R. Suozzo (1999):Use of on-line tracers as a diagnostic tool in general circulation model development:2. Transport between the troposphere and stratosphere,J. Geophys. Res.,104,9151-9167.
    Rind, D., J. Lerner, C. McLinden (2001):Changes of tracer distributions in the doubled CO2 climate. J. Geophys. Res.,106(D22):28,061-28,080.
    Rosenfield, J. E., A. R. Douglass, and D. B.Considine (2002):The impact of increasing carbon dioxide on ozone recovery, J. Geophys. Res.,107, NO. D6, 4049, doi:10.1029/2001JD000824.
    Schoeberl, M. R. (2004):Extratropical stratosphere-troposphere mass exchange. J. Geophys. Res.,109, D24114, doi:10.1029/2004JD005186.
    Schwarzkopf, M. D. and V. Ramaswamy (2002):Effects of changes in well-mixed gases and ozone on stratospheric seasonal temperatures. Geophys. Res. Lett.,29, No.24,2184, doi:10.1029/2002GL015759.
    Shindell, D. T., D. Rind, and P. Lonergan (1998):Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations.Nature,392,589-592.
    Shindell, D. T., R. L. Miller, G. A. Schmidt, L. Pandolfo (1999):Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature,399,452-455.
    Shindell, D. T., G. A. Schmidt, R. L. Miller, D. Rind (2001):Northern hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing. J. Geophys. Res.,106,7193-7210.
    Simmons, A. J., and B. J. Hoskins (1978): The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci.,35,414-432.
    Stevenson, D. S., F. J. Dentener, M. G. Schultz, K. Ellingsen, T. P. C. van Noije, O. Wild, G.Zeng, M.Amann, C. S. Atherton, N. Bell, D. J. Bergmann, I. Bey, T.Butler, J. Cofala, W.J.Collins, R. G. Derwent, R. M. Doherty, J. Drevet, H. J. Eskes, A. M. Fiore, M. Gauss, D. A. Hauglustaine, L. W. Horowitz, I. S. A. Isaksen, M. C. Krol, J. F. Lamarque, M. G Lawrence, V. Montanaro, J. F. Mu" ller, G Pitari, M. J. Prather, J. A. Pyle, S. Rast, J. M. Rodriguez, M. G. Sanderson, N. H. Savage, D. T. Shindell, S. E. Strahan, K. Sudo, and S. Szopa (2006): Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J. Geophys. Res.,111, D08301, doi:10.1029/2005JD006338.
    Tett, S. F. B., J. F. B. Mitchell, D. E. Parker, M. R. Allen (1996):Human influence on the atmospheric vertical temperature structure: Detection and observations. Science.,274,1170-1173.
    Tian, W. S., and M. P. Chipperfield (2005):A new coupled chemistry-climate model for the stratosphere:the importance of coupling for future 03-climate predictions. Q.J. R. Meteorol. Soc.,131,281-303.
    Tian, W. S. and M. P. Chipperfield (2006):Stratospheric water vapor trends in a coupled chemistry-climate model. Geophys. Res. Lett.,33, L06819, doi:10.1029/2005GL024675.
    Wang, W C. (1985):Climatological effects of atmospheric ozone:a review. In: Zerefos C.S., ed. Atmospheric Ozone. Greece:D. Reidel publishing company, 98-102.
    World Meteorological Organization (1999):Scientific Assessment of Ozone Depletion: 1998, Global Ozone Research and Monitoring Project-Report No.44, Geneva
    World Meteorological Organization (2003):Scientific Assessment of Ozone Depletion: 2002, WMO Global Ozone Research and Monitoring Project-Report Np.,47, Geneva, Switzeland.
    World Meteorological Organization (2007):Scientific Assessment of Ozone Depletion:2006, WMO Global Ozone Research and Monitoring Project-Report No.,50, Geneva, Switzerland.
    Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. Mccaa, D. L. Williamson, B. P. Briegleb, C. M. Bitz, S.J. Lin, M. Zhang (2006):The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3). J. Clim.,19,2144-2161.
    Danielsen, E. F. (1993), In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones, J. Geophys. Res.,98, 8665-8681.
    Dhomse, S., M. Weber, and J. Burrows (2008):The relationship between tropospheric wave forcing and tropicsal lower stratospheric water vapor, Atmos. Chem. Phys., 8,471-480.
    Dvortsov, V. L., and S. Solomon (2001), Response of the stratospheric temperatures and ozone to past and future increases in stratospheric humidity, J. Geophys. Res.,106,7505-7514.
    Evans, S. J., R. Toumi, J. E. Harries, M. P. Chipperfield, and J. M. Russell Ⅲ (1998), Trends in stratospheric humidity and the sensitivity of ozone to these trends, J. Geophys. Res.,103,8715-8725.
    Forster, P. M. de F., and K. Shine (2002), Assessing the climate impact oftrends in stratospheric water vapour, Geophys. Res. Lett.,29(6),1086, doi:10.1029/ 2001GL013909.
    Fueglistaler, S., M. Bonazzola, P. Haynes, and T. Peter (2005), Strato-spheric water vapor predicted from the Lagrangian temperature historyof air entering the stratosphere in the tropics, J. Geophys. Res.,110, D08107, doi:10.1029/ 2004JD005516.
    Held, I. M., and B. J. Soden (2000), Water vapor feedback and global warming, Annu. Rev. Energy Environ.,25,441-475.
    Holton, J.R., P. H. Haynes, M. E. McIntyre, A.R.Douglass, R. B. Rood, and L. Pfister (1995), Stratosphere-troposphere exchange, Rev. Geophys.,33,403-440
    Holton, J. R., and A. Gettelman (2001), Horizontal transport and the dehy-dration of the stratosphere, Geophys. Res. Lett.,28,2799-2802.
    Hurrell, J. W., J. J. Hack, A. Phillips, J. Caron, J. Yin (2006):The Dynamical Simulation of the Community Atmosphere Model Version 3 (CAM3), J. Clim., 19,2162-2183.
    Kirk-Davidoff, D. B., et al. (1999), The effect of climate change on ozone depletion through changes in stratospheric water vapor, Nature,402,399-401.
    Mote, P.W., K. H. Rosenlof, M. E. Mcintyre, E. S. Carr, J. C. Gille, J. R. Holton, J. S. Kinners-ley, H. C. Pumphrey, J. M. Russell, J. W. Waters (1996):An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res.,101,3989-4006.
    Nedoluha, G. E., Bevilacqua, R. M., Hoppel, K. W., Lumpe, J. D., and Smith, H. (2002):Polar Ozone and Aerosol Measurement Ⅲ measurements of water vapor in the upper troposphere and lower stratosphere, J. Geophys. Res.,108, 4391, doi:10.1029/2002JD003332
    Newell, R. E., and S. Gould-Stewart (1981), A stratospheric fountain?,J. Atmos. Sci., 38,2789-2796.
    Oltmans, S. J., Voemel, H., Hofmann, D. J., Rosenlof, K. H., and Kley, D. (2000).: The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado, Geophys. Res. Lett.,27(21),3453-3456,
    Randel, W. J., F. Wu, and D. J. Gaff en (2000), Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalysis, J. Geophys. Res., 105,15,509-15,523.
    Randel, W. J., Fei Wu, Gettelman A. Russell J. M., Zawodny J. M.; Oltmans S. J. (2001):Seasonal variation of water vapor in the lower stratosphere observed in Halogen Occultation Experiment data. J. Geophys. Res.,106, No.D13, 14313-14326.
    Randel, W. J., et al. (2004), The interannual changes of stratospheric water vapor and correlations with tropical tropopause temperature, J.Atmos.Sci.,61,2133-2148.
    Rockmann, T., J.-U. Grooss, and R. Mu " Her (2004), The impact of anthro-pogenic chlorine emissions, stratospheric ozone change feedback on stratospheric water, Atmos.Chem.Phys.,4,693-699.
    Rosenlof, K. H., Ⅲ, E.-W. Chiou, W. P. Chu, D. G. Johnson, K. K. Kelly, H. A. Michelsen, G. E. Nedoluha, E. E. Remsberg, G. C. Toon, and M. P. McCormick (2001), Stratospheric water vapor increases over the pasthalf-century, Geophys. Res. Lett.,28,1195-1198.
    Seidel, D. J., R.J.Ross, J. K. Angell, and G. C. Reid (2001), Climatolo-gical characteristics of the tropical tropopause as revealed by radiosondes, J. Geophys. Res.,106,7857-7878.
    Sherwood, S. C., and A. E. Dessler (2000), On the control of stratospheri chumidity, Geophys. Res. Lett.,27,2513-2516.
    Shindell, D. T., Miller, R. L., Schmidt, G. A., and Pandolfo, L. (1999):Simulation of recent northern winter climate trends bygreenhouse-gas forcing, Nature,399, 452-455,
    Shindell, D. T. (2001):Climate and ozone response to increased strato-spheric water vapor, Geophys. Res. Lett.,28,1551, doi:10.1029/1999GL011197,
    Smith, C. A., R. Toumi, and J. D. Haigh (2000), Seasonal trends in strato-spheric water vapor, Geophys. Res. Lett.,129,1687-1690.
    Stenke, A. and Grewe, V. (2005):Simulation of stratospheric water vapor trends: Impact on stratospheric ozone chemistry, Atmos. Chem. Phys.,5,1257-1272,
    Tabazadeh, A., Santee, M. L., Danilin, M. Y., Pumphrey, H. C., Newman, P. A., Hamill, P. J., and Mergenthaler, J. L. (2000):Quantify-ing denitrification and its Effect on ozone recovery, Science,288,1407-1411,
    Tian, W. S. M. P. Chipperfield (2006):Stratospheric water vapor trends in a coupled chemist ry-climate model.Geophys.Res.Lett.,33,L06819,doi:10.1029/2005GL024675.
    Tian,WS.,M.P.Chipperfield,D.R.Lu(2009),Impact of Increasing StratosphericWater Vapor on Ozone Depletion and Temperature Change.Adv.Atmos.sci.26,no.3,pp.423-437.
    Zhou,X.L.,M.A.Geller,and M.Zhang(2001),Cooling trend of the tropical coldpoint tropopause temperature and its implications,J.Geophys.Res.,106,1511-1522.
    Cagnazzo, C., E. Manzini, N. Calvo, A. Douglass, H. Akiyoshi, S. Bekki, M. Chipperfield, M. Dameris, M. Deushi, A.M.Fischer, H. Garny, A. Gettelman, M. A. Giorgetta, D. Plummer, E. Rozanov, T. G. Shepherd, K. Shibata, A. Stenke, H. Struthers, and W. Tian (2009):Northern winter stratospheric temperature and ozone responses toENSO inferred from an ensemble of Chemistry Climate Models. Atmos. Chem.Phys.,9,8935-8948.
    Calvo, N., R.Garcia, R. Garcia Herrera, D. Gallego, L. Gimeno, E. Herna'ndez, and P. Ribera (2004):Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU,1979-2000, J. Clim.,17, 3934-3946.
    Camp, C. D. and Tung, K.-K. (2007):Stratospheric polar warming by ENSO in winter: A statistical study, Geophys. Res. Lett.,34, L04809, doi:10.1029/2006GL028521.
    Dhomse, S., M. Weber, and J. Burrows (2008):The relationship between tropospheric wave forcing and tropicsal lower stratospheric water vapor, Atmos. Chem. Phys., 8,471-480.
    Free, M., and Seidel, D. J. (2009):The observed ENSO temperature signal in the stratosphere, J. Geophys. Res., doi:10.1029/2009JD012420.
    Forster, P. M. de F., and K. Shine (2002). Assessing the climate impact of trends in stratospheric water vapour, Geophys. Res. Lett.,29(6),1086, doi:10.1029/ 2001GL013909.
    Fueglistaler, S., and P. H. Haynes (2005). Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res.,110, D24108, doi:10.1029/2005JD006019.
    Garci'a-Herrera, R., N. Calvo, R. R. Garcia, and M. A. Giorgetta (2006):Propagation of ENSO temperature signals into the middle atmosphere:A comparison of two general circulation models and ERA-40 reanalysis data, J. Geophys. Res.,111, D06101, doi:10.1029/2005JD006061.
    Garfinkel, C. I. and Hartmann, D. L. (2007):Effects of El Nino-Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere, J. Geophys. Res.,112, D19112, doi:10.1029/2007JD008481.
    Gettleman, A., J. R. Holton, A. R. Douglass. (2000):Simulations of water vapor in the lower stratosphere and upper troposphere. J. Geophys. Res., Volume 105, Issue D7, p.9003-9024.
    Gettelman, A., W. J., Randel, S., Massie, and F., Wu, (2001):El Nin o as a Natural Experiment for Studying the Tropicsal Tropopause Region. J. Climate,14, 3375-3392.
    Gettelman, A., T. Birner, V. Eyring, H. Akiyoshi, D. A. Plummer, M. Dameris, S. Bekki, F. Lefevre, F. Lott, C. Bruhl, K. Shibata, E. Rozanov, E. Mancini, G. Pitari, H. Struthers, W. Tian, and D. E. Kinnison, (2009):The Tropical Tropopause Layer 1960-2100, Atmos.Chem.Phys.,9,1621-1637.
    Gettelman, A., M. I. Hegglin, S-W. Son, J. Kim, M. Fujiwara,T. Birner, S. Kremser, M. Rex, J.A. Anel, H. Akiyoshi, J.Austin, S. Bekki, P. Braesike, C. Bruhl, N. Butchart, M. Chipperfield, M. Dameris, S. Dhomse, H. Garny, S. C. Hardiman, P. Jockel, D. E. Kinnison, J. F. Lamarque, E. Mancini, M. Marchand, M. Michou, O. Morgenstern, S. Pawson, G. Pitari, D. Plummer, J.A. Pyle, E. Rozanov, J. Scinocca, T. G. Shepherd, K. Shibata, D. Smale, H. Teyssedre, W. Tian (2010), Multimodel assessment of the upper troposphere and lower stratosphere:Tropics and global trends, J. Geophys. Res.,115, D00M08, doi:10.1029/2009JD013638.
    Geller, M. A., X. Zhou, and M. Zhang, (2002). Simulations of the interannual variability of stratospheric water vapor, J. Atm. Sci.,59,1076-1085.
    Hamilton, K. (1993):An examination of observed Southern Oscillation effects in the Northern Hemisphere stratosphere, J. Atmos. Sci.,50,3468-3473.
    Hatsushika, H., and K. Yamazaki, (2002):Stratospheric drain over Indonesia and dehydration within the tropicsal tropopause layer diagnosed by air parcel trajectories, J. Geophys. Res.,108(D19),4610, doi:10.1029/2002JD002986.
    Holton, J. R., and A. Gettelman, (2001):Horizontal transport and the dehydration of the stratosphere, Geophys. Res. Lett.,28,2799-2802.
    Hurst D.F., S. J. Oltmans, H. Vomel, K. H. Rosenlof, S.M.Davis, E.A.Ray., E. G. Hall, and A. F. Jordan:Stratospheric Water Vapor Trends over Boulder, Colorado:Analysis of the 30-year Boulder Record.2010JD015065. In press.
    Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner, (2006): The Influence of Sea Surface Temperatures on the Northern Winter Stratosphere: Ensemble Simulations with the MAECHAM5 Model. J. Climate, Volume 19, Issue 16,3863-3881.
    Newell, R. E. and S. Gould-Stewart, (1981):A stratospheric fountain?,J. Atmos. Sci., 38,2789-2796.
    Oltmans, S. J., and D. J. Hofmann, (1995):Increase in lower-stratospheric water vapor at a mid-latitude Northern Hemisphere site from 1981-1994, Nature,374, 146-149.
    Oltmans, S.J., H. Vomel, D. J. Hofmann, K. H. Rosenlof, and D. Kley, (2000): The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado, Geophys. Res. Lett.,27,3453-3456.
    Randel, W. J., F. Wu, and D. J. Gaffen, (2000):Interannual variability of the tropicsal tropopause derived from radiosonde data and NCEP reanalysis, J. Geophys. Res. 105,15,509-15,523.
    Randel, W.J., F. Wu, A. Gettelman, J. M. Russell, J.M. Zawodny and S.J. Oltmans, (2001):Seasonal variation of water vapor in the lower stratosphere observed in Halogen Occultation Experiment data, J. Geophys. Res., VOL.106, NO. D13, PAGES 14,313-14,325.
    Randel, W. J., F. Wu, H. Voemel, G.E. Nedoluha and Forster, P. (2006):Decreases in stratospheric water vapor after 2001:links to changes in the tropicsal tropopause and the Brewer-Dobson circulation, J. Geophys. Res., 111,12312, doi:10.1029/2005JD006744.
    Reid, G. C., K. S. Gage, and J. R. McAfee, (1989):The thermal response of the tropical atmosphere to variations in equatorial Pacific sea surfacem temperature, J.Geophys.Res.,94,14,705-14,716.
    Rosenlof, K. H.,Ⅲ, E.-W. Chiou, W. P. Chu, D.G.Johnson, K. K. Kelly, H. A. Michelsen, G. E. Nedoluha, E. E. Remsberg, G. C. Toon, and M. P. McCormick, (2001):Stratospheric water vapor increases over the past half-century, Geophys. Res. Lett,28,1195-1198.
    Sassi, F., D., Kinnison, B. A., Boville, R. R., Garcia, and R., Roble, (2004): Effect of El Nin o-Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res., VOL.109, D17108, doi:10.1029/2003JD004434.
    Scaife, A. A., N., Butchart, D. R., Jackson, and R., Swinbank, (2004):Can changes in ENSO activity help to explain increasing stratospheric water vapor? Geophys Res Lett, Vol.30, No.17,1880, doi:10.1029/2003GL017591.
    Shindell, D. T.,2001:Climate and ozone response to increased stratosphere water vapor.J. Geophys. Res. Lett.,28,1551-1554.
    Smith, T. M., and R. W. Reynolds, (2003):Extended reconstruction of global sea surface temperatures based on CO ADS data (1854-1997), J.Clim.,16,1495-1510.
    Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, (2008): Improvements to NOAA's Historical Merged Land Ocean Surface Temperature Analysis (1880-2006). J. Clim., vol.21, issue 10, p.2283.
    Solomon.S, K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J Sanford. and G.K. Plattner, (2010):Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming. Science. Vol.327 no.5970 pp. 1219-1223, DOI:10.1126/science.1182488.
    Stenke. A and V. Grewe, (2005):Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry. Atmospheric Chemistry and Physics 5,5 (2005)1257-1272.
    Taguchi, M. and Hartmann, D. L. (2006):Increased occurrence of stratospheric sudden warmings during El Nino as simulated by WACCM, J. Climate,19(3), 324-332.
    Tian, W., and M. P., Chipperfield, (2006):Stratospheric water vapor trends in a coupled chemistry-climate model. Geophys Res Lett. VOL.33, L06819, doi:10.1029/2005GL024675.
    Tian, W.S., M.P. Chipperfield, D. R. Lu, (2009):Impact of Increasing Stratospheric Water Vapor on Ozone Depletion and Temperature Change. Adv. Atmos. Sci.26, no.3, pp.423-437.
    Trenberth K. T., J. Fasullo, and L. Smith, (2005):Trends and variability in column-integrated atmospheric water vapor, Climate Dynamics,24:741-758. DOI 10.1007/S00382-005-0017-4.
    Van Loon, H. and Labitzke, K. (1987):The Southern Oscillation. Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation, Mon. Weather Rev.,115, 357-369.
    Webster, P. j. and Chang H. R. (1988):Equatorial energy accumulation and emanation regions:impacts of a zonally varying basic state. Journal of the atmospheric sciences,1988, vol.45, no5, pp.803-829 (2 p.).
    Yulaeva, E., Holton, J. R., and Wallace, J. M. (1994):On the cause of the annual cycle in the tropical lower stratospheric temperature, J.Atmos. Sci.,51,169-174.
    Fuglestvedt, J. S., I. S. A. Isaksen, and W. C. Wang (1996):Estimates of indirect global warming potentials for CH4, CO and NOx, Clim. Change,34,405-437.
    Gray, L. J., and J. A. Pyle (1986):The semi-annual oscillation and equatorial tracer distributions, Q. J. R. Meteorot. Soc.,112,387-407.
    Hansen, J., et al. (2005):Efficacy of climate forcings, J. Geophys. Res.,110, D18104, doi:10.1029/2005JD005776.
    Jones, R. L., and J. A. Pyle (1984):Observations of CH4 and N·.O by the NIMBUS 7 SAMS:A comparison with in situ data and two-dimensionanl umericalm odel calculations, J. Geophys. Res.,89,5263-5279
    Joshi, M. M., and K. P. Shine (2003):A GCM study of volcanic eruptionsas a cause of increased stratospheric water vapor, J.Clim.,16,3525-3534.
    Lelieveld, J., and P. J. Crutzen (1992):Indirect chemical effects of methaneon climate warming, Nature,355,339-342.
    Lelieveld, J., P. J. Crutzen, and F. J. Dentener (1998):Changing concentration, lifetime and climate forcing of atmospheric methane, Tellus, Ser. B,50,128-150.
    Myhre, G., J.S.Nilsen, L. Gulstad, K. P. Shine, B. Rognerud, and I. S. A. Isaksen (2007):Radiative forcing due to stratospheric water vapour from CH4 oxidation, Geophys. Res. Lett.,34, L01807, doi:10.1029/2006GL027472.
    Oltmans, S. J., H. Vo"mel, D. J. Hofmann, K. H. Rosenlof, and D. Kley(2000):The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado, Geophys. Res. Lett.,27,3453-3456.
    Randel, W. J., et al. (2004):Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures, J. Atmos. Sci.,61,2133-2148.
    Rockmann, T., J. U. Grooss, and R. Muller (2004):The impact of anthropogenic chlorine emissions, stratospheric ozone change and chemical feedbacks on stratospheric water, Atmos. Chem. Phys.,4,693-699.
    Rosenlof, K. H., et al. (2001):Stratospheric water vapor increases over the past half-century, Geophys. Res. Lett.,28,1195-1198.
    Rosenlof, K. H. (2003):Atmospheric science-How water enters the stratosphere, Science,302,1691-1692.
    Sherwood, S. (2002):A microphysical connection among biomass burning, cumulus clouds, and stratospheric moisture, Science,295,1272-1275.
    Shindell, D. T., G. Faluvegi, N. Bell, and G. A. Schmidt (2005):An emissions-based view of climate forcing by methane and tropospheric ozone, Geophys. Res. Lett.,32, L04803, doi:10.1029/2004GL021900.
    Tian, W., and M. P., Chipperfield (2006):Stratospheric water vapor trends in a coupled chemistry-climate model. Geophys Res Lett. VOL.33, L06819, doi:10.1029/2005GL024675,
    World Meteorological Organization (2003):Scientific assessment of ozone depletion: 2002, Rep.47, Global Ozone Res. and Monit. Proj., Geneva.
    Austin, J., N. Butchart, and K. P. Shine (1992):Possibility of an Arctic ozone hole in a doubled-CO2 climate. Nature,360,221-225.
    Austin, J., and N. Butchart, (2003):Coupled chemistry-climate model simulations for the period 1980 to 2020:Ozone depletionand the start of ozone recovery. Quart. J. Roy. Meteor.Soc.,129,3225-3249.
    Austin, J., and R. J. Wilson (2006), Ensemble simulations of the decline and recovery of stratospheric ozone, J. Geophys.Res.,111, D16314, doi:10.1029/ 2005JD006907.
    Austin, J., H. Struthers, J. Scinocca, D. Plummer, H. Akiyoshi, A.J.G. Baumgaertner, S. Bekki, G.E. Bodeker, P. Braesicke, C. Bruhl, N. Butchart, M.P. Chipperfield, D. Cugnet, M Dameris, S. Dhomse, S. Frith, H. Garny, A. Gettelman, S. C. Hardiman, P. Jockel, D. Kinnison, J.F. Lamarque, E.Mancini, M. Marchand, M. Michou, O. Morgenstern, T. Nakamura, J.E. Nielsen, G Pitari, J. Pyle, E. Rozanov, T.G Shepherd, K. Shibata, D. Smale, H. Teyssedre, Y.Yamashita (2010), Chemistry-climate model simulations of spring Antarctic ozone, J. Geophys.Res., doi:10.1029/2009JD013577, in press
    Bodeker, G.E., H.A. Struthers, and B.J. Connor (2002), Dynamical containment of Antarctic ozone depletion, Geophys. Res. Lett.,29(7),1098, doi:10.1029/ 2001GL014206.
    Bodeker, G.E., H. Shiona, and H. Eskes (2005), Indicators of Antarctic ozone depletion, Atmos.Chem.Phys.,5,2603-2615.
    Brasseur, G. P., D. A. Hauglustaine, S. Walters, P. J. Rasch, J.-F. Muller, C. Granier, and X.-X. Tie (1998), MOZART: A global chemical transport model for ozone and related chemical tracers,1:Model description, J. Geophys. Res.,103,28, 265-28,289.
    Brenninkmeijer, C.A.M., Lowe, D.C., Manning, M.R., Sparks, R.J., van Velthoven, P.F.J., (1995). The 13C,14C, and 18O isotopic composition of CO, CH4, and CO2 in the higher southern latitudes lower stratosphere. J. Geophys. Res.100, 26163-26172.
    Chipperfield, M., and W. Feng (2003), Comment on:Stratospheric Ozone Depletion at northern mid-latitudes in the 21st century:The importance of future concentrations of greenhouse gases nitrous oxide and methane, Geophys. Res. Lett.,30(7),1389, doi:10.1029/2002GL016353.
    Collins, W. D., et al. (2004), Description of the NCAR Community Atmosphere Model (CAM3), Tech. Rep. NCAR/TN-464_ STR,226 pp., Natl. Cent. for Atmos. Res., Boulder, Colo.
    Considine, D. B., A. R. Douglass, P. S. Connell, D. E. Kinnison, and D. A. Rottman (2000), A polar stratospheric cloud parameterization for the global modeling initiative three-dimensional model and its response to stratospheric aircraft, J. Geophys. Res.,105,3955-3973.
    Crutzen, P. J. (1974):Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air, Tellus,26,46-57.
    Dentener, F.; Stevenson, D.; Cofala, J.; Mechler, R.; Amann, M.; Bergamaschi, P.; Raes, F.; Derwent, R. (2005), The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing:CTM calculations for the period 1990-2030. Atmos. Chem.Phys,5, Issue 7,2005, pp.1731-1755
    Duncan. WT and TN. Truong (1995). Thermal and vibrational-state selected rates of the CH41C1$HC11CH3 reaction.J. Chem. Phys.103 (22)
    Eyring, V., Waugh, D. W., Bodeker, G. E., Cordero, E., Akiyoshi, H., Austin, J., Beagley, S. R., Boville, B., Braesicke, P., Br"uhl, C., Butchart, N., Chipperfield, M. P., Dameris, M., Deckert, R., Deushi, M., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M., Kinnison, D. E., Mancini, E., Manzini, E., Marsh, D. R., Matthes, S., Nagashima T., Newman, P. A., Nielsen, J. E., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Schraner, M., Scinocca, J. F., Semeniuk K., Shepherd, T. G., Shibata, K., Steil, B., Stolarski, R., Tian, W., and Yoshiki, M. (2007):Multimodel projections of stratospheric ozone in the 21st century, J. Geophys. Res.,112, D16303, doi:10.1029/2006JD008332.
    Eyring. V; I. Cionni; G. E. Bodeker; A. J. Charlton-Perez; D. E. Kinnison; J. F. Scinocca; D. W. Waugh; H. Akiyoshi; S. Bekki; M. P. Chipperfield; M. Dameris; S. Dhomse; S. M. Frith; H. Garny; A. Gettelman; A. Kubin; U. Langematz; E. Mancini; M. Marchand; T. Nakamura; L. D. Oman; S. Pawson; G. Pitari; D. A. Plummer; E. Rozanov; T. G. Shepherd; K. Shibata; W. Tian; P. Braesicke; S. C. Hardiman; J. F. Lamarque; O. Morgenstern; J. A. Pyle; D. Smale; Y. Yamashita (2010). Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmos. Chem. Phys.,10,9451-9472
    Evans, S. J., R. Toumi, J. E. Harries, M. P. Chipperfield, and J. M. Russel III, (1998):Trends in stratospheric humidity and the sensitivity of ozone to these trends. J. Geophys. Res.,103,8715-8725.
    Farman, J. G., B. G. Gardiner, and J. D. Shanklin (1985), Large losses of total ozone in Antarctica reveal seasonal CIOx/NOx interaction, Nature,315,207-210, doi:10.1038/315207a0
    Forster, P. M. de F., and K. P. Shine, (1999):Stratospheric water vapor changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett.,26, 3309-3312.
    Fuglestvedt, J.S., Isaksen, I.S.A., Wang, W.-C., (1996). Estimates of indirect global warming potentials for CH4, CO and NOx. Clim.Change.34,405-437.
    Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi (2007), Simulation of secular trends in the middle atmosphere,1950-2003, J. Geophys. Res.,112, D09301, doi:10.1029/2006JD007485.
    Gettelman, A., Holton, J.R., Rosenlof, K.H., (1997). Mass fluxes of ozone, CH4, N2O and CF2C12 in the lower atmosphere calculated from observational data. J. Geophys. Res.102,19149-19159.
    Hauglustaine, D. A., G. P. Brasseur, S.Walters, P. J. Rasch, J.-F.Mller, L. K. Emmons, and M. A. Carroll (1998), MOZART: A global chemical transport model for ozone and related chemical tracers:2. Model results and evaluation,J. Geophys. Res.,103,28,291-28,335.
    Hofmann, D. J., S. J. Oltmans, J. M. Harris, B. J. Johnson, and J. A. Lathrop (1997), Ten years of ozonesonde measurements at the south pole:Implications for recovery of springtime Antarctic ozone, J. Geophys. Res.,102(D7),8931-8944, doi:10.1029/96JD03749.
    Horowitz, L. W., et al. (2003), A global simulation of tropospheric ozone and related tracers:Description and evaluation of MOZART, version 2, J. Geophys. Res., 108(D24),4784, doi:10.1029/2002JD002853.
    Isaksen, I.S.A., Stordal, F., (1986). Ozone perturbations by enhanced levels of CFCs, N2O, and CH4:a two-dimensional diabatic circulation study including uncertainty estimates.J. Geophys. Res.91,5249-5263.
    Kirk-Davidoff, D. B., E. J. Hintsa, J.G.Anderson, and D. W. Keith, (1999):The effect of climate change of ozone depletion through changes in stratospheric water vapour. Nature,402,399-401.
    Lelieveld, J., Crutzen, P., Dentener, F., (1998). Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus 50B,128-150.
    Miller, A. J., A. Cai, G. Tiao, and D. Wuebbles (2006), Examination of ozonesonde data for trends and trend changes including solar and arctic oscillation signals, J. Geophys. Res., 111, D13305, doi:10.1029/2005JD006684
    Newchurch, M. J., E. S. Yang, D. M. Cunnold, C. C. Reinsel, J. M.Zawodny, and J. M. Russell Ⅲ (2003), Evidence for slowdown in stratospheric ozone loss:First stage of ozone recovery,J. Geophys. Res.,108(D16),4507 doi:10.1029/2003JD003471.
    Newman, P. A., S. R. Kawa, and E. R. Nash (2004), On the size of the Antarctic ozone hole, Geophys. Res. Lett.,31, L21104, doi:10.1029/2004GL020596.
    Newman, P. A., E. R. Nash, S. R. Kawa, S. A. Montzka, and S. M. Schauffler (2006), When will the Antarctic Ozone hole recover?, Geophys. Res. Lett.,33, L12814, doi:10.1029/2005GL025232.
    Owens, A.J., Steed, J.M., Filkin, D.L., Miller, C., Jesson, J.P., (1982). The potential effects of increased methane on atmospheric ozone. Geophys. Res. Lett. 9,1105-1108.
    Owens, A.J., Hales, C.H., Filkin, D.L., Miller, C., Steed, J.M., Jesson, J.P., (1985). A coupled one-dimensional radiative-convective, chemistry-transport model of the atmosphere:1. Model structure and steady state perturbation calculations.J. Geophys.Res.90,2283-2311.
    Pitari, G., S. Palermi, G. Visconti, and R. G. Prinn (1992):Ozone response to a CO2 doubling: Results from a stratospheric circulation model with heterogeneous chemistry.J. Geophys. Res.,97,5953-5962.
    Ravishankara A.R, J.S.Daniel, and R. W. Portmann (2009), Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science, 326. no.5949, pp.123-125, DOI:10.1126/science.1176985
    Rayner, N. A., D.E.Parker, E. B. Horton, C. K. Folland, L.V.Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan (2003), Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res.,108(D14),4407, doi:10.1029/2002JD002670.
    Reinsel, G. C., A. J. Miller, E. C. Weatherhead, L. E. Flynn, R. M. Nagatani, G. C. Tiao, and D. J. Wuebbles (2005), Trend analysis of total ozone data for turnaround and dynamical contributions, J. Geophys. Res.,110, D16306, doi:10.1029/2004JD004662.
    Rex, M., et al. (2002), Chemical depletion of Arctic ozone in winter 1999/2000, J. Geophys. Res.,107(D20),8276, doi:10.1029/2001JD000533.
    Rosenfield, J. E., A. R. Douglass, and D. B. Considine, (2002):The impact of increased carbon dioxideon ozone recovery. J. Geophys. Res.,107(D6), doi: 10.1029/2001JD000824
    Shindell, D. T., D. Rind, and P. Lonergan, (1998):Increased polar stratospheric ozone losses and delayedeventual recovery owing to increasing greenhouse-gas concentrations. Nature,392,589-592.
    Steinbrecht, W., et al. (2006), Long-term evolution of upper stratospheric ozone at selected stations of the Network for the Detection of Stratospheric Change (NDSC), J. Geophys. Res.,111, D10308, doi:10.1029/2005JD006454.
    Stenke, A. and V. Grewe (2005):Impact of stratospheric water vapor trends on ozone chemistry. Atmos. Chem. Phys.,5,1257-1272
    Stordal, F., Isaksen, I.S.A., (1987). Ozone perturbations due to increases in N2O, CH4, and chlorocarbons:two-dimensional timedependent calculations. Tellus 39B,333-353.
    Struthers, H., G.E. Bodeker, J.Austin, S. Bekki, I. Cionni, M. Dameris, M.A. Giorgetta, V. Grewe, F. Lef evre, F. Lott, E. Manzini, T. Peter, E. Rozanov, and M. Schraner (2009), The simulation of the Antarctic ozone hole by chemistry-climate models, Atmos. Chem. Phys.,9,6363-6376.
    Tabazadeh. A.,1* M. L. Santee,2 M. Y. Danilin,3 H. C. Pumphrey, P. A. Newman, 5 P. J. Hamill,6 J. L. Mergenthaler (2000). Quantifying Denitripcation and Its Effect on Ozone Recovery. SCIENCE,288,1408-1411
    Tian, W. S., and M. P. Chipperfield, (2004):A new coupled chemistry-climate model for the stratosphere:The importance of coupling for future ozone-climate predictions. Quart. J. Roy. Meteor. Soc.,131,281-303, doi:10.1256/qj.04.05.
    Tian, W.S., M.P. Chipperfield, D.R. Lu (2009), Impact of Increasing Stratospheric Water Vapor on Ozone Depletion and Temperature Change. Adv. Atmos. Sci.26, no.3, pp.423-437.
    Watson. R, G. Machado, S. Fischer, D. D. DAVIS(1976).A temperature dependence kinetics study of the reactions of Cl/2-P-3/2/with ozone, CH4, and H2O2. J. Chem. Phys.65, pp.2126-2138.15
    World Meteorological Organization (2003), Scientific assessment of ozone depletion: 2002, Rep.47, Global Ozone Res. and Monit. Proj., Geneva.
    World Meteorological Organization (WMO)/United Nations EnvironmentProgramme (UNEP), Scientific Assessment of OzoneDepletion:2006, World Meteorological Organization, GlobalOzone Research and Monitoring Project, Report No.50, Geneva, Switzerland,2007.
    Wuebbles D.J. and K. Hayhoe (2002), Atmospheric methane and global change. Earth Science Reviews, v.57, iss.3-4, p.177-210.
    Yang, E. S., M. Newchurch, D. Cunnold, R. J. Salawitch, M. P. McCormick, J. M. Russell Ⅲ, J. Zadodny, and S. Oltmans (2006), Attribution of recovery in lower stratospheric ozone,J. Geophys. Res., doi:10.1029/2005JD006371

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700