卤代甲基自由基、卤代烷和氢氟醚类化合物与一些自由基反应机理及动力学性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卤代甲基自由基(例如CH_2F, CH_2Cl和CH_2Br)是卤代烃或者包含卤素的废料燃烧中产生的重要中间体,在燃烧及大气化学中起着举足轻重的作用。氯氟烷(HCFCs)和氢氟醚(HFEs)与CFCs具有相似的物理化学性质,曾被作为CFCs的第一代和第三代替代物已经在诸多工业领域得到应用。为了更好的评价氟氯烷和氢氟醚对大气环境的影响,确定它们在同温层中的大气寿命是很有必要的。因此,深入研究它们的反应机理和动力学行为,对进一步揭示它们对环境的影响及其大气寿命,对控制环境污染等方面有着重要的意义。
     本论文利用从头算和密度泛函方法研究了卤代甲基自由基(CH_2Br、CHBrCl和CH_2I)、卤代烷(CH_2ClF和C2H5I)和氢氟醚(CF3OCHFCF3)与大气中活泼自由基和原子反应的微观机理,并在所得的反应势能面基础上,对卤代烷和氢氟醚的系列反应进行了动力学性质的计算。对该类反应的速率常数、产物分支比及其对温度的依赖关系做出了可靠的理论预测,从而为进一步研究和利用这些反应提供了理论依据。本论文的主要结果有:
     1. CH_2Br/CHBrCl + NO2反应机理的理论研究:1)对于CH_2Br + NO2反应,CH_2Br中的C原子可无能垒的进攻NO2中的O原子形成初始络合物H_2BrCONO-trans和H_2BrCONO-cis。从H_2BrCONO-trans出发,可生成两个主要产物CH_2O + BrNO和CHBrO + HNO。2)对于CHBrCl + NO2反应,可得到三种主要产物CHClO + BrNO、CHBrO + ClNO和CBrClO + HNO。在这三种产物中,CHClO + BrNO是最主要产物,CHBrO + ClNO和CBrClO + HNO分别是第二和第三可行的产物。3) CH_2Br + NO2和CHBrCl + NO2势能面很相似。对于这两个反应来说,三重态势能面由于存在高位垒,所以很难进行,可以忽略。
     2.对于CH_2I + NO2反应机理的理论研究:1) CH_2I中的C原子可无能垒的进攻NO2中的不用原子(N原子或O原子)形成初始络合物H_2ICNO2、H_2ICONO-trans和H_2ICONO-cis。2)从H_2ICONO-trans出发,可生成两个主要的产物CH_2O + INO、CHIO + HNO和一个二级产物CH_2O + I + NO。CH_2O + INO是最主要产物,CHIO + HNO是第二可行的产物。我们的计算得到的主要产物与实验上观测到的CH_2I + NO2反应的结论相一致。3) CH_2I + NO2和CH_2Br + NO2势能面很相似。对于这两个反应来说,三重态势能面由于存在高位垒,所以很难进行,可以忽略。通过电负性方面和能垒方面的分析,我们预测CH_2I + NO2反应比CH_2Br + NO2反应快与实验结果相一致。
     3.利用双水平直接动力学方法系统研究了Cl + CH_2FCl反应。在QCISD(T)/6-311++G(d, p)//MP2/6-311G(d, p)水平下获得了反应的势能面信息。反应共有三条反应通道,即H-提取、Cl-提取和F-提取。计算得到的势能垒值表明,H提取通道为主要反应通道,生成产物CHFCl + HCl。在220-3000 K温度范围内计算了三条通道的结合小曲率隧道效应的正则变分过渡态速率常数。计算值和已有的实验值符合的很好。总反应速率的三参数Arrheniun表达式,(单位:cm3 molecule-1 s-1): k(T) = 1.48×10-17T2.04exp(-913.91/T)。
     4.运用双水平直接动力学方法研究了多通道反应C2H5I + Cl。势能面是采用MP2方法结合对C, H和Cl采用6-311++G(d, p)基组,对于I采用三-ζ包含有效核赝势的系统收敛基组(aug-cc-pVTZ-PP)得到的。再利用CCSD(T)和QCISD(T)方法对反应体系中的所有稳定点和MEP上选取的部分点进行了高水平能量校正。该反应,共有四条反应通道,计算了三条氢提取反应通道和相应的氘取代反应通道的速率常数以及反应速率分支比。温度在1200K以下时,亚甲基氢提取通道是主要的。但是当温度升高时,甲基氢提取通道开始具有竞争性。总反应在220-1500K温度范围内的速率常数三参数表达式为k(T) = 2.33×10-16 T 1.83 exp(-185.01/T) cm3 molecule-1 s-1。氘取代同位素效应(KIE)在低温区间较为重要,而在高温区间影响不大。
     5.运用双水平直接动力学方法研究CF3CHFOCF3 (HFE-227 mc) + OH以及CF3CHFOCF3 + Cl反应的反应机制,所有稳定点的几何构型和频率以及最小能量路径。利用同构反应(R7.3a-R7.4c),在理论上估算了CF3CHFOCF3和CF3CFOCF3自由基的标准生成焓数据。计算的这两个反应的包含小曲率隧道效应校正的改进的正则变分过渡态速率常数(ICVT/SCT)与相应的可利用的实验值吻合的很好。速率常数计算结果表明,对于CF3CHFOCF3 + Cl反应,速率常数是正温度效应,对于CF3CHFOCF3 + OH,在低温区域(220-250 K)表现为负温度效应。两个反应速率的三参数Arrheniun表达式分别为,(单位:cm3 molecule-1 s-1): k1 = 2.87×10-21 T 2.80 exp (-1328.60/T) k2 = 3.26×10-16 T 1.65exp (-4642.76/T)。
Halogenated Methyl (such as CH_2F, CH_2Cl and CH_2Br) is the important intermediates derives from the combustion of halogenated methyl or waste containing halogen, which plays a significant role in the combustion chemistry and atmospheric chemistry.
     Hydrochlorofluorocarbons (HCFCs) and hydrofluoroethers (HFEs) have the similar physical chemistry property of CFCs. They have been the first and third generation alternatuvel compounds to CFCs and are used in various industrial applications. It is necessary to know the atmospheric lifetime in order to better assess the atmospheric and environmental impact of HCFCs and HFEs. Therefore, detailed investigations on the mechanisms and kinetics of those reactions are very important to control atmospheric pollutions.
     Using ab initio and density function theory (DFT) chemistry methods, we studied the the detailed mechanisms and pathways of halogenated methyl (CH_2Br、CHBrCl and CH_2I), haloalkanes((CH_2ClF and C2H5I), and hydrofluoroethers(CF3OCHFCF3) with active radicals and atoms reactions. Furthermore, based on the potential energy surface (PES) obtained, kinetics properties for series reactions of haloalkane and hydrofluoroethers. Theoretical prediction of the rate constants, the temperature dependence of branching ratios are provided for further studying and using these reactions experimentally. The important and valuable results in this thesis are summarized as follows:
     1. Theoretical studies on the mechanisms of CH_2Br/CHBrCl+NO2 reactions: (1) For the CH_2Br + NO2 reaction, the C atom of CH_2Br radical can barrierlessly attack the O atom of NO2 to form the initial radical-molecular adduct H_2BrCONO-trans and H_2BrCONO-cis. Two primary products P1 (CH_2O + BrNO) and P2 (CHBrO + HNO) are obtained. (2) For the CHBrCl + NO2 reaction, three kinds of primary products P1 (CHClO + BrNO), P2 (CHBrO + ClNO) and P3 (CBrClO + HNO) should be observed. Among these products, P1 is the most favorable product while P2 and P3 are second and third feasible products, respectively. (3) The PES features of the CH_2Br + NO2 and CHBrCl + NO2 reactions are similar. The triplet pathways have much less competitive abilities for both reactions and can thus be neglected.
     2. For the theoretical studies on the mechanisms CH_2I + NO2 reaction: (1) With the different atom (N or O atom) in NO2 approaching to C atom, different initial intermediates are formed, H_2ICNO2, H_2ICONO-trans, and H_2ICONO-cis, respectively. (2) Starting from H_2ICONO-trans, two primary products CH_2O + INO and CHIO + HNO, and one secondary product CH_2O + I + NO should be observed. CH_2O + INO may be the most feasible product with a largest yield, and CHIO + HNO may be the second favorable products. Our results agree well with the experimental observation for CH_2I + NO2 reaction. (3) The PES features of the CH_2I + NO2 and CH_2Br + NO2 reactions are similar. The triplet pathways have much less competitive abilities for both reactions and can thus be neglected. From electronegativity and barrier height analysis, we predicted that reaction CH_2I + NO2 is faster than CH_2Br + NO2, which is in accord with the experimental results.
     3. The reaction Cl + CH_2FCl→products have been studied by dual-level direct dynamics methods. The potential energy surface information is obtained at the QCISD(T)/6-311++G(d, p)//MP2/6-311G(d, p) level. Three reaction channels are identified, i.e., H-abstraction, Cl-abstraction, and F-abstraction. The calculated potential barriers show that major pathway is H-abstraction channel leading to the products, CHFCl + HCl. For each individual reaction channel, the theoretical rate constants in the temperature region of 220-3000 K are calculated by the canonical variational transition state theory (CVT) with the small-curvature tunneling correction (SCT). The calculated total rate constants of these reactions are in good agreement with the corresponding experimental values. Three-parameter rate constant expressions of the whole reaction is given as follows: (in unit of cm3 molecule-1 s-1) k(T) = 1.48×10-17T2.04exp(-913.91/T).
     4. The multichannel reactions C2H5I + Cl are studied by a dual-level direct kinetics method. The potential energy surface information is obtained at the MP2 level with 6-311++G(d, p) basis set for C, H and Cl and aug-cc-pVTZ-PP basis set for I atom. The higher-level energies for the stationary points and extra points along the minimum energy path are refined at the CCSD(T) and QCISD(T) levels. For the title reaction, four reaction channels are identified. The rate constants and the branching ratios for three hydrogen abstraction reaction channels and the corresponding deuterium substitution reaction channels are calculated by the ICVT incorporating SCT correction. The contribution of H-abstraction from -CH_2- group channel is important below 1200 K. However, H-abstraction from -CH3 group channel is competitive at higher temperatures. The three parameter expression for the total reaction within 220-1500 K is k(T) = 2.33×10-16 T 1.83 exp(-185.01/T) cm3 molecule-1 s-1. The deuterium KIE is significant in the low-temperature range, but is less important in the high-temperature region.
     5. The geometries, frequencies of all the stationary points, the minimum energy paths (MEPs), and reaction mechanisms of CF3CHFOCF3 + OH and CF3CHFOCF3 + Cl reactions. Standard enthalpies of formation of CF3CHFOCF3 and CF3CFOCF3 radical are estimated theoretically using group-balanced isodesmic reactions (R7.3a-R7.4c). The rate constants of the hydrogen abstraction reactions calculated by improved canonical variational transition state theory with small-curvature tunneling (ICVT/SCT) correction are consistent with the available experimental values. The rate constant calculations show that the rate constants of CF3CHFOCF3 + Cl reaction have positive temperature dependence. For CF3CHFOCF3 + OH reaction, at lower temperature (220-250 K), the rate constants have negative temperature effect. The three-parameter Arrhenius expressions are as follows (in units of cm3 molecule-1 s-1): k1 = 2.87×10-21 T 2.80 exp (-1328.60/T) k2 = 3.26×10-16 T 1.65exp (-4642.76/T).
引文
[1]王明星.大气化学[M].气象出版社,1999年05月第2版, p467.
    [2]王殿勋. 2001科学发展报告[R].北京:科学出版社,2001,p86.
    [3]刘静玲.环境污染与控制[M].化学工业出版社, 2001年02月(第1版) p282.
    [4]寒冬,寒之.臭氧层[M].中国环境科学出版,2001年04月第1版p116.
    [5]秦大河.大气臭氧层和臭氧空洞[M].气象出版社,2003年3月第一版,p187.
    [6]McElroy M B, Salawitch R J, Wofsy S C, et al. Reductions of antarctic ozone due to synergistic interactions of chlorine and bromine[J]. Nature, 1986, 321(6072): 759–762.
    [7]Fan S M, Jacob D J. Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols[J]. Nature, 1992, 359(6395): 522–524.
    [8]McConnell J C, Henderson G S, Barrie L, et al. Photochemical bromine production implicated in Arctic boundary-layer ozone depletion[J]. Nature, 1992, 355(6356): 150–152.
    [9]Montzka S A, Butler J H, Mayers R C, et al. Decline in the tropospheric abundance of halogen from halocarbons: Implications for stratospheric ozone depletion[J]. Science, 1996, 272(5266): 1318–1322.
    [10]Redeker K R, Wang N Y, Low J C, et al. Emissions of methyl halides and methane from rice paddies[J]. Science, 2000, 290(5493): 966–969.
    [11]Ravishankara R A, Turnipseed A A, Jensen N R, et al. Do hydrofluorocarbons destroy stratospheric ozone?[J]. Science, 1994, 263:71–75.
    [12]Sekiya A, Misaki S J. The potential of hydrofluoroethers to replace CFCs, HCFCs and PFCs[J]. Fluorine Chem, 2000, 101: 215–221.
    [13]Tokuhashi K, Chen L, Kutsuna S, et al. Environmental assessment of CFC alternatives: Rate constants for the reactions of OH radicals with fluorinated compounds [J]. J Fluorine Chem, 2004, 125:1801–1807.
    [14]Takahashi K, Matsumi Y J. Atmospheric chemistry of CF3CFHOCF3: Reaction with OH radicals, atmospheric lifetime, and global warming potential[J]. Geophys Res. 2002, 107(D21): 4574–4579.
    [15]Urata S, Takada A, Uchimaru T, Chandra A K. Rate constants estimation for the reaction of hydrofluorocarbons and hydrofluoroethers with OH radicals[J]. Chem Phys Lett, 2003, 368:215–223.
    [16]Li Z J, Jeong G R, Hansen J C, et al. Rate constant for the reactions of CF3OCHFCF3 with OH and Cl[J]. Chem Phys Lett, 2000, 320: 70–76.
    [17]Takahashi K, Matsumi Y, Wallington T J, et al. Atmospheric chemistry of CF3CFHOCF3: Kinetics of the reaction with Cl atoms and fate of CF3CFO(.)OCF3 radicals[J]. Chem Phys Lett, 2002, 352:202–208.
    [18]Oyaro N, Sellev?g S R, Nielsen C J. Atmospheric chemistry of hydrofluoroethers: Reaction of a series of hydrofluoroethers with OH radicals and Cl atoms, atmospheric lifetimes, and global warming potentials[J]. J Phys Chem A, 2005, 109:337–346.
    [19] Beach S D, Hickson K M, Smith, Ian W M, et al. Rate constants and Arrhenius parameters for the reactions of OH radicals and Cl atoms with CF3CH2OCHF2, CF3CHClOCHF2 and CF3CH2OCClF2, using the discharge-flow/resonance fluorescence method [J]. Phys Chem Chem Phys, 2001, 3: 3064–3069.
    [20]Díaz-de-Mera Y, Aranda A, Bravo I, Moreno E, Martínez E, Rodríguez A. Atmospheric HFEs degradation in the gas phase: Reaction of HFE-7500 with Cl atoms at low temperatures[J]. Chem Phys Lett, 2009, 479:20–24.
    [21]Robert G, Zewail A H. Femtosecond real-time probing of reactions. 7. A quantum- and classical-mechanical study of the cyanogen iodide dissociation experiment[J]. J Phys Chem,1991, 95(21): 7973–7993;
    [22]Pedersen S, Banares L, Zewail A H. Femtosecond vibrational transition-state dynamics in a chemical reaction[J]. J Chem Phys,1992, 97(11): 8801–8804.
    [23]Foresman J B, Frisch M J, Exploring Chemistry with Electronic Structure Methods[M]. 1993.
    [24]Hehre W J, Radom I, Schleyer P V R, Pople J A , Ab Initio Molecular Orbital Theory[M]. 1986.
    [25]Seetula J A, Slagle I R. Kinetics of the reaction of the CH2Cl radical with oxygen atoms[J]. Chem PhysLett, 1997, 277(4): 381–386.
    [26]穆光照.自由基反应[M].北京:高等教育出版社,1985, 7, 239.
    [27]Rayson L, Huang S H, Goh S H O著,穆光照,甘礼骓等译,自由基化学[M].上海:上海科学技术出版社, 1983, 258.
    [28]Smith I W M. Radiative associaton in collisions between neutral free radicals[J]. Chem Phys, 1989, 131(2-3): 391–401.
    [29]Berson M, Baird J C. An introduction of electron paramagnetic resonance[M]., W. A. Benjiamin, New York, 1966.
    [30]Hey D H, Waters W A. Some organic reactions involving the occurrence of free radicals in solution[J]. Chem Review, 1937, 21(1): 169–208.
    [31]Kharasch M S. Photodecomposition of chlorine dioxide in carbon tetrachloride solution[J]. J Am Chem Soc, 1937, 59(6): 1155–1156.
    [32]Bilde M, Wallington T J, Ferronato C, Orlando J J, Tyndall G S, Estupiňan E, Haberkorn S. Atmospheric Chemistry of CH2BrCl, CHBrCl2, CHBr2Cl, CF3CHBrCl, CBr2Cl2 [J]. J Phys Chem A, 1998, 102: 1976–1986.
    [33] Mellouki A, Talukdar R K, Schmoltner A M, Gierczak T, Mills M J, Solomon S, Ravishankara A R. Atmospheric lifetimes and ozone depletion potentials of methyl bromide (CH3Br) and dibromomethane (CH2Br2)[J]. Geophys Res Lett, 1992, 19(20):2059–2062.
    [34]Tzima T D, Papavasileiou K D, Papayannis D K, Melissas V S. Theoretical kinetic study of the CH3Br + OH atmospheric system[J]. Chem Phys. 2006, 324:591–599.
    [35]Eskola A J, Geppert W D, Rissanen M P, Timonen R S, Halonen L. Kinetics of the Reactions of Chlorinated Methyl Radicals (CH2Cl, CHCl2, and CCl3) with NO2 in the Temperature Range 220-360 K[J]. J Phys Chem A. 2005, 109: 5376-5381.
    [36]Eskola A J, Pastuszka D W, Ratajczak E, Timonen R S. Kinetics of the Reactions of CH2I, CH2Br, and CHBrCl Radicals with NO2 in the Temperature Range 220-360 K[J]. J Phys Chem A,2006, 110(44): 12177-12183.
    [37]Zhang J X, Li Z S, Liu J Y, Sun C C. Theoretical Mechanistic Study on the Radical-Molecule Reaction of CHCl2/CCl3 with NO2[J]. J Comput Chem, 2005, 27(5): 661–671.
    [38]Zhang JX, Li ZS, Liu JY, Sun CC. Theoretical Study on the Mechanism of the CH2F+NO2 Reaction[J]. J Comput Chem, 2005, 27(7): 894–905.
    [39]Zhang JX, Li ZS, Liu JY, Sun CC. Radical–molecule reaction CH2Cl + NO2: a mechanistic study[J]. Theor Chem Acc, 2007, 117: 579–586.
    [40]Tuck R, Plumb A, Condon E. The Airborne Arctic Stratospheric Expedition: Prologue[J]. Geophys Res Lett, 1990, 17: 313–316.
    [41] Rosswall T. Greenhouse gases and global change: international collaboration[J]. Environ Sci Technol, 1991, 25 (4): 567–573.
    [42]Atkinson R. Etics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions[J]. Chem Rev, 1986, 86 (1): 69–201.
    [43]Atkinson R. J Phys Chem Ref Data Monograph 2[M]: 1994, 1–216.
    [44]Manzer L. The CEC-Ozone Issue: Progress on the Development of Alternatives to CFCs[J]. Science, 1990, 249: 31–35.
    [45]Manning R G, Kurylo M J. Flash photolysis resonance fluorescence investigation of the temperature dependencies of the reactions of chlorine (2P) atoms with methane, chloromethane, fluoromethane, excited fluoromethane, and ethane[J]. J Phys Chem, 1977, 81: 291–296.
    [46]Senkan S M. ES&T Views: Thermal destruction of hazardous wastes: The need for fundamental chemical kinetic research[J]. Environ Sci Technol, 1988, 22: 368–370.
    [47]Carpenter L J, Iodine in the Marine Boundary Layer[J]. Chem Rev 2003, 103: 4953–4962.
    [48]Jobson B T, Niki H, Yokouchi Y, et al. Measurements of C2-C6 hydrocarbons during the Polar Sunrise1992 Experiment: Evidence for Cl atom and Br atom chemistry[J]. J Geophys Res 1994, 99(D12): 25355–25368.
    [49]Singh H B, Gregory G L, Anderson B, et al. Low ozone in the marine boundary layer of the tropical Pacific Ocean: Photochemical loss, chlorine atoms, and entrainment[J]. J Geophys Res 1996, 101(D1): 1907–1917.
    [50]Singh H B, Thakur A N, Chen Y E, et al. Tetrachloroethylene as an indicator of low Cl atom concentrations in the troposphere[J]. Geophys Res Lett 1996, 23(12), 1529–1532.
    [51]Bryukov M G, Slagle I R, Knyazev V D. Kinetics of Reactions of H Atoms With Ethane and Chlorinated Ethanes J Phys Chem A, 2001, 105: 6900–6909.
    [52]Zhang H, Zhang GL, Wang L, et al. Theoretical studies on the reactions X + CHBrF2 (X = F, Br) Chem Phys Lett, 2006, 432:6–10.
    [53]Knyazev V D. Isodesmic Reactions for Transition States: Reactions of Cl Atoms with Methane and Halogenated Methanes[J]. J Phys Chem A, 2003, 107: 11082–11091.
    [54]Li S, Li Z S, Liu J Y, Sun C C. Ab initio direct dynamics studies on the reaction of H atom with CH3CH2Cl[J]. J Comput Chem, 2004, 25(1): 72–82.
    [55]Li QS, Wang CY. DFT study of the rate constants of the reactions CHClmF3–m + Cl = CClmF3–m +HCl (m = 3– 1)[J]. Phys Chem Chem Phys, 2002, 4: 4386–4391.
    [56]Sun H, He H Q, Pan Y R, et al. Theoretical study on the hydrogen abstraction reaction of CH3CH2F (HFC-161) with Cl atom Chem Phys Lett, 2008, 450: 186–191.
    [57]Zhang H, Wu J Y, Li Z S, et al. Dual-level direct dynamics studies on the reaction Cl + CHBr2Cl J Comput Chem, 2005, 26(13):1421–1426.
    [58]Wang L, Liu J Y, Wan S Q, et al. Theoretical study on the reaction of bromine-substituted ethanes with hydrogen atoms[J]. Chem Phys Lett, 2008, 455: 20–25.
    [59]Orlando J J, Piety C A, Nicovich M J, et al. Rates and Mechanisms for the Reactions of Chlorine Atoms with Iodoethane and 2-Iodopropane[J]. J Phys Chem A 2005, 109, 6659–6675.
    [60]Cotter E S N, Booth N J, Canosa-Mas C E, et al. Reactions of Cl atoms with CH3I, C2H5I, 1-C3H7I, 2-C3H7I and CF3I: kinetics and atmospheric relevance[J]. Phys Chem Chem Phys 2001, 3, 402–408.
    [61]Warnatz J, Combustion Chemistry, Springer-Verlag, New York, 1984.
    [62]黄仲涛.基本有机化工理论基础[M],北京,化学工业出版社,1980.
    [63]吉林大学等.物理化学(下册)[M],人民教育出版社,1979.
    [64]Hucknall D J. Chemistry of Hydrocarbons, Chapman and Hall, London,1985.
    [65]唐有祺.化学动力学和化学反应器原理[M],北京,科学出版社,1974.
    [66]罗孝良.药学通报[N],1982,17,8.
    [67]Rowland F S, Molina M J, Chlorofluoromethanes in the environment[J]. Reviews of Geophysics and Space Physics,1975,13,1–36.
    [68]Ravishankara R A, Turnipseed A A, Jensen N R, et al. Do hydrofluorocarbons destroy stratospheric ozone?[J]. Science, 1994, 263: 71–75.
    [69]Niki H, Maker P D, Savage C M, et al. An FTIR study of the Cl atom-initiated oxidation of CH2Cl2and CH3Cl[J]. Int J Chem Kinet, 1980, 12: 1001–1012.
    [70]Orlando J J, Tyndall G S, Wallington T J. Atmospheric Oxidation of CH3Br: Chemistry of the CH2BrO Radical[J]. J Phys Chem, 1996,100(17): 7026–7033.
    [1]Burrau ?, Berechnung des Energiewertes des Wasserstoffmolekel-. Ions (H2+) im Normalzustand[J]. Kgl Danske Videnskab Selskab Mat Fys Medd, 1927, 7: 14.
    [2]Heitler W, London, F. Interaction between neutral atoms and homoplar binding according to quantum mechanics[J]. Z Phys, 1927, 44: 455.
    [3]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社, 1985.
    [4]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社, 1982.
    [5]金松寿.量子化学基础及其应用[M].上海:上海科学技术出版社,1980.
    [6]陈念陔,高坡,乐征宇.量子化学理论基础[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [7]Born M, Huang K. Dynamical Theory of Crystal Lattices[M]. New York: Oxford University Press, 1954.
    [8]Born M, Oppenheimer R. Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84, 457–484.
    [9]Hartreee D R. Proc. Cambridge Phil. Soc. 1928, 24, 89.
    [10]Fock V. Ann. Physik. 1930, 61: 126.
    [11]Hartree D. Calculations of Atomic Structure[M]. Wiley, 1957.
    [12]赵学庄,罗渝然,臧雅茹等.《化学反应动力学原理》下册[M].高等教育出版社,1990.
    [13]Parr R G, Yang W. Density-functional theory of atoms and molecules Oxford Univ[M]. Press: Oxford, 1989.
    [14]Pople J A, Head-Gordon M, Raghavachari K. Quadratic configuration interaction: A general technique for determining electron correlation energies[J]. J Chem Phys, 1987, 87(10): 5968–5975.
    [15]施嵘,沈利英.乙烯酮的生产及下游产品的开发[J].河南化工, 2001, 8: 4–6.
    [16]Vestal C, Devore T. Proceedings of the conference on high temperature corrosion and materials chemistry[M]. Opila Ed, Mcnallan E J, Shores M J, et al. Washington DC: Electrochemical Society, 2001: p285.
    [17]Szabo A, Ostlund N S. Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory[M]. Dover, New York, 1996.
    [18]M?ller C , Plesset M S. Note on an Approximation Treatment for Many-Electron Systems[J]. Phys Rev, 1934, 46: 618–622.
    [19]Head-Gordon M, Pople J A, Frisch M J. MP2 energy evaluation by direct methods[J]. Chem. Phys Lett., 1988, 153(6): 503–506.
    [20]Pople J A, Seeger R, Krishnan R. Variational configuration interaction methods and comparison with perturbation theory[J]. Int J Quantum Chem, 1977, 11(1): 149–161.
    [21]Foresman J B, Head-Gordon M, Pople J A, et al. Toward a Systematic Molecular Orbital Theory for Excited States[J]. J Phys Chem, 1992, 96(1): 135–149.
    [22]Krishnan R, Schlegel H B, Pople J A. Derivative studies in configuration interaction theory[J]. J Chem Phys, 1980, 72(8): 4654–4655.
    [23]Brooks B R, Laidig W D, Saxe P, et al. Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach[J]. J Chem Phys, 1980, 17(8): 4652–4653.
    [24]Salter E A, Trucks G W, Bartlett R J. Analytic energy derivatives in many-body methods I. First derivatives[J]. J Chem Phys, 1989, 90(3): 1752–1766.
    [25]Raghavachari K, Pople J A. Calculation of one-electron properties using limited configuration interaction techniques[J]. Int J Quantum Chem, 1981, 20(5): 1067–1071.
    [26]Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys Rev, 1964, 136: B864-B871.
    [27]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys Rev, 1965, 140: A1133–A1138.
    [28]Fukui K. Varational principles in a chemical reaction[J]. Int J Quantum Chem, 1981, 15: 633-641.
    [29]Fukui K, Tachibana A, Yamashita K. Toward chemodynamitcs[J]. Int J Quantum Chem, 1981, 15: 621–632.
    [30]Slater J C. Quantum Theory of Molecular and Solids: The Self-Consistent Field for Molecular and Solids McGraw-Hill[M]. New York, 1974.
    [31]Salahub D R, Zerner M C, et al. The Challenge of d and f Electrons[M]. Washington, D.C, 1989.
    [32]Pople J A, Gill P M W, Johnson B G. Kohn-Sham density-functional theory within a finite basis set[J]. Chem Phys Lett, 1992, 199(6): 557–560.
    [33]Johnson B G, Fisch M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy[J]. J Chem Phys, 1994, 100(10): 7429–7442.
    [34]Labanowski J K, Andzelm J W, eds. Density Functional Methods in Chemistry[M]. Springer-Verlag: New York, 1991.
    [35]Hegarty D, Robb M A. Application of unitary group methods to configuration interaction calculations[J]. Mol Phys, 1979, 38(6): 1795–1812.
    [36]Woon D E, Dunning Jr T H. Molecular gradients and hessians implemented in density functional theory[J]. J Chem Phys, 1993, 98, 1358–1381.
    [37]Kendall R A, Dunning Jr T H, Harrison R J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions[J]. J Chem. Phys, 1992, 96: 6796–6806.
    [38] Dunning Jr T H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen[J]. J Chem Phys, 1989, 90: 1007–1023.
    [39]Peterson K A, Woon D E, Harrison R J. Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction[J]. J Chem Phys, 1994, 100: 7410–7415.
    [40]Wilson A, Mourik T van, Dunning Jr T H. Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon[J]. J Mol Struct (Theochem), 1997, 388: 339–349.
    [41]Lynch B J, Zhao Y, Truhlar D G. The 6-31B(d) Basis Set and the BMC-QCISD and BMC-CCSD Multicoefficient Correlation Methods[J]. J Phys Chem A, 2005, 109(8): 1643–1649.
    [42]Fast P L, Truhlar D G. MC-QCISD: Multi-Coefficient Correlation Method Based on Quadratic Configuration Interaction with Single and Double Excitations[J].J Phys Chem A, 2000,104(26): 6111–6116.
    [43]Wang Y, Liu J Y, Li Z S, et al. Direct Dynamics Study on Hydrogen Abstraction Reaction of CF3CF2CH2OH with OH Radical[J]. J Phys Chem A, 2006, 110(17): 5853–5859.
    [44]Wang Y, Liu J Y, Yang L, et al. Direct Dynamics Studies on Hydrogen Abstration Reactions of CH3CHFCH3 and CH3CH2CH2F with OH Radicals[J]. J Phys Chem A, 2007, 111(32): 7761–7770.
    [45]Fukui K. Varational principles in a chemical reaction[J]. Int J Quantum Chem, 1981, 15: 633–641.
    [46]Fukui K, Tachibana A, Yamashita K. Toward chemodynamitcs[J]. Int J Quantum Chem, 1981, 15: 621–632.
    [47]Garrett B C, Truhlar D G. Generalized transition state theory. canonical variational calculations using the bond energy-bond order method for bimolecular reactions of combustion products[J]. J Am Chem Soc, 1979, 101(18): 5207–5217.
    [48]Garrett B C, Truhlar D G. Semiclassical Tunneling Calculations[J]. J Phys Chem, 1979, 83(11): 2921–2925.
    [49]傅献彩,沈文霞,姚天扬.《物理化学》下册[M].高等教育出版社,1990.
    [50]金家骏.《分子化学反应动态学》[M].上海交通大学出版社,1988.
    [51]Garrett B C, Truhlar D G. Generalized transition state theory. Bond energy-bond order method for canonical variational calculations with application to hydrogen atom transfer reactions[J]. J Am Chem Soc, 1979, 101(16): 4534–4548.
    [52]Smith I W M. Kinetics and Dynamics of Elementary Gas Reactions[M]. Butterworths, London, 1980.
    [53]Moore J W, Pearson R G. Kinetics and Mechannism, 3rd Ed[M]. Wiley, New York. 1980.
    [54]Miller W H. Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants[J]. J Chem Phys, 1974, 61(5): 1823–1834.
    [55] Hill T I. An Instruction to Statistical Thermodynamics Addison-Wesley, Reading Mass.1960, Chap 6.
    [56] Mayer J E, Mayer M G, StatisticalMechanics, 2nd Ed, John Wiley&Sons.N.Y. 1977, Chap 7.
    [57]Truhlar D G, Gordon M S. From force fields to dynamics: Classical and quantal paths[J].Science, 1990, 249(4968): 491–498.
    [58] Truhlar D G, Isaacson A D, Garrett B C. Theory of chemiscal reaction dynamics, edited by Baer M, CRC Press, Boca Raton, FL, 1985, 4: p 65.
    [1]Baren R E, Erickson M, Hershberger J F. Kinetics of HCCl+Nox Reactions[J]. Int J Chem Kinet, 2002, 34(1):12–17.
    [2]Rim K T, Hershberger J F. A Diode Laser Study of the Product Branching Ratios of the CH + NO2 Reaction[J]. J Phys Chem A, 1998, 102:4592–4595.
    [3]Lanier W S, Mulholland J A, Beard J T. Symp (Int) Combust [Proc]. 1988, 21: 1171.
    [4]Chen S L, McCarthy J M, Clark W D, et al. Symp (Int) Combust [Proc]. 1988, 21: 1159.
    [5]Carpenter L J, Liss P S, Penkett S A. Marine organohalogens in the atmosphere over the Atlantic and Southern Oceans[J]. J Geophys Res, 2003, 108(D9):4256.
    [6]Jordan A, Harnisch J, Borchers R, le Guern F, Shinohara H. Volcanogenic Halocarbons[J]. Environ Sci Technol. 2000, 34 (6): 1122–1124.
    [7]Bilde M, Wallington T J, Ferronato C, Orlando J J, Tyndall G S, Estupiňan E, Haberkorn S. Atmospheric Chemistry of CH2BrCl, CHBrCl2, CHBr2Cl, CF3CHBrCl, CBr2Cl2 [J]. J Phys Chem A, 1998, 102: 1976–1986.
    [8]Mellouki A, Talukdar R K, Schmoltner A M, Gierczak T, Mills M J, Solomon S, Ravishankara A R. Atmospheric lifetimes and ozone depletion potentials of methyl bromide (CH3Br) and dibromomethane (CH2Br2)[J]. Geophys Res Lett, 1992, 19(20):2059–2062.
    [9]Tzima T D, Papavasileiou K D, Papayannis D K, Melissas V S. Theoretical kinetic study of the CH3Br + OH atmospheric system[J]. Chem Phys. 2006, 324: 591–599.
    [10]Pfeilsticker K, Sturges W T, B?sch H, Camy-Peyret C, Chipperfield M P, Engel A, Fitzenberger R, Müller M, Payan S, Sinnhuber B M. Lower stratospheric organic and inorganic bromine budget for the Arctic winter 1998/99[J]. Geophys Res Lett , 2000, 27(20):3305–3308.
    [11]Schauffler S M, Atlas E L, Blake D R, Flocke F, Lueb R A, Lee-Taylor J M, Stroud V, Travnicek W. Distributions of brominated organic compounds in the troposphere and lower stratosphere[J]. J Geophys Res, 1999, 104(D17): 513–535.
    [12]Faravelli T, Frassoldati A, Ranzi. Kinetic modeling of the interactions between NO and hydrocarbons in the oxidation of hydrocarbons at low temperatures[J]. Combust Flame, 2003, 132: 188–207.
    [13]Eskola A J, Geppert W D, Rissanen M P, Timonen R S, Halonen L. Kinetics of the Reactions of Chlorinated Methyl Radicals (CH2Cl, CHCl2, and CCl3) with NO2 in the Temperature Range 220-360 K[J]. J Phys Chem A. 2005, 109: 5376–5381.
    [14]Eskola A J, Pastuszka D W, Ratajczak E, Timonen R S. Kinetics of the Reactions of CH2I, CH2Br, and CHBrCl Radicals with NO2 in the Temperature Range 220-360 K[J]. J Phys Chem A,2006, 110(44): 12177–12183.
    [15]Zhang J X, Li Z S, Liu J Y, Sun C C. Theoretical Mechanistic Study on the Radical-Molecule Reaction of CHCl2/CCl3 with NO2[J]. J Comput Chem, 2005, 27(5): 661–671.
    [16]Zhang J X, Li Z S, Liu J Y, Sun C C. Theoretical Study on the Mechanism of the CH2F+NO2Reaction[J]. J Comput Chem, 2005, 27(7): 894–905.
    [17]Zhang J X, Li Z S, Liu J Y, Sun C C. Radical–molecule reaction CH2Cl + NO2: a mechanistic study[J]. Theor Chem Acc, 2007, 117: 579–586.
    [18]Gaussian 03, Revision C.02, Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian, Inc., Wallingford CT. 2004.
    [19]Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J Chem Phys, 1993, 98: 5648–5652.
    [20]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys Rev B, 1988, 37: 785–789.
    [21]Pople J A, Head-Gordon M, Raghavachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies[J]. J Chem Phys, 1987, 87: 5968–5975.
    [22]Gonzalez C, Schlegel H B. An improved algorithm for reaction path following[J]. J Chem Phy. 1989, 90(4): 2154–2161.
    [23]Gonzalez C, Schlegel H B. Reaction Path Following in Mass-Weighted Inerternal Coordinates[J]. J Phys Chem, 1990, 94: 5523–5527.
    [24] Kuchitsu K. Struct Free Polyatom Mol Basic Data[M]. Springer, Berlin, 1998.
    [25]Lide D R. CRC Handbook of Chemistry and Physics, 80th ed. CRC Press, Boca Raton. 1999.
    [26] Jacox M E. In NIST Chemistry WebBook. NIST Standard Reference database Number 69, June 2005 Release.
    [1]NIST Chemical Kinetics Database, Standard Reference Database 17, Version 7.0 (Web Version), Release 1.2, National Institute of Standards and Technology, Gaithersburg, M D 20899.
    [2]Alicke B, Hebestreit K, Stutz J, Platt U. Iodine oxide in the marine boundary layer[J]. Nature, 1999, 397:572–573.
    [3]Lovelock J E, Maggs R J, Wade R J. Halogenated hydrocarbons in and over the Atlantic[J]. Nature, 1973, 241:194–196.
    [4]Jordan A, Harnisch J, Borchers R, Guern Fle, Shinohara H. Volcanogenic Halocarbons[J]. Environ Sci Technol , 2000, 34:1122–1124.
    [5]Baren R E, Erickson M, Hershberger J F. Kinetics of HCCL + NOx reactions[J]. Int J Chem Kinet, 2002, 34:12–17.
    [6]Rim K T, Hershberger J F. A diode laser study of the product branching ratios of the CH + NO2 reaction[J]. J Phys Chem A, 1998, 102:4592–4595.
    [7]Lanier W S, Mulholland J A, Beard J T. Reburning thermal and chemical processes in a two-dimensional pilot-scale system[J]. Symp Int Combust Proc, 1988, 21:1171–1179.
    [8]Chen S L, McCarthy J M, Clark W D, Heap M P, Seeker W R, Pershing D W. Bench and pilot scale process evaluation of reburning for in-furnace nox reduction[J]. Symp Int Combust Proc, 1988, 21: 1159–1169.
    [9]Faravelli T, Frassoldati A, Ranzi E. Kinetic modeling of the interactions between NO and hydrocarbons in the oxidation of hydrocarbons at low temperatures Combust Flame, 2003, 132:188–207.
    [10]Eskola A J, Pastuszka D W, Ratajczak E, Timonen R S. Kinetics of the reactions of CH2I, CH2Br, and CHBrCl radicals with NO2 in the temperature range 220-360 K[J]. J Phys Chem A, 2006, 110: 12177–12183.
    [11]Jia X J, Pan X M, Sun J Y, et al. Theoretical mechanistic study on the radical-molecule reaction of CH2Br/CHBrCl with NO2[J]. Theor Chem Acc, 2009, 122: 207–216.
    [12]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, revision C.02. Gaussian, Inc., Wallingford. 2004.
    [13]Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J Chem Phys, 1993, 98: 5648–5652.
    [14]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys Rev B, 1988, 37: 785–789.
    [15]Dunning T H Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen[J]. J Chem Phys, 1989, 90: 1007–1023.
    [16]Dunning T H Jr, Peterson K A, Wilson A K. Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited[J]. J Chem Phys 2001, 114: 9244–9253.
    [17]Gonzalez C, Schlegel H B. An improved algorithm for reaction path following[J]. J Chem Phys, 1989, 90: 2154–2161.
    [18]Gonzalez C, Schlegel H B. Reaction path following in mass-weighted internal coordinates[J]. J Phys Chem, 1990, 94: 5523–5527.
    [19]Kuchitsu K. Structure of free polyatomic molecules basic data[M]. Springer, Berlin 1998.
    [20]Lide D R. CRC Handbook of Chemistry and Physics, 80th ed. CRC Press, Boca Raton. 1999.
    [21]Jacox M E. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005 Release.
    [22]Cotton J A, Wikinson G, Murillo C A, et al. Adv Inorganic Chem[M]. 3rd U.S. Edn., 1972, 384–401.
    [1]Tuck R, Plumb A, Condon E. The Airborne Arctic Stratospheric Expedition: Prologue[J]. Geophys Res Lett, 1990, 17: 313–316.
    [2]Rosswall T. Greenhouse gases and global change: international collaboration[J]. Environ Sci Technol, 1991, 25 (4): 567–573.
    [3]Atkinson R. Etics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions[J]. Chem Rev, 1986, 86 (1): 69–201.
    [4]Atkinson R. J Phys Chem Ref Data Monograph 2[M]. 1994, 1–216.
    [5]Manzer L. The CEC-Ozone Issue: Progress on the Development of Alternatives to CFCs[J]. Science, 1990, 249: 31–35.
    [6]Manning R G, Kurylo M J. Flash photolysis resonance fluorescence investigation of the temperature dependencies of the reactions of chlorine (2P) atoms with methane, chloromethane, fluoromethane, excited fluoromethane, and ethane[J]. J Phys Chem, 1977, 81: 291–296.
    [7]Senkan S M. ES&T Views: Thermal destruction of hazardous wastes: The need for fundamental chemical kinetic research[J]. Environ Sci Technol, 1988, 22: 368–370.
    [8]Bryukov M G, Slagle I R, Knyazev V D. Kinetics of Reactions of H Atoms With Ethane and Chlorinated Ethanes[J]. J Phys Chem A, 2001, 105(28): 6900–6909.
    [9]Zhang H, Zhang G L, Wang L, Liu B, Yu X Y, Li Z S. Theoretical studies on the reactions X + CHBrF2 (X = F, Br)[J]. Chem Phys Lett, 2006, 432(1-3): 6–10.
    [10]Knyazev V D. Isodesmic Reactions for Transition States: Reactions of Cl Atoms with Methane and Halogenated Methanes[J]. J Phys Chem A, 2003, 107(50): 11082–11091.
    [11]Li S, Li Z S, Liu J Y, Sun C C. Ab initio direct dynamics studies on the reaction of H atom with CH3CH2Cl[J]. J Comput Chem, 2004, 25(1): 72–82.
    [12]Li Q S, Wang C Y. DFT study of the rate constants of the reactions CHClmF3–m + Cl = CClmF3–m + HCl (m = 3– 1)[J]. Phys Chem Chem Phys, 2002, 4: 4386– 4391.
    [13]Sun H, He H Q, Pan Y R, Pan X M, Li Z S, Wang R S. Theoretical study on the hydrogen abstraction reaction of CH3CH2F (HFC-161) with Cl atom[J]. Chem Phys Lett, 450(4-6): 86–191.
    [14]Zhang H, Wu J Y, Li Z S, Liu J Y, Li S, Sun C C. Dual-level direct dynamics studies on the reaction Cl + CHBr2Cl[J]. J Comput Chem 2005, 26(13): 1421–1426.
    [15]Wang L, Liu J Y, Wan S Q, Li Z S. Theoretical study on the reaction of bromine-substituted ethanes with hydrogen atoms[J]. Chem Phys Lett, 455(1-3):20–25.
    [16]Tschuikow-Roux E, Faraji F, Paddison S, Niedzielski J, Miyokawa K. Kinetics of photochlorination of mono- and disubstituted fluoro-, chloro-, and bromomethanes[J]. J Phys Chem, 1988, 92(6): 1488–1495.
    [17]Jourdain G L, Poulet G, Barassin J, Lebras G, Combourieu J. J Pollut Atmos, 1977, 75: 256.
    [18]Tuazon E C, Atkinson R, Corchnoy S B. Rate constants for the gas-phase reactions of Cl atoms with a series of hydrofluorocarbons and hydrochlorofluorocarbons at 298±2 K[J]. Int J Chem Kinet 1992, 24(7): 639648.
    [19]Senkan S M, Quam D. Research Article Correlation of reaction rate coefficients for the abstraction of hydrogen atoms from organic compounds by chlorine radical attack[J]. J Phys Chem 1992, 96(26): 10837–10842.
    [20]Wallington T J, Hurley M D, Schneider W F, Sehested J, Nielsen O J. Mechanistic study of the gas-phase reaction of CH2FO2 radicals with HO2[J]. Chem Phys Lett 1994, 218(1-2): 34–42.
    [21]Atkinson R, Baulch D L, Cox R A et al. J Phys Chem Ref Data 1997, 26: 521.
    [22]Bell R L, Truong T N. Direct ab initio dynamics studies of proton transfer in hydrogen-bond systems[J].J Chem Phys 1994, 101:10442–10451.
    [23]Truong T N, Duncan W T, Bell R L. in: Chemical Applications of Density Functional Theory[M], American Chemical Society, Washington, DC, 1996, p. 85.
    [24]Truhlar D G in: D. Heidrich (Ed.), The Reaction Path in Chemistry: Current Approaches and Perspectives[M], Kluwer, Dordrecht, The Netherlands, 1995, p. 229.
    [25]Corchado J C, Espinosa-Garcia J, Hu W P, Rossi I, Truhlar D G. Dual-level Reaction-Path Dynamics (the///approach to VTST with semiclassical tunneling). application to OH + NH3 .fwdarw. H2O + NH2[J]. J Phys Chem, 1995, 99(2): 687–694.
    [26]Hu W P, Truhlar D G. Factors Affecting Competitive Ion?Molecule Reactions: ClO- + C2H5Cl and C2D5Cl via E2 and SN2 Channels[J]. J Am Chem Soc, 1996, 118 (4): 860–869.
    [27]Truhlar D G, Garrett B C. Variational transition-state theory[J]. Acc Chem Res, 1980, 13 (12): 440–448.
    [28]Truhlar D G, Isaacson A D, Garrett B C, Baer M. (Ed.), The Theory of Chemical Reaction Dynamics, CRC Press, Boca Raton, 1985, vol. 4: p. 65.
    [29]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, revision C.02. Gaussian, Inc., Wallingford. 2004.
    [30]Duncan W T, Truong T N. Thermal and vibrational-state selected rates of the CH4+Cl HCl+CH3 reaction[J]. J Chem Phys 1995, 103: 9642–9652.
    [31]Gonzalez C, Schlegel H B. An improved algorithm for reaction path following[J]. J Chem Phys 1989, 90: 2154–2161.
    [32]Corchado J C, Chuang Y Y, Fast P L, et al. POLYRATE version 9.1, Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, 2002.
    [33]Chuang Y Y, Corchado J C, Truhlar D G. Mapped Interpolation Scheme for Single-Point Energy Corrections in Reaction Rate Calculations and a Critical Evaluation of Dual-Level Reaction Path Dynamics Methods[J]. J Phys Chem A 1999, 103 (8): 1140–1149.
    [34]Garrett B C, Truhlar D G. Criterion of minimum state density in the transition state theory of bimolecular reactions[J]. J Chem Phys 1979, 70, 1593–1598.
    [35]Garrett B C, Truhlar D G. Generalized transition state theory. Bond energy-bond order method for canonical variational calculations with application to hydrogen atom transfer reactions[J]. J Am Chem Soc 1979, 101(16): 4534–4548.
    [36]Garrett B C, Truhlar D G, Grev R S, Magnuson A W. Improved treatment of threshold contributions in variational transition-state theory[J]. J Phys Chem 1980, 84 (13): 1730–1748.
    [37]Truhlar D G, Issacson A D, Skodje R T,Garrett B C. Additions and Corrections - Incorporation of Quantum Effects in Generalized-Transition-State Theory[J]. J Phys Chem 8 1983, 87 (22): 4554.
    [38]Lu D H et al. POLYRATE 4: A new version of a computer program for the calculation of chemical reaction rates for polyatomics[J]. Comput Phys Commun 1992, 71 (3): 235–262.
    [39]Liu Y P, Lynch G C, Truong T N, Lu D H, Truhlar D G, Garrett B C. Molecular modeling of the kinetic isotope effect for the [1,5]-sigmatropic rearrangement of cis-1,3-pentadiene[J]. J Am Chem Soc 1993, 115(6): 2408–2415.
    [40]Lide D R. CRC Handbook of Chemistry and Physics, 80th ed. CRC Press, Boca Raton. 1999.
    [41]Huber K P, Herzberg G, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules; Van Nostrand Reinhold Co., New York, 1979.
    [42]Harmony M P, Laurie V W, Ramsay R L, et al. Molecular structures of gas-phase polyatomic molecules determined by spectroscopic methods[J]. J Phys Chem Ref Data 1979, 8: 619–722.
    [43]Chase M W Jr, Davies C A, Downey J R, et al. JANAF Thermochemical Tables(3rd ed.), Ref Data, 1985, 14, Suppl. 1.
    [44] Jacox M E. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005 Release.
    [45]Huber K P, Herzberg G. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, March 2003 Release.
    [46]Chase M W Jr, NIST-JANAF Themochemical Tables (4th ed.), J Phys Chem Ref Data, Monograph 9, 1998, 1.
    [47]Tschuikow-Roux E, Paddison S. Bond dissociation energies and radical heats of formation in CH3Cl, CH2Cl2, CH3Br, CH2Br2, CH2FCl, and CHFCl2[J]. Int J Chem Kinet 1987, 19(1): 15–24.
    [48]Poutsma J C, Paulino J A, Squires R R. Absolute Heats of Formation of CHCl, CHF, and CClF. A Gas-Phase Experimental and G2 Theoretical Study[J]. J Phys Chem A 1997, 101(29): 5327–5336.
    [49]Rosenman E, McKee M L. Reaction-Path Dynamics and Theoretical Rate Constants for the CH3F + Cl→HCl + CH2F Reaction by Direct Dynamics Method[J]. J Am Chem Soc 1997, 119(38): 9033–9038.
    [50]Xiao J F, Li Z S, Ding Y H et al. Density Functional Theory and ab Initio Direct Dynamics Studies on the Hydrogen Abstraction Reactions of Chlorine Atoms with CHCl3-nFn (n = 0, 1, and 2) and CH2Cl2[J]. J Phys Chem A 2002, 106 (2): 320–325.
    [1]Carpenter L J, Iodine in the Marine Boundary Layer[J]. Chem Rev 2003, 103: 4953–4962.
    [2]Vogt R, Sander R, Von Glasow R, et al. Iodine Chemistry and its Role in Halogen Activation and Ozone Loss in the Marine Boundary Layer: A Model Study[J]. J Atmos Chem 1999, 32(3): 375–395.
    [3]Solomon S, Garcia R R, Ravishankara A R. On the role of iodine in ozone depletion[J]. J Geophys Res 1994, 99: 20491–20499.
    [4]Davis D, Crawford J, Liu S, et al. Potential impact of iodine on tropospheric levels of ozone and other critical oxidants[J]. J Geophys Res, 1996, 101(D1): 2135–2147.
    [5]Chameides W L, Davis D D. Iodine: Its Possible Role in Tropospheric Photochemistry[J]. J Geophys Res 1980, 85: 7383–7398.
    [6]Vogt R, Crutzen P J, Sander R. A mechanism for halogen release from sea-salt aerosol in the remote marine boundary[J]. Nature 1996, 383, 327–330.
    [7]Singh H B, Kasting J F. Chlorine-hydrocarbon photochemistry in the marine troposphere and lower stratosphere[J]. J Atmos Chem 1988, 7(3): 261–285.
    [8]Jobson B T, Niki H, Yokouchi Y, et al. Measurements of C2-C6 hydrocarbons during the Polar Sunrise1992 Experiment: Evidence for Cl atom and Br atom chemistry[J]. J Geophys Res 1994, 99(D12): 25355–25368.
    [9]Singh H B, Gregory G L, Anderson B, et al. Low ozone in the marine boundary layer of the tropical Pacific Ocean: Photochemical loss, chlorine atoms, and entrainment[J]. J Geophys Res 1996, 101(D1): 1907–1917.
    [10]Singh, H. B.; Thakur, A. N.; Chen, Y. E, et al. Tetrachloroethylene as an indicator of low Cl atom concentrations in the troposphere[J]. Geophys Res Lett 1996, 23(12), 1529–1532..
    [11]Orlando J J, Piety C A, Nicovich M J, et al. Rates and Mechanisms for the Reactions of Chlorine Atoms with Iodoethane and 2-Iodopropane[J]. J Phys Chem A 2005, 109, 6659–6675.
    [12]Cotter E S N, Booth N J, Canosa-Mas C E, et al. Reactions of Cl atoms with CH3I, C2H5I, 1-C3H7I, 2-C3H7I and CF3I: kinetics and atmospheric relevance[J]. Phys Chem Chem Phys 2001, 3, 402–408.
    [13]Bell, R. L.; Truong, T. N. Direct ab initio dynamics studies of proton transfer in hydrogen-bond systems[J]. J Chem Phys, 1994, 101(12): 10442–10451.
    [14]Truong T N, Duncan W T, Bell R L, in: Laird, B. B.; Ross, R. B.; Ziegler, T. (Eds.), Chemical Applications of DensityFunctional Theory[M], American Chemical Society, Washington, DC, 1996, p. 85.
    [15]Truhlar D G, in: D. Heidrich (Ed.), The Reaction Path in Chemistry: Current Approaches and Perspectives[M], Kluwer, Dordrecht, The Netherlands, 1995, p. 229.
    [16]Corchado J C, Espinosa-Garcia J, HuW P, et al. Dual-Level Reaction-Path Dynamics (the///Approach to VTST with Semiclassical Tunneling). Application to OH + NH3 .fwdarw. H2O + NH2[J]. J Phys Chem 1995, 99(2): 687-694.
    [17]Hu, W. P.; Truhlar, D. G. Factors Affecting Competitive Ion?Molecule Reactions: ClO- + C2H5Cl and C2D5Cl via E2 and SN2 Channels J Am Chem Soc 1996, 118(4): 860-869.
    [18] Truhlar D G, Garrett B C. Variational transition-state theory[J]. Acc Chem Res 1980, 13(12): 440–448.
    [19]Truhlar D G, Isaacson A D, Garrett B C, Baer M. (Ed.), The Theory of Chemical Reaction Dynamics, CRC Press, Boca Raton, 1985, vol. 4: p. 65.
    [20]Chuang Y Y, Corchado J C, Truhlar D G. Mapped Interpolation Scheme for Single-Point Energy Corrections in Reaction Rate Calculations and a Critical Evaluation of Dual-Level Reaction Path Dynamics Methods[J]. J Phys Chem, 1999, 103:1140–1149.
    [21]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, revision C.02. Gaussian, Inc., Wallingford.2004.
    [22]Peterson K A, Figgen D, Goll E, et al. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements[J]. J Chem Phys 2003, 119: 11113–11123.
    [23]Dunning Jr T H, Peterson K A, Wilson A K. Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited[J]. J Chem Phys 2001, 114: 9244–9253.
    [24]Dunning Jr T H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen[J]. J Chem Phys, 1989, 90: 1007–1023.
    [25]Garrett B C, Truhlar D G, Grev R S, Magnuson A W. Improved treatment of threshold contributions in variational transition-state Theory[J]. J Phys Chem, 1980, 84: 1730–1748.
    [26]Lu D H, Truong T N, Melissas V S, Lynch G C, Liu Y P, Grarrett B C, Steckler R, Issacson A D, Rai S N, Hancock G C, Lauderdale J G, Joseph T, Truhlar D G. POLYRATE 4: a new version of a computer program for the calculation of chemical reaction rates for polyatomics[J]. Comput Phys Commun, 1992, 71: 235–262.
    [27]Liu Y P, Lynch G C, Truong T N, Lu D H, Truhlar D G., Garrett B C. Molecular Modeling of the Kinetic Isotope Effect for the [ 1,5] Sigmatropic rearrangement of cis- 1,3-Pentadiene[J]. J Am Chem Soc, 1993, 115: 2408–2415.
    [28]Truhlar D G. A simple approximation for the vibrational partition function of a hindered internal rotation[J]. J Comput Chem, 1991, 12: 266–270.
    [29]Chuang Y Y, Truhlar D G. Statistical thermodynamics of bond torsional modes[J].J Chem Phys 2000, 112(3): 1221–1228.
    [30]Chuang Y Y, Truhlar D G. Erratum: "Statistical thermodynamics of bond torsional modes" [J. Chem. Phys. 112, 1221 (2000), 121, 7036 (E) (2004)][J]. J Chem Phys 2006, 124: 179903–179904.
    [31]Huber K P, Herzberg G.. Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules; Van Nostrand Reinhold Co.: New York, 1979.
    [32]Shimanouchi T. Tables of Molecular Vibrational Frequencies, Consolidated Volume 1, NSRDS NBS-39.
    [33]Linstrom P J, Mallard W G , (Eds.)"Evaluated Infrared Reference Spectra" in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov(vibrational frequency data compiled by Coblentz Society, Inc.)
    [34]Carson A S, Laye P G., Pedley J B, et al. The enthalpies of formation of iodoethane, 1,2-diiodoethane, 1,3-diiodopropane, and 1,4-diiodobutane[J]. J Chem Thermodyn 1994, 26, 1103–1109.
    [35]Chase M W Jr. NIST-JANAF Themochemical Tables, Fourth Edition, J Phys Chem Ref Data, Monograph 9, 1998, 1–1951.
    [36]DeMore W B, Sander S P, Golden D M, et al. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling, JPL Publication 97-4, 1997.
    [37]NIST Standard Reference Database 69: NIST Chemistry WebBook (http://webbook.nist.gov)
    [38]Lazarou Y G, Papadimitriou V C, Prosmitis A V, et al. Thermochemical Properties for Small Halogenated Molecules Calculated by the Infinite Basis Extrapolation Method[J]. J Phys Chem A 2002, 106, 11502–11517.
    [39]Garrett B C, Truhlar D G. Importance of quartic anharmonicity for bending partition functions in transition-state theory[J]. J Phys Chem 1979, 83(14): 1915–1924.
    [1]Ravishankara R A, Turnipseed A A, Jensen N R, et al. Do hydrofluorocarbons destroy stratospheric ozone?[J]. Science, 1994, 263: 71–75.
    [2]Sekiya A, Misaki S J. The potential of hydrofluoroethers to replace CFCs, HCFCs and PFCs[J]. Fluorine Chem, 2000, 101: 215–221.
    [3]Tokuhashi K, Chen L, Kutsuna S, et al. Environmental assessment of CFC alternatives: Rate constants for the reactions of OH radicals with fluorinated compounds [J]. J Fluorine Chem, 2004, 125:1801-1807.
    [4]Takahashi K, Matsumi Y J. Atmospheric chemistry of CF3CFHOCF3: Reaction with OH radicals, atmospheric lifetime, and global warming potential[J]. Geophys Res. 2002, 107(D21): 4574-4579.
    [5]Urata S, Takada A, Uchimaru T, Chandra A K. Rate constants estimation for the reaction of hydrofluorocarbons and hydrofluoroethers with OH radicals[J]. Chem Phys Lett, 2003, 368:215-223.
    [6]Li Z J, Jeong G R, Hansen J C, et al. Rate constant for the reactions of CF3OCHFCF3 with OH and Cl[J]. Chem Phys Lett, 2000, 320: 70–76.
    [7]Takahashi K, Matsumi Y, Wallington T J, et al. Atmospheric chemistry of CF3CFHOCF3: Kinetics of the reaction with Cl atoms and fate of CF3CFO(.)OCF3 radicals[J]. Chem Phys Lett, 2002, 352:202-208.
    [8]Oyaro N, Sellev?g S R, Nielsen C J. Atmospheric chemistry of hydrofluoroethers: Reaction of a series of hydrofluoroethers with OH radicals and Cl atoms, atmospheric lifetimes, and global warming potentials[J]. J Phys Chem A, 2005, 109: 337–346.
    [9]Beach S D, Hickson K M, Smith, Ian W M, et al. Rate constants and Arrhenius parameters for the reactions of OH radicals and Cl atoms with CF3CH2OCHF2, CF3CHClOCHF2 and CF3CH2OCClF2, using the discharge-flow/resonance fluorescence method [J]. Phys Chem Chem Phys, 2001, 3: 3064–3069.
    [10]Díaz-de-Mera Y, Aranda A, Bravo I, Moreno E, Martínez E, Rodríguez A. Atmospheric HFEs degradation in the gas phase: Reaction of HFE-7500 with Cl atoms at low temperatures[J]. Chem Phys Lett, 2009, 479: 20–24.
    [11]Bell R L, Truong T N. Direct ab initio dynamics studies of proton transfer in hydrogen-bond systems[J]. J Chem Phys, 1994, 101: 10442–10451.
    [12]Truong T N, Duncan W T, Bell R L. in: Chemical Applications of Density Functional Theory, American Chemical Society, Washington, DC, 1996, p. 85.
    [13]Truhlar D G. in: D. Heidrich (Ed.), The Reaction Path in Chemistry: Current Approaches and Perspectives, Kluwer, Dordrecht, The Netherlands, 1995, p. 229
    [14]Corchado J C, Espinosa-Garcia J, Hu W P, et al. Dual-level reaction-path dynamics (the III approach to VTST with semiclassical tunneling). Application to OH + NH3→H2O + NH2[J]. J. Phys. Chem. 1995, 99: 687–694.
    [15]Hu W P, Truhlar D G. Factors affecting competitive ion-molecule reactions: CIO- + C2H5Cl and C2D5Cl via E2 and SN2 channels[J]. J Am Chem Soc, 1996, 118: 860–865.
    [16]Truhlar D G, Garrett B C. Variational transition-state theory[J]. Acc Chem Res, 1980, 13:440–448.
    [17]Truhlar D G, Isaacson A D, Garrett B C, Baer M. (Ed.), The Theory of Chemical Reaction Dynamics, CRC Press, Boca Raton, 1985, vol. 4: p. 65.
    [18]Chuang Y Y, Corchado J C, Truhlar D G. Mapped Interpolation Scheme for Single-Point Energy Corrections in Reaction Rate Calculations and a Critical Evaluation of Dual-Level Reaction Path Dynamics Methods[J]. J Phys Chem, 1999, 103: 1140–1149.
    [19]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, revision C.02. Gaussian, Inc., Wallingford. 2004.
    [20]Fast P L, Truhlar DG. MC-QCISD: Multi-coefficient correlation method based on quadraticconfiguration interaction with single and double excitations[J]. J Phys Chem A, 2000, 104: 6111-6116.
    [21] Corchado J C, Chuang Y Y, Fast P L, et al. POLYRATE version 9.1, Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, 2002.
    [22]Garrett B C, Truhlar D G, Grev R S, Magnuson A W. Improved treatment of threshold contributions in variational transition-state Theory[J]. J Phys Chem, 1980, 84: 1730–1748.
    [23]Lu D H, Truong T N, Melissas V S, Lynch G C, Liu Y P, Grarrett B C, Steckler R, Issacson A D, Rai S N, Hancock G C, Lauderdale J G, Joseph T, Truhlar D G. POLYRATE 4: a new version of a computer program for the calculation of chemical reaction rates for polyatomics[J]. Comput Phys Commun, 1992, 71: 235–262.
    [24]Liu Y P, Lynch G C, Truong T N, Lu D H, Truhlar D G., Garrett B C. Molecular Modeling of the Kinetic Isotope Effect for the [ 1,5] Sigmatropic rearrangement of cis- 1,3-Pentadiene[J]. J Am Chem Soc, 1993, 115: 2408–2415.
    [25]Chuang Y Y, Truhlar D G. Statistical thermodynamics of bond torsional modes[J]. J Chem Phys, 2000, 112: 1221–1228.
    [26]Truhlar D G. A simple approximation for the vibrational partition function of a hindered internal rotation[J]. J Comput Chem, 1991, 12: 266–270.
    [27]Schlegel H B, Sosa C. Ab initio molecular orbital calculations on f+h2→h2o + h using unrestricted moller- plesset perturbation theory with spin projection[J]. Chem Phys Lett, 1988, 145: 329–333.
    [28]Ignatyev I S, Xie Y, Allen W D, Schaefer H F. Mechanism of the C2H5+O2 reaction[J]. J Chem Phys, 1997, 107: 141–155.
    [29]Lide D R. CRC Handbook of Chemistry and Physics, 80th ed. CRC Press, Boca Raton. 1999.
    [30]Shimanouchi T. Tables of Molecular Vibrational Frequencies Consolidated Volume 1, National Bureau of Standards, U. S. GPO, Washinton, D. C., 1972.
    [31]Chase M W Jr, Davies C A, Downey J R, et al. JANAF Thermochemical Tables(3rd ed.), Ref Data, 1985, 14, Suppl. 1.
    [32]Chase M W Jr, NIST-JANAF Themochemical Tables (4th ed.), J Phys Chem Ref Data, Monograph 9, 1998, 1.
    [33]Frenkel M, Kabo G. J, Marsh K N, Roganov G. N, Wilhoit R C. Thermodynamics of Organic Compounds in the Gas State; Thermodynamics Research Center: College Station, TX, Vol. I. 1994.
    [34]Chen S S, Rodgers A S, Chao J, Wilhoit R C, Zwolinski B J. Ideal gas thermodynamic properties of six fluoroethanes[J]. J Phys Chem Ref Data, 1975, 4: 441–456.
    [35]Rusic B, Feller D, Dixon D A, et al. Evidence for a Lower Enthalpy of Formation of Hydroxyl Radical and a Lower Gas-Phase Bond Dissociation Energy of WaterJ Phys Chem A, 2001, 105(1): 1–4.
    [36]Joens J A. The Dissociation Energy of OH(X2Π3/2) and the Enthalpy of Formation of OH(X2Π3/2), ClOH, and BrOH from Thermochemical Cycles[J]. J. Phys. Chem. A 2001, 105: 11041-11044.
    [37]Ruscic B, Wagner A F, Harding L B, et al. On the Enthalpy of Formation of Hydroxyl Radical and Gas-Phase Bond DissociationEnergies of Water and Hydroxyl[J] J Phys Chem A, 2002, 106:2727–2747.
    [38]Gurvich L V, Veyts I V, Alcock C B. Thermodynamic Properties of Individual Substances, Hemisphere, New York, 1989, 1.
    [39]Chase M W Jr. NIST-JANAF Thermochemical Tables, American Chemical Society and the American Institute of Physics, Woodbury, 1998.
    [40]Martin J D D, Hepburn J W. Determination of bond dissociation energies by threshold ion-pairproduction spectroscopy: An improved D(HCl)[J]. J Chem Phys, 1998, 109: 8139-8142.
    [41]Roseman E, Mckee M L. Reaction-Path dynamics and theoretical rate constants for the CH3F + Cl→HCl + CH2F reaction by direct dynamics method[J]. J Am Chem Soc, 1997, 119: 9033-9038.
    [42]Espinosa-Garcis J, Corchado J C. Variational transition-state theory calculation using the direct dynamics method: NH3+H→NH2+H2 reaction[J]. J Chem Phys, 1994, 101: 1333–1342.
    [43]Singleton D L, Cvetanovic R J. Temperature dependence of the reactions of oxygen atoms witholefins'[J]. J Am Chem Soc, 1976, 98: 6812–6819.
    [44]Alvarez-Idaboy J R, Mora-Diez N, Vivier-Bunge A. A quantum chemical and classical transition state theory explanation of negative activation energies in OH addition to substituted ethenes[J]. J Am Chem Soc, 2000, 122: 3715–3720.
    [45]Alvarez-Idaboy J R, Mora-Diez N, Boyd R J, Vivier-Bunge A. On the importance of prereactive complexes in molecule-radicalreactions: Hydrogen abstraction from aldehydes by OH[J]. J Am Chem Soc, 2001, 123: 2018-2024.
    [46]Galano A, Alvarez-Idaboy J R, Montero-Cabrera L A, Vivier-Bunge A. OH hydrogen abstraction reactions from alanine and glycine: A quantum mechanical Approach[J]. J Comput Chem, 2001, 22: 1138–1153.
    [47]Galano A, Alvarez-Idaboy J R, Bravo-Pe′rez G, Ruiz-Santoyo M E. Mechanism and rate coefficients of the gas phase OH hydrogen abstraction reaction from asparagine: a quantum mechanical approach[J].THEOCHEM, 2002, 617: 77–86.
    [48]Yang L, Liu J Y, Wang L, He H Q, Wang Y, Li Z S. Theoretical study of the reactions CF3CH2OCHF2 + OH/Cl and its product radicals and parent ether (CH3CH2OCH3) with OH.[J]. J Comput Chem, 2008, 29: 550–561.
    [49]Yang L, Liu J Y, Li Z S. Computational studies on the mechanisms and dynamics of OH reactions with CHF2CHFOCF3 and CHF2CH2OCF3[J]. J Chem Theory Comput, 2008, 4: 1073-1082.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700